Determining the Clinical Utility of 16S rRNA Sequencing in the Management of Culture-Negative Pediatric Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Data Collection
2.2. Definition of Clinical Utility
2.3. Definition of Broad and Narrow Spectrum Coverage
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, A.; Harris, K.A.; Fitzgerald, F. What is broad-range 16S rDNA PCR? Arch. Dis. Child.-Educ. Pract. 2017, 102, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoff, A.D.; Rutishauser, R.L.; Miller, S.; Babik, J.M. Clinical Utility of Universal Broad-Range Polymerase Chain Reaction Amplicon Sequencing for Pathogen Identification: A Retrospective Cohort Study. Clin. Infect. Dis. 2020, 71, 1554–1557. [Google Scholar] [CrossRef] [PubMed]
- Drancourt, M.; Bollet, C.; Carlioz, A.; Martelin, R.; Gayral, J.P.; Raoult, D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 2000, 38, 3623–3630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akram, A.; Maley, M.; Gosbell, I.; Nguyen, T.; Chavada, R. Utility of 16S rRNA PCR performed on clinical specimens in patient management. Int. J. Infect. Dis. 2017, 57, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampini, S.K.; Bloemberg, G.V.; Keller, P.M.; Büchler, A.C.; Dollenmaier, G.; Speck, R.F.; Böttger, E.C. Broad-range 16S rRNA gene polymerase chain reaction for diagnosis of culture-negative bacterial infections. Clin. Infect. Dis. 2011, 53, 1245–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fida, M.; Khalil, S.; Abu Saleh, O.; Challener, D.W.; Sohail, M.R.; Yang, J.N.; Pritt, B.S.; Schuetz, A.N.; Patel, R. Diagnostic value of 16S ribosomal RNA gene polymerase chain reaction/Sanger sequencing in clinical practice. Clin. Infect. Dis. 2021, 73, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.E.; Hatfield, K.M.; Wolford, H.; Samore, M.H.; Scott, R.D.; Reddy, S.C.; Olubajo, B.; Paul, P.; Jernigan, J.A.; Baggs, J. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clin. Infect. Dis. 2021, 72 (Suppl. S1), S17–S26. [Google Scholar] [CrossRef]
- Kadri, S.S. Key takeaways from the US CDC’s 2019 antibiotic resistance threats report for frontline providers. Crit. Care Med. 2020. [Google Scholar] [CrossRef]
- Basein, T.; Gardiner, B.J.; Andujar Vazquez, G.M.; Joel Chandranesan, A.S.; Rabson, A.R.; Doron, S.; Snydman, D.R. Microbial identification using DNA target amplification and sequencing: Clinical utility and impact on patient management. Open Forum Infect. Dis. 2018, 5, ofy257. [Google Scholar] [CrossRef]
- Bémer, P.; Plouzeau, C.; Tande, D.; Léger, J.; Giraudeau, B.; Valentin, A.S.; Jolivet-Gougeon, A.; Vincent, P.; Corvec, S.; Gibaud, S.; et al. Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: A prospective multicenter cross-sectional study. J. Clin. Microbiol. 2014, 52, 3583–3589. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, N.; Procop, G.W.; Krebs, V.; Kobayashi, H.; Bauer, T.W. Molecular identification of bacteria from aseptically loose implants. Clin. Orthop. Relat. Res. 2008, 466, 1716–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, M.; Muñoz, P.; Sánchez, M.; del Rosal, M.; Alcalá, L.; Rodríguez-Créixems, M.; Bouza, E.; Group for the Management of Infective Endocarditis of the Gregorio Marañón Hospital (GAME). Molecular diagnosis of infective endocarditis by real-time broad-range polymerase chain reaction (PCR) and sequencing directly from heart valve tissue. Medicine 2007, 86, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Fournier, P.E.; Thuny, F.; Richet, H.; Lepidi, H.; Casalta, J.P.; Arzouni, J.P.; Maurin, M.; Célard, M.; Mainardi, J.-L.; Caus, T.; et al. Comprehensive diagnostic strategy for blood culture-negative endocarditis: A prospective study of 819 new cases. Clin. Infect. Dis. 2010, 51, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faraji, R.; Behjati-Ardakani, M.; Moshtaghioun, S.M.; Kalantar, S.M.; Namayandeh, S.M.; Soltani, M.; Emami, M.; Zandi, H.; Firoozabadi, A.D.; Sarebanhassanabadi, M.; et al. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review. Kaohsiung J. Med. Sci. 2018, 34, 71–78. [Google Scholar] [CrossRef]
