Combined Inhibitory Effect of Fir (Abies alba Mill.) Honeydew Honey and Probiotic Bacteria Lactiplantibacillus plantarum on the Growth of Salmonella enterica Serotype Typhimurium
Abstract
:1. Introduction
2. Results
2.1. Honey Sample Analyses
2.2. Antibacterial Effect of Fir Honeydew Honey Samples
2.3. Effect of Honeydew Samples on the Growth of Lactiplantibacillus plantarum in de Man, Rogosa and Sharpe Broth
2.4. Combined Effect of Honeydew Samples and L. plantarum on S. Typhimurium Growth in MH Broth
3. Discussion
4. Materials and Methods
4.1. The Honeydew Honey Samples
4.2. The Honeydew Honey Analyses
4.3. Bacterial Strains and Growth Conditions
4.4. Antibacterial Activity Assay
4.5. Effect of Honeydew Samples on the Growth of L. plantarum in MRS Broth
4.6. Effect of Co-Cultivation of L. plantarum and Honeydew Samples on S. Typhimurium Growth
4.7. The Number of L. plantarum during Co-Cultivation
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tischer Seraglio, S.K.; Silva, B.; Bergamo, G.; Brugnerotto, P.; Vlademiro Gonzaga, L.; Roseane, F.; Oliveira Costa, A.C. An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Res. Int. 2019, 119, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Anthimidou, E.; Mossialos, D. Antibacterial activity of Greek and Cypriot honeys against Staphylococcus aureus and Pseudomonas aeruginosa in comparison to manuka honey. J. Med. Food 2013, 16, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Kafantaris, I.; Tsadila, C.; Nikolaidis, M.; Tsavea, E.; Dimitrou, T.G.; Iliopoulos, I.; Amoutzias, G.D.; Mossialos, D. Transcriptomic analysis of Pseudomonas aeruginosa response to pine honey via RNA sequncing indicates multiple mechanisms of antibacterial activity. Foods 2021, 10, 936. [Google Scholar] [CrossRef] [PubMed]
- Godocikova, J.; Bugarova, V.; Kast, C.; Majtan, V.; Majtan, J. Antibacterial potential of swiss honeys and characterisation of their bee.derived bioactive compounds. J. Sci. Food Agric. 2020, 100, 335–342. [Google Scholar] [CrossRef]
- Gobin, I.; Crnković, G.; Magdalenić, M.; Begić, G.; Babić, A.; Lušić, D.; Vučković, D. Antibacterial potential of Croatian honey aganst antibiotic resistant pathogenic bacteria. Med. Glas. 2018, 15, 139–144. [Google Scholar]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Sci. Rep. 2018, 8, 9061. [Google Scholar] [CrossRef] [Green Version]
- Mohan, A.; Quek, S.Y.; Guiterrez-Maddox, N.; Gao, Y.; Shu, Q. Effect of honey in improving the gut microbial balance. Food Qual. Saf. 2017, 2, 107–115. [Google Scholar] [CrossRef]
- Ulrich Landry, B.K.; Moumita, S.; Jayabalan, R.; Zambou Ngoufack, F. Honey, probiotics and prebiotics: Review. Res. J. Pharm. Biol. Chem. 2016, 7, 2428–2438. [Google Scholar]
- Zoričić, P. Functional characteristics of selected probiotic strains of Lactobacillus plantarum [In Croatian]. Graduation Thesis, University of Rijeka, Rijeka, Croatia, 2012. [Google Scholar]
- Shokryazdan, P.; Sieo, C.C.; Kalavathy, R.; Liang, J.B.; Alitheen, N.B.; Jahromi, M.F.; Ho, Y.W. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Res. Int. 2014, 2014, 927268. [Google Scholar] [CrossRef] [Green Version]
- Hemarajata, P.; Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 2013, 6, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Harvard Medical School. Health Benefits of Taking Probiotics. Harv. Health Lett. 2020. Available online: https://www.health.harvard.edu/vitamins-and-supplements/health-benefits-of-taking-probiotics (accessed on 13 April 2020).
