Dynamic Gene Clusters Mediating Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Conservation and Antimicrobial Susceptibility Testing
2.2. PCR Amplification of blaVIM1 and blaVIM2 Genes
2.3. Repetitive Element Sequence-Based PCR (REP-PCR)
2.4. Ethical Considerations
2.5. In Silico Molecular Modeling Study
2.6. Data Analysis
3. Results and Discussion
In Silico Molecular Modeling Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergogne-Bérézin, E.; Towner, K.J. Acinetobacter Spp. as Nosocomial Pathogens: Microbiological, Clinical, and Epidemiological Features. Clin. Microbiol. Rev. 1996, 9, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Espinal, P.; Vila-Farrés, X.; Vila, J. The Acinetobacter Baumannii Oxymoron: Commensal Hospital Dweller Turned Pan-Drug-Resistant Menace. Front. Microbiol. 2012, 3, 148. [Google Scholar] [CrossRef] [Green Version]
- Dijkshoorn, L.; Nemec, A.; Seifert, H. An Increasing Threat in Hospitals: Multidrug-Resistant Acinetobacter Baumannii. Nat. Rev. Microbiol. 2007, 5, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Wisplinghoff, H.; Perbix, W.; Seifert, H. Risk Factors for Nosocomial Bloodstream Infections Due to Acinetobacter Baumannii: A Case-Control Study of Adult Burn Patients. Clin. Infect. Dis. 1999, 28, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter Baumannii: Emergence of a Successful Pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.N.; Lu, C.H.; Huang, C.R.; Chuang, Y.C. Community-Acquired Acinetobacter Meningitis in Adults. Infection 2000, 28, 395–397. [Google Scholar] [CrossRef]
- Falagas, M.E.; Karveli, E.A.; Kelesidis, I.; Kelesidis, T. Community-Acquired Acinetobacter Infections. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 857–868. [Google Scholar] [CrossRef]
- Falagas, M.E.; Rafailidis, P.I. Attributable Mortality of Acinetobacter Baumannii: No Longer a Controversial Issue. Crit. Care 2007, 11, 134. [Google Scholar] [CrossRef] [Green Version]
- Joly-Guillou, M.-L. Clinical Impact and Pathogenicity of Acinetobacter. Clin. Microbiol. Infect. 2005, 11, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention (CDC). Acinetobacter Baumannii Infections among Patients at Military Medical Facilities Treating Injured U.S. Service Members, 2002–2004. MMWR Morb. Mortal. Wkly. Rep. 2004, 53, 1063–1066. [Google Scholar]
- Breslow, J.M.; Monroy, M.A.; Daly, J.M.; Meissler, J.J.; Gaughan, J.; Adler, M.W.; Eisenstein, T.K. Morphine, but Not Trauma, Sensitizes to Systemic Acinetobacter Baumannii Infection. J. Neuroimmune Pharmacol. 2011, 6, 551–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, L.C.S.; Visca, P.; Towner, K.J. Acinetobacter Baumannii: Evolution of a Global Pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijers, C.D.M.; Pham, L.; Menon, S.; Boyd, K.L.; Noel, H.R.; Skaar, E.P.; Gaddy, J.A.; Palmer, L.D.; Noto, M.J. Identification of Two Variants of Acinetobacter Baumannii Strain ATCC 17978 with Distinct Genotypes and Phenotypes. Infect. Immun. 2021, 89, e00454-21. [Google Scholar] [CrossRef] [PubMed]