- Bosshard, P.P.; Kronenberg, A.; Zbinden, R.; Ruef, C.; Böttger, E.C.; Altwegg, M. Etiologic diagnosis of infective endocarditis by broad-range polymerase chain reaction: A 3-year experience. Clin. Infect. Dis. 2003, 37, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villani, M.C.; Hamilton, E.C.; Klosterman, M.M.; Jo, C.; Kang, L.H.; Copley, L.A. Primary septic arthritis among children 6 to 48 months of age: Implications for PCR acquisition and empiric antimicrobial selection. J. Pediatric Orthop. 2021, 41, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Slinger, R.; Moldovan, I.; Bowes, J.; Chan, F. Polymerase chain reaction detection of Kingella kingae in children with culture-negative septic arthritis in eastern Ontario. Paediatr. Child Health 2016, 21, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Carter, K.; Doern, C.; Jo, C.H.; Copley, L.A. The clinical usefulness of polymerase chain reaction as a supplemental diagnostic tool in the evaluation and the treatment of children with septic arthritis. J. Pediatric Orthop. 2016, 36, 167–172. [Google Scholar] [CrossRef]
- Abelian, A.; Mund, T.; Curran, M.D.; Savill, S.A.; Mitra, N.; Charan, C.; Ogilvy-Stuart, A.L.; Pelham, H.R.B.; Dear, P.H. Towards accurate exclusion of neonatal bacterial meningitis: A feasibility study of a novel 16S rDNA PCR assay. BMC Infect. Dis. 2020, 20, 441. [Google Scholar] [CrossRef]
- İstanbullu, K.; Köksal, N.; Çetinkaya, M.; Özkan, H.; Yakut, T.; Karkucak, M.; Doğan, H. The potential utility of real-time PCR of the 16S-rRNA gene in the diagnosis of neonatal sepsis. Turk. J. Pediatrics 2019, 61, 493–499. [Google Scholar] [CrossRef]
- Stranieri, I.; Kanunfre, K.A.; Rodrigues, J.C.; Yamamoto, L.; Nadaf MI, V.; Palmeira, P.; Okay, T.S. Assessment and comparison of bacterial load levels determined by quantitative amplifications in blood culture-positive and negative neonatal sepsis. Rev. Do Inst. De Med. Trop. De São Paulo 2018, 60, e61. [Google Scholar] [CrossRef] [PubMed]
- Punia, H.; Gathwala, G.; Dhaulakhandi, D.B.; Aamir, M. Diagnosis of neonatal sepsis using 16S rRNA polymerase chain reaction. Trop. Dr. 2017, 47, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Midan, D.A.; Abo El Fotoh WM, M.; El Shalakany, A.H. The potential role of incorporating real-time PCR and DNA sequencing for amplification and detection of 16S rRNA gene signatures in neonatal sepsis. J. Matern.-Fetal Neonatal Med. 2017, 30, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Stranieri, I.; Kanunfre, K.A.; Rodrigues, J.C.; Yamamoto, L.; Nadaf MI, V.; Palmeira, P.; Okay, T.S. Usefulness of a 16S rDNA real-time PCR to monitor neonatal sepsis and to assist in medical decision to discontinue antibiotics. J. Matern.-Fetal Neonatal Med. 2016, 29, 2141–2144. [Google Scholar] [CrossRef]
- Das, B.K.; Suri, S.; Nath, G.; Prasad, R. Urine nested polymerase chain reaction in neonatal septicemia. J. Trop. Pediatrics 2015, 61, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Al-Zahrani, A.K.; Ghonaim, M.M.; Hussein, Y.M.; Eed, E.M.; Khalifa, A.S.; Dorgham, L.S. Evaluation of recent methods versus conventional methods for diagnosis of early-onset neonatal sepsis. J. Infect. Dev. Ctries. 2015, 9, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.L.; Ai, H.W.; Wang, W.P.; Chen, L.; Hu, H.B.; Ye, T.; Zhu, X.; Wang, F.; Liao, Y.; Wang, Y.; et al. Comparison of 16S rRNA gene PCR and blood culture for diagnosis of neonatal sepsis. Arch. De Pédiatrie 2014, 21, 162–169. [Google Scholar] [CrossRef]
- Ohlin, A.; Bäckman, A.; Ewald, U.; Schollin, J.; Björkqvist, M. Diagnosis of neonatal sepsis by broad-range 16S real-time polymerase chain reaction. Neonatology 2012, 101, 241–246. [Google Scholar] [CrossRef]
- Esparcia, O.; Montemayor, M.; Ginovart, G.; Pomar, V.; Soriano, G.; Pericas, R.; Gurgui, M.; Sulleiro, E.; Prats, G.; Navarro, F.; et al. Diagnostic accuracy of a 16S ribosomal DNA gene-based molecular technique (RT-PCR, microarray, and sequencing) for bacterial meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis. Diagn. Microbiol. Infect. Dis. 2011, 69, 153–160. [Google Scholar] [CrossRef]
- Ammann, R.A.; Zucol, F.; Aebi, C.; Niggli, F.K.; Kühne, T.; Nadal, D. Real-time broad-range PCR versus blood culture. A prospective pilot study in pediatric cancer patients with fever and neutropenia. Supportive Care Cancer 2007, 15, 637–641. [Google Scholar] [CrossRef] [Green Version]
- University of Washington Department of Laboratory Medicine: Molecular Diagnosis Microbiology Section. Available online: http://depts.washington.edu/molmicdx/mdx/available_tests.shtml (accessed on 14 January 2022).