- Ustunol, Z.; Ghandi, H. Growth and viability of commercial Bifidobacterium spp. in honey-sweetened skim milk. J. Food Prot. 2001, 64, 1775–1779. [Google Scholar] [CrossRef] [PubMed]
- Shruti, S.; Sreeja, V.; Jashbhai, P.B. Development of synbiotic lassi containing honey: Studies on probiotic viability, product characteristics and shelf life. Ind. J. Dairy Sci. 2016, 69, 148–153. [Google Scholar]
- Shmala, T.R.; Shri Jyothi, Y.; Saibaba, P. Stimulatory effect of honey on multiplication of lactic acid bacteria under in vitro and in vivo conditions. Lett. Appl. Microbiol. 2001, 30, 453–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, S.M.; Molyneux, E.M.; Walsh, A.L.; Cheesbrough, J.S.; Molyneux, M.E.; Hart, C.A. Nontyphoidal Salmonella infections of children in tropical Africa. J. Pediatr. Infect. Dis. 2000, 19, 1189–1196. [Google Scholar] [CrossRef]
- Vojdani, J.D.; Beuchat, L.R.; Tauxe, R.V. Juice-associated outbreaks of human illness in the Unites States 1995 through 2005. J. Food Prot. 2008, 71, 356–364. [Google Scholar] [CrossRef]
- Von Der Ohe, W.; Oddo, L.; Piana, M.; Morlot, M.; Martin, P. Harmonized methods of melissopalinology. Apidologie 2004, 35, 18–25. [Google Scholar] [CrossRef]
- Bogdanov, S.; Lüllmann, C.; Martin, P.; von der Ohe, W.; Russmann, H.; Vorwohl, G.; Persano Oddo, L.; Sabatini, A.G.; Marcazzan, G.L.; Piro, R.; et al. Honey quality and international regulatory standardas: Review by the International Honey Commission. Bee World 1999, 80, 61–69. [Google Scholar] [CrossRef]
- Broznić, D.; Malenica Staver, M.; Kraljević Pavelić, S.; Gobin, I. Evaluation of the antioxidant capacity, antimicrobial and antiproliferative potential of fir (Abies alba Mill.) honeydew honeycollected from Gorski kotar (Croatia). Food Tech. Biotech. 2018, 56, 533–545. [Google Scholar] [CrossRef]
- Majtan, J.; Majtanova, L.; Bohova, J.; Majtan, V. Honeydew honey as a potent antibacterial agent in eradication of multi-drug resistant Stenotrophomonas maltophilia isolates from cancer patients. Phytother. Res. 2011, 25, 584–587. [Google Scholar] [CrossRef] [Green Version]
- Perez Martin, R.A.; Hortiguela, L.V.; Lorenzo, P.; Cortina, M.D.R.; de Lorenzo, C. In vitro antioxidant and antimicrobial activities of Spanish honeys. Int. J. Food Prop. 2008, 11, 727–737. [Google Scholar] [CrossRef]
- Sagdic, O.; Silici, S.; Ekici, L. Evaluation of the phenolic content, antiradical, antioxidant, and antimicrobial activity of different floral sources of honey. Int. J. Food Prop. 2013, 16, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Spilioti, E.; Jaakkola, M.; Tolonen, T.; Lipponen, M.; Virtanen, V.; Chinou, I.; Kassi, E.; Karabournioti, S.; Moutsatsou, P. Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PLoS ONE 2014, 9, e94860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoncelj, J.; Golob, T.; Kropf, U.; Korošec, M. Characterisation of Slovenian honeys on the basis of sensory and physicochemical analysis with a chemometric approach. Int. J. Food Sci. Tech. 2011, 46, 1661–1671. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Korošec, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Kuš, P.M.; Jerković, I.; Marijanović, Z.; Tuberoso, C.I.G. Screening of Polish fir honeydew honey using GC/MS, HPLC-DAD, and physical-chemical parameters: Benzene derivatives and terpenes as chemical markers. Chem. Biodivers. 2017, 14, e1700179. [Google Scholar] [CrossRef] [PubMed]
- Bertoncelj, J.; Polak, T.; Korpf, U.; Korošec, M.; Golob, T. LC-DAD/ESI-MS analysis of flavonoids and abscisic acid with chemometric approach for the classification of Slovenian honey. Food Chem. 2011, 127, 296–302. [Google Scholar] [CrossRef]
- Macedo, L.N.; Luchese, R.H.; Guerra, A.F.; Barbarosa, C.G. Prebiotic effect