- Eveillard, M.; Kempf, M.; Belmonte, O.; Pailhoriès, H.; Joly-Guillou, M.-L. Reservoirs of Acinetobacter Baumannii Outside the Hospital and Potential Involvement in Emerging Human Community-Acquired Infections. Int. J. Infect. Dis. 2013, 17, e802–e805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Breij, A.; Eveillard, M.; Dijkshoorn, L.; van den Broek, P.J.; Nibbering, P.H.; Joly-Guillou, M.-L. Differences in Acinetobacter Baumannii Strains and Host Innate Immune Response Determine Morbidity and Mortality in Experimental Pneumonia. PLoS ONE 2012, 7, e30673. [Google Scholar] [CrossRef] [Green Version]
- Eveillard, M.; Soltner, C.; Kempf, M.; Saint-André, J.-P.; Lemarié, C.; Randrianarivelo, C.; Seifert, H.; Wolff, M.; Joly-Guillou, M.-L. The Virulence Variability of Different Acinetobacter Baumannii Strains in Experimental Pneumonia. J. Infect. 2010, 60, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Diancourt, L.; Passet, V.; Nemec, A.; Dijkshoorn, L.; Brisse, S. The Population Structure of Acinetobacter Baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool. PLoS ONE 2010, 5, e10034. [Google Scholar] [CrossRef] [Green Version]
- Kempf, M.; Rolain, J.-M. Emergence of Resistance to Carbapenems in Acinetobacter Baumannii in Europe: Clinical Impact and Therapeutic Options. Int. J. Antimicrob. Agents 2012, 39, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Keen, E.F.; Murray, C.K.; Robinson, B.J.; Hospenthal, D.R.; Co, E.-M.A.; Aldous, W.K. Changes in the Incidences of Multidrug-Resistant and Extensively Drug-Resistant Organisms Isolated in a Military Medical Center. Infect. Control Hosp. Epidemiol. 2010, 31, 728–732. [Google Scholar] [CrossRef]
- Mera, R.M.; Miller, L.A.; Amrine-Madsen, H.; Sahm, D.F. Acinetobacter Baumannii 2002–2008: Increase of Carbapenem-Associated Multiclass Resistance in the United States. Microb. Drug Resist. 2010, 16, 209–215. [Google Scholar] [CrossRef]
- Cai, Y.; Chai, D.; Wang, R.; Liang, B.; Bai, N. Colistin Resistance of Acinetobacter Baumannii: Clinical Reports, Mechanisms and Antimicrobial Strategies. J. Antimicrob. Chemother. 2012, 67, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Al-Sweih, N.A.; Al-Hubail, M.A.; Rotimi, V.O. Emergence of Tigecycline and Colistin Resistance in Acinetobacter Species Isolated from Patients in Kuwait Hospitals. J. Chemother. 2011, 23, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Bonnin, R.A.; Nordmann, P. Genetic Basis of Antibiotic Resistance in Pathogenic Acinetobacter Species. IUBMB Life 2011, 63, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, S.N.; Hilty, M.; Perreten, V.; Endimiani, A. Extended-Spectrum Cephalosporin-Resistant Gram-Negative Organisms in Livestock: An Emerging Problem for Human Health? Drug Resist. Updates 2013, 16, 22–45. [Google Scholar] [CrossRef]
- Girlich, D.; Poirel, L.; Nordmann, P. First Isolation of the BlaOXA-23 Carbapenemase Gene from an Environmental Acinetobacter Baumannii Isolate. Antimicrob. Agents Chemother. 2010, 54, 578–579. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.D.; Goglin, K.; Molyneaux, N.; Hujer, K.M.; Lavender, H.; Jamison, J.J.; MacDonald, I.J.; Martin, K.M.; Russo, T.; Campagnari, A.A.; et al. Comparative Genome Sequence Analysis of Multidrug-Resistant Acinetobacter Baumannii. J. Bacteriol. 2008, 190, 8053–8064. [Google Scholar] [CrossRef] [Green Version]