Patient | Specimen Type | Antimicrobial Regimen before 16S rRNA Sequencing Result | Conventional Culture Result | 16S rRNA Sequencing Result | Antimicrobial Regimen after 16S rRNA Sequencing Result | Clinical Diagnosis | Clinical Impact |
---|---|---|---|---|---|---|---|
1 | Bronchoalveolar lavage | Amphotericin/Meropenem/ Linezolid | No growth | Candida parapsilosis | Amphotericin/Meropenem/Linezolid | Candidal pneumonia | Confirmed an organism |
2 | Bone | Vancomycin/Cefepime/Metronidazole | No growth | No bacterial DNA detected | Ampicillin-sulbactam | Left paraspinal abscess | Ruled out Methicillin Resistant Staphylococcus aureus |
3 | Bone | Vancomycin/Ceftriaxone | No growth | Corynebacterium tuberculostearicum | Ceftriaxone/TMP-SMX/Azithromycin | Multifocal osteomyelitis, septic arthritis | Confirmed an organism |
4 | Bone | Doxycyline/Ciprofloxacin | No growth | No bacterial DNA detected | Ciprofloxacin | Right Chronic trapezoid osteomyelitis | Ruled out suspected organism |
5 | Bone-Right Femur | Vancomycin/Ceftriaxone | No growth | No bacterial DNA detected | Amoxicillin | Lyme arthritis/Right knee osteomyelitis | Ruled out Staphylococcal infection |
6 | Bone-Mastoid | Vancomycin/Piperacillin-tazobactam | No growth | Streptococcus pneumoniae | Ceftriaxone | Mastoid abscess | Narrowed down antibiotic coverage |
7 | Bone-Vertebral body/spinal biopsy | None | No growth | Kingella kingae | Ceftriaxone | Vertebral osteomyelitis | Confirmed an organism |
8 | Cerebrospinal fluid | Vancomycin/Ceftriaxone | No growth | No bacterial DNA detected | None | Aseptic meningitis | Ruled out an infectious process |
9 | Cerebrospinal fluid | Nafcillin/Gentamicin/Cefepime | No growth | No bacterial DNA detected | Cefepime | Pseudomonas bacteremia | Ruled out concomitant central nervous system infection |
10 | Joint fluid | Linezolid | No growth | Streptococcus sanquinis | Linezolid | R hip septic arthritis | Confirmed an organism |
11 | Joint fluid-Elbow aspirate | Clindamycin | No growth | Kingella kingae | Amoxicillin-clavulanic acid | Left elbow septic arthritis, osteomyelitis | Confirmed an organism |
12 | Joint fluid-Hip | None | No growth | No bacterial DNA detected | None | Bilateral hip effusion | Ruled out infectious process |
13 | Joint fluid-Hip aspirate | Cefazolin | No growth | Kingella kingae | Amoxicillin-clavulanic acid | Right hip septic arthritis | Confirmed an organism |
14 | Joint fluid-Hip fluid | Cefazolin | No growth | Propionibacterium acnes | Cephalexin | Left hip septic arthritis | Confirmed an organism |
15 | Joint fluid-Left elbow | Vancomycin/Ceftriaxone | No growth | No bacterial DNA detected | Cephalexin | Left elbow chronic osteomyelitis | Ruled out suspected resistant Gram-positive organism |
16 | Lung biopsy | N/A | No growth | No bacterial DNA detected | None | Lung nodule | Ruled out infectious process |
17 | Lymph node | Azithromycin/Rifampin | No growth | Bartonella species | None | Bartonella lymphadenitis | Confirmed an organism |
18 | Lymph node | Azithromycin/Ethambutol/Levofloxacin | No growth | No bacterial DNA detected | None | Reactive lymphadenitis | Ruled out an infectious process |
19 | Pleural fluid | Vancomycin/Clindamycin/Ceftriaxone | No growth | Streptococcus pneumoniae | Amoxicillin-clavulanic acid | Complicated pneumonia | Confirmed an organism |