- Imperi, F.; Antunes, L.C.S.; Blom, J.; Villa, L.; Iacono, M.; Visca, P.; Carattoli, A. The Genomics of Acinetobacter Baumannii: Insights into Genome Plasticity, Antimicrobial Resistance and Pathogenicity. IUBMB Life 2011, 63, 1068–1074. [Google Scholar] [CrossRef]
- Danasekaran, R.; Mani, G.; Annadurai, K. Prevention of Healthcare-Associated Infections: Protecting Patients, Saving Lives. Int. J. Community Med. Public Health 2014, 1, 67. [Google Scholar] [CrossRef]
- Pleguezuelo, M.; Benitez, J.M.; Jurado, J.; Montero, J.L.; De la Mata, M. Diagnosis and Management of Bacterial Infections in Decompensated Cirrhosis. World J. Hepatol. 2013, 5, 16–25. [Google Scholar] [CrossRef]
- Lim, L.M.; Ly, N.; Anderson, D.; Yang, J.C.; Macander, L.; Jarkowski, A.; Forrest, A.; Bulitta, J.B.; Tsuji, B.T. Resurgence of Colistin: A Review of Resistance, Toxicity, Pharmacodynamics, and Dosing. Pharmacotherapy 2010, 30, 1279–1291. [Google Scholar] [CrossRef]
- Wertheim, H.; Van Nguyen, K.; Hara, G.L.; Gelband, H.; Laxminarayan, R.; Mouton, J.; Cars, O. Global Survey of Polymyxin Use: A Call for International Guidelines. J. Glob. Antimicrob. Resist. 2013, 1, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zhang, H.; Du, H. Carbapenemases in Enterobacteriaceae: Detection and Antimicrobial Therapy. Front. Microbiol. 2019, 10, 1823. [Google Scholar] [CrossRef] [PubMed]
- Bin-Jumah, M.; Abdel-Fattah, A.-F.M.; Saied, E.M.; El-Seedi, H.R.; Abdel-Daim, M.M. Acrylamide-Induced Peripheral Neuropathy: Manifestations, Mechanisms, and Potential Treatment Modalities. Environ. Sci. Pollut. Res. 2021, 28, 13031–13046. [Google Scholar] [CrossRef] [PubMed]
- Vila, J.; Pachón, J. Therapeutic Options for Acinetobacter Baumannii Infections. Expert Opin. Pharmacother. 2008, 9, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Banhart, S.; Saied, E.M.; Martini, A.; Koch, S.; Aeberhard, L.; Madela, K.; Arenz, C.; Heuer, D. Improved Plaque Assay Identifies a Novel Anti-Chlamydia Ceramide Derivative with Altered Intracellular Localization. Antimicrob. Agents Chemother. 2014, 58, 5537–5546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobs, V.C.; Ferreira, J.A.; Bobrowicz, T.A.; Ferreira, L.E.; Deglmann, R.C.; Westphal, G.A.; França, P.H.C. de The Role of the Genetic Elements Bla Oxa and IS Aba 1 in the Acinetobacter Calcoaceticus-Acinetobacter Baumannii Complex in Carbapenem Resistance in the Hospital Setting. Rev. Soc. Bras. Med. Trop. 2016, 49, 433–440. [Google Scholar] [CrossRef]
- Egan, A.J.F.; Cleverley, R.M.; Peters, K.; Lewis, R.J.; Vollmer, W. Regulation of Bacterial Cell Wall Growth. FEBS J. 2017, 284, 851–867. [Google Scholar] [CrossRef]
- Frère, J.M. Beta-Lactamases and Bacterial Resistance to Antibiotics. Mol. Microbiol. 1995, 16, 385–395. [Google Scholar] [CrossRef]
- Saied, E.; Eid, A.M.; Hassan, S.E.-D.; Salem, S.S.; Radwan, A.A.; Halawa, M.; Saleh, F.M.; Saad, H.A.; Saied, E.M.; Fouda, A. The Catalytic Activity of Biosynthesized Magnesium Oxide Nanoparticles (MgO-NPs) for Inhibiting the Growth of Pathogenic Microbes, Tanning Effluent Treatment, and Chromium Ion Removal. Catalysts 2021, 11, 821. [Google Scholar] [CrossRef]
- Ambler, R.P. The Structure of Beta-Lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar] [CrossRef]
- Majiduddin, F.K.; Palzkill, T. Amino Acid Residues That Contribute to Substrate Specificity of Class A Beta-Lactamase SME-1. Antimicrob. Agents Chemother. 2005, 49, 3421–3427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohans, C.T.; Freeman, E.I.; van Groesen, E.; Tooke, C.L.; Hinchliffe, P.; Spencer, J.; Brem, J.; Schofield, C.J. Mechanistic Insights into β-Lactamase-Catalysed Carbapenem Degradation Through Product Characterisation. Sci. Rep. 2019, 9, 13608. [Google Scholar] [CrossRef] [PubMed]
- Samak, D.H.; El-Sayed, Y.S.; Shaheen, H.M.; El-Far, A.H.; Abd El-Hack, M.E.; Noreldin, A.E.; El-Naggar, K.; Abdelnour, S.A.; Saied, E.M.; El-Seedi, H.R.; et al. Developmental Toxicity of Carbon Nanoparticles during Embryogenesis in Chicken. Environ. Sci. Pollut. Res. 2020, 27, 19058–19072. [Google Scholar] [CrossRef] [PubMed]
- Evans, B.A.; Amyes, S.G.B. OXA β-Lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgrignani, J.; Grazioso, G.; De Amici, M. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-β-Lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations. Biochemistry 2016, 55, 5191–5200. [Google Scholar] [CrossRef]
- Choubey, S.K.; Prabhu, D.; Nachiappan, M.; Biswal, J.; Jeyakanthan, J. Molecular Modeling, Dynamics Studies and Density Functional Theory Approaches to Identify Potential Inhibitors of SIRT4 Protein from Homo Sapiens: A Novel Target for the Treatment of Type 2 Diabetes. J. Biomol. Struct. Dyn. 2017, 35, 3316–3329. [Google Scholar] [CrossRef]
- Healey, R.D.; Saied, E.M.; Cong, X.; Karsai, G.; Gabellier, L.; Saint-Paul, J.; Del Nero, E.; Jeannot, S.; Drapeau, M.; Fontanel, S.; et al. Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases **. Angew. Chem. 2022, 134, e202109967. [Google Scholar] [CrossRef]
- Jain, R.; Danziger, L.H. Multidrug-Resistant Acinetobacter Infections: An Emerging Challenge to Clinicians. Ann. Pharmacother. 2004, 38, 1449–1459. [Google Scholar] [CrossRef]
- Selim, S.A. Chemical Composition, Antioxidant and Antimicrobial Activity of the Essential Oil and Methanol Extract of the Egyptian Lemongrass Cymbopogon Proximus Stapf. Grasas Aceites 2011, 62, 55–61. [Google Scholar] [CrossRef]
- Selim, S.; Alfy, S.E.; Al-Ruwaili, M.; Abdo, A.; Jaouni, S.A. Susceptibility of Imipenem-Resistant Pseudomonas Aeruginosa to Flavonoid Glycosides of Date Palm (Phoenix Dactylifera L.) Tamar Growing in Al Madinah, Saudi Arabia. Afr. J. Biotechnol. 2012, 11, 416–422. [Google Scholar] [CrossRef]
- Mirbagheri, S.Z.; Meshkat, Z.; Naderinasab, M.; Rostami, S.; Nabavinia, M.S.; Rahmati, M. Study on Imipenem Resistance and Prevalence of BlaVIM1 and BlaVIM2 Metallo-Beta Lactamases among Clinical Isolates of Pseudomonas Aeruginosa from Mashhad, Northeast of Iran. Iran. J. Microbiol. 2015, 7, 72–78. [Google Scholar] [PubMed]