20 | Pleural fluid | Ceftriaxone/Vancomycin | No growth | Streptococcus pneumoniae | Ceftriaxone | Complicated pneumonia | Narrowed down antibiotic coverage |
21 | Pleural fluid | Piperacillin-tazobactam | No growth | No bacterial DNA detected | Piperacillin-tazobactam | Intraabdominal infection/pleural effusion | Ruled out concomitant lung infection |
22 | Pleural fluid | Ceftriaxone | No growth | No bacterial DNA detected | None | Pleural effusion | Ruled out infectious cause |
23 | Pleural fluid | Vancomycin/Ceftriaxone | No growth | Streptococcus pneumoniae | Ceftriaxone/Clindamycin | Complicated pneumonia | Confirmed an organism |
24 | Pleural fluid | Vancomycin/Ceftriaxone/Azithromycin | No growth | Streptococcus pyogenes | Amoxicillin-clavulanic acid | Complicated pneumonia | Confirmed an organism |
25 | Pleural fluid | Ceftriaxone/Vancomycin/Linezolid | No growth | Streptococcus pneumoniae | Ampicillin | Lung abscess | Confirmed an organism |
26 | Pus-Pustule fluid | Piperacillin-tazobactam->Ampicillin-sulbactam->Amoxicillin-clavulanic acid | No growth | No bacterial DNA detected | Amoxicillin-clavulanic acid | Right cheek skin infection/drainage | Ruled out Non-Mycobacterial Tuberculosis |
27 | Pus-Subperiosteal abscess | Vancomycin/Ceftriaxone | Streptococcus intermedius | Streptococcus intermedius | Amoxicillin-clavulanic acid | Left orbital cellulitis/subperiosteal abscess | Confirmed an organism |
28 | Soft tissue-Neck mass | Amoxicillin-clavulanic acid | No growth | No bacterial DNA detected | Amoxicillin-clavulanic acid | Cervical ymphadenitis | Ruled out Bartonella and Non-Mycobacterial tuberculosis |
29 | Spine tissue-Deep spine tissue | Vancomycin/Cefepime/Metronidazole | No growth | No bacterial DNA detected | Ampicillin-sulbactam | Left paraspinal abscess | Ruled out Methicillin Resistant Staphylococcus aureus |
30 | Subgaleal fluid collection | Cefepime/Vancomycin | Prevotella sp., Candida lusitaniae | Prevotella nanceiensis | Meropenem | Subgaleal abscess | Confirmed an organism |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, P.P.C.; Stempak, L.M.; Malay, S.; Moore, L.N.; Cherian, S.S.S.; Desai, A.P. Determining the Clinical Utility of 16S rRNA Sequencing in the Management of Culture-Negative Pediatric Infections. Antibiotics 2022, 11, 159. https://doi.org/10.3390/antibiotics11020159
Lim PPC, Stempak LM, Malay S, Moore LN, Cherian SSS, Desai AP. Determining the Clinical Utility of 16S rRNA Sequencing in the Management of Culture-Negative Pediatric Infections. Antibiotics. 2022; 11(2):159. https://doi.org/10.3390/antibiotics11020159
Chicago/Turabian StyleLim, Peter Paul C., Lisa M. Stempak, Sindhoosha Malay, LeAnne N. Moore, Sree Sarah S. Cherian, and Ankita P. Desai. 2022. "Determining the Clinical Utility of 16S rRNA Sequencing in the Management of Culture-Negative Pediatric Infections" Antibiotics 11, no. 2: 159. https://doi.org/10.3390/antibiotics11020159
APA StyleLim, P. P. C., Stempak, L. M., Malay, S., Moore, L. N., Cherian, S. S. S., & Desai, A. P. (2022). Determining the Clinical Utility of 16S rRNA Sequencing in the Management of Culture-Negative Pediatric Infections. Antibiotics, 11(2), 159. https://doi.org/10.3390/antibiotics11020159