- Srinivasan, V.B.; Rajamohan, G.; Pancholi, P.; Stevenson, K.; Tadesse, D.; Patchanee, P.; Marcon, M.; Gebreyes, W.A. Genetic Relatedness and Molecular Characterization of Multidrug Resistant Acinetobacter Baumannii Isolated in Central Ohio, USA. Ann. Clin. Microbiol. Antimicrob. 2009, 8, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Azab, I.H.; Saied, E.M.; Osman, A.A.; Mehana, A.E.; Saad, H.A.; Elkanzi, N.A. Novel N-Bridged Pyrazole-1-Carbothioamides with Potential Antiproliferative Activity: Design, Synthesis, in Vitro and in Silico Studies. Future Med. Chem. 2021, 13, 1743–1766. [Google Scholar] [CrossRef] [PubMed]
- Gaber, A.; Refat, M.S.; Belal, A.A.M.; El-Deen, I.M.; Hassan, N.; Zakaria, R.; Alhomrani, M.; Alamri, A.S.; Alsanie, W.F.; Saied, E.M. New Mononuclear and Binuclear Cu(II), Co(II), Ni(II), and Zn(II) Thiosemicarbazone Complexes with Potential Biological Activity: Antimicrobial and Molecular Docking Study. Molecules 2021, 26, 2288. [Google Scholar] [CrossRef] [PubMed]
- Gaber, A.; Alsanie, W.F.; Kumar, D.N.; Refat, M.S.; Saied, E.M. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules 2020, 25, 5447. [Google Scholar] [CrossRef] [PubMed]
- Saied, E.M.; El-Maradny, Y.A.; Osman, A.A.; Darwish, A.M.G.; Abo Nahas, H.H.; Niedbała, G.; Piekutowska, M.; Abdel-Rahman, M.A.; Balbool, B.A.; Abdel-Azeem, A.M. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021, 13, 1759. [Google Scholar] [CrossRef]
- Mohamed, D.I.; Abou-Bakr, D.A.; Ezzat, S.F.; El-Kareem, H.F.A.; Nahas, H.H.A.; Saad, H.A.; Mehana, A.E.; Saied, E.M. Vitamin D3 Prevents the Deleterious Effects of Testicular Torsion on Testis by Targeting MiRNA-145 and ADAM17: In Silico and In Vivo Study. Pharmaceuticals 2021, 14, 1222. [Google Scholar] [CrossRef]
- Samaha, D.; Hamdo, H.H.; Cong, X.; Schumacher, F.; Banhart, S.; Aglar, Ö.; Möller, H.M.; Heuer, D.; Kleuser, B.; Saied, E.M.; et al. Liposomal FRET Assay Identifies Potent Drug-Like Inhibitors of the Ceramide Transport Protein (CERT). Chem. A Eur. J. 2020, 26, 16616–16621. [Google Scholar] [CrossRef]
- Sharar, M.; Saied, E.M.; Rodriguez, M.C.; Arenz, C.; Montes-Bayón, M.; Linscheid, M.W. Elemental Labelling and Mass Spectrometry for the Specific Detection of Sulfenic Acid Groups in Model Peptides: A Proof of Concept. Anal. Bioanal. Chem. 2017, 409, 2015–2027. [Google Scholar] [CrossRef]
- Lin, M.-F.; Lan, C.-Y. Antimicrobial Resistance in Acinetobacter Baumannii: From Bench to Bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misbah, S.; AbuBakar, S.; Hassan, H.; Hanifah, Y.A.; Yusof, M.Y. Antibiotic Susceptibility and REP-PCR Fingerprints of Acinetobacter Spp. Isolated from a Hospital Ten Years Apart. J. Hosp. Infect. 2004, 58, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Vila, J.; Marcos, M.A.; Jimenez de Anta, M.T. A Comparative Study of Different PCR-Based DNA Fingerprinting Techniques for Typing of the Acinetobacter Calcoaceticus-A. Baumannii Complex. J. Med. Microbiol. 1996, 44, 482–489. [Google Scholar] [CrossRef]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational Methods in Drug Discovery. Pharmacol. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaitany, K.-C.J.; Klinger, N.V.; June, C.M.; Ramey, M.E.; Bonomo, R.A.; Powers, R.A.; Leonard, D.A. Structures of the Class D Carbapenemases OXA-23 and OXA-146: Mechanistic Basis of Activity against Carbapenems, Extended-Spectrum Cephalosporins, and Aztreonam. Antimicrob. Agents Chemother. 2013, 57, 4848–4855. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.A.; Antunes, N.T.; Stewart, N.K.; Frase, H.; Toth, M.; Kantardjieff, K.A.; Vakulenko, S. Structural Basis for Enhancement of Carbapenemase Activity in the OXA-51 Family of Class D β-Lactamases. ACS Chem. Biol. 2015, 10, 1791–1796. [Google Scholar] [CrossRef] [Green Version]
- Toth, M.; Smith, C.A.; Antunes, N.T.; Stewart, N.K.; Maltz, L.; Vakulenko, S.B. The Role of Conserved Surface Hydrophobic Residues in the Carbapenemase Activity of the Class D β-Lactamases. Acta Cryst. D 2017, 73, 692–701. [Google Scholar] [CrossRef]
- Leiros, H.-K.S.; Thomassen, A.M.; Samuelsen, Ø.; Flach, C.-F.; Kotsakis, S.D.; Larsson, D.G.J. Structural Insights into the Enhanced Carbapenemase Efficiency of OXA-655 Compared to OXA-10. FEBS Open Bio 2020, 10, 1821–1832. [Google Scholar] [CrossRef]
- Stojanoski, V.; Hu, L.; Sankaran, B.; Wang, F.; Tao, P.; Prasad, B.V.V.; Palzkill, T. Mechanistic Basis of OXA-48-like β-Lactamases’ Hydrolysis of Carbapenems. ACS Infect. Dis. 2021, 7, 445–460. [Google Scholar] [CrossRef]
- Smith, C.A.; Antunes, N.T.; Stewart, N.K.; Toth, M.; Kumarasiri, M.; Chang, M.; Mobashery, S.; Vakulenko, S.B. Structural Basis for Carbapenemase Activity of the OXA-23 β-Lactamase from Acinetobacter Baumannii. Chem. Biol. 2013, 20, 1107–1115. [Google Scholar] [CrossRef] [Green Version]
- Bou, G.; Santillana, E.; Sheri, A.; Beceiro, A.; Sampson, J.M.; Kalp, M.; Bethel, C.R.; Distler, A.M.; Drawz, S.M.; Pagadala, S.R.R.; et al. Design, Synthesis, and Crystal Structures of 6-Alkylidene-2′-Substituted Penicillanic Acid Sulfones as Potent Inhibitors of Acinetobacter Baumannii OXA-24 Carbapenemase. J. Am. Chem. Soc. 2010, 132, 13320–13331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, M.G.; Dullaghan, E.; Mookherjee, N.; Glavas, N.; Waldbrook, M.; Thompson, A.; Wang, A.; Lee, K.; Doria, S.; Hamill, P.; et al. An Anti-Infective Peptide That Selectively Modulates the Innate Immune Response. Nat. Biotechnol. 2007, 25, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Toth, M.; Antunes, N.T.; Stewart, N.K.; Frase, H.; Bhattacharya, M.; Smith, C.A.; Vakulenko, S.B. Class D β-Lactamases Do Exist in Gram-Positive Bacteria. Nat. Chem. Biol. 2016, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Kalp, M.; Sheri, A.; Buynak, J.D.; Bethel, C.R.; Bonomo, R.A.; Carey, P.R. Efficient Inhibition of Class A and Class D Beta-Lactamases by Michaelis Complexes. J. Biol. Chem. 2007, 282, 21588–21591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, A.M.; Nilsen, R.M.; Eriksen, H.M.; Cox, R.J.; Harthug, S. Mortality Related to Hospital-Associated Infections in a Tertiary Hospital; Repeated Cross-Sectional Studies between 2004–2011. Antimicrob. Resist. Infect. Control 2015, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Najar, M.; Saldanha, C.; Banday, K. Approach to Urinary Tract Infections. Indian J. Nephrol. 2009, 19, 129. [Google Scholar] [CrossRef]
- Estívariz, C.F.; Griffith, D.P.; Luo, M.; Szeszycki, E.E.; Bazargan, N.; Dave, N.; Daignault, N.M.; Bergman, G.F.; McNally, T.; Battey, C.H.; et al. Efficacy of Parenteral Nutrition Supplemented With Glutamine Dipeptide to Decrease Hospital Infections in Critically Ill Surgical Patients. JPEN J. Parente. Enter. Nutr. 2008, 32, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, R.A.; Gaynes, R.; Edwards, J.R. National Nosocomial Infections Surveillance System Overview of Nosocomial Infections Caused by Gram-Negative Bacilli. Clin. Infect. Dis. 2005, 41, 848–854. [Google Scholar] [CrossRef]
Antimicrobial Agent | Acinetobacter baumannii Isolates (n = 86) | p-Value * | |
---|---|---|---|
Susceptible | Resistance | ||
Imipenem | 9 (10%) | 77 (89%) | <0.05 |
Meropenem | 18 (21%) | 68 (79%) | <0.05 |
Ciprofloxacin | 25 (29%) | 61 (71%) | <0.05 |
Levofloxacin | 13 (15%) | 73 (85%) | <0.05 |
Piperacillin + tazobactam | 23 (27%) | 63 (73%) | <0.05 |
Ceftazidime | 19 (22%) | 67 (78%) | <0.05 |
cefotaxime | 19 (22%) | 67 (78%) | <0.05 |
Cefepime | 16 (19%) | 70 (81%) | <0.05 |
Amikacin | 13 (15%) | 73 (85%) | <0.05 |
Doxycyclin | 15 (17%) | 71 (83%) | <0.05 |
Cloistin | 13 (15%) | 73 (85%) | <0.05 |
Protein | PDB | Docking Score (kcal/mol) | Interactive Residues | |
---|---|---|---|---|
Hydrophilic Interactions | Hydrophobic Interactions | |||
OXA-24 | 3fyz | −10.39 | Ser219, Arg261, Trp221, Lys218 | Met223, Val130, Leu168, Met114, Trp115 |
OXA-23 | 4jf4 | −13.21 | Thr217, Ser126, Arg259, Gly218, Trp219, Met221, Trp113 | Phe110, Leu125, Val128, Ala220, Leu166, Ala112 |
OXA-23 A220 | 4k0w | −11.86 | Ser79, Trp219, Lys216, Thr217, Arg260 | Ala78, Ala257, Val128, Leu166 |
OXA-51 | 4zdx | −8.52 | Gln60, Thr174, Gln176 | -- |
OXA-143 | 5iy2 | −10.29 | Ser81, Trp221, Gly220, Ser219 | Leu127, Ala80, Leu168, Val130, Trp115, Met114 |
OXA-655 | 6skq | −9.82 | Gln101, Phe208, Arg250, Thr206 | Val114, Trp102, Met99, Leu155, Leu117 |
OXA-10 | 6skr | −8.46 | Thr206, Phe208, Arg250 | Ala66, Leu247, Pro248, Val117, Met99, Trp102 |
OXA-48 | 7khq | −10.73 | Thr104, Thr209, Ser118, Arg250, Tyr211 | Trp105, Ile102, Val120, Leu247 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selim, S.; Faried, O.A.; Almuhayawi, M.S.; Mohammed, O.A.; Saleh, F.M.; Warrad, M. Dynamic Gene Clusters Mediating Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates. Antibiotics 2022, 11, 168. https://doi.org/10.3390/antibiotics11020168
Selim S, Faried OA, Almuhayawi MS, Mohammed OA, Saleh FM, Warrad M. Dynamic Gene Clusters Mediating Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates. Antibiotics. 2022; 11(2):168. https://doi.org/10.3390/antibiotics11020168
Chicago/Turabian StyleSelim, Samy, Osama Ahmed Faried, Mohamed S. Almuhayawi, Osama A. Mohammed, Fayez M. Saleh, and Mona Warrad. 2022. "Dynamic Gene Clusters Mediating Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates" Antibiotics 11, no. 2: 168. https://doi.org/10.3390/antibiotics11020168
APA StyleSelim, S., Faried, O. A., Almuhayawi, M. S., Mohammed, O. A., Saleh, F. M., & Warrad, M. (2022). Dynamic Gene Clusters Mediating Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates. Antibiotics, 11(2), 168. https://doi.org/10.3390/antibiotics11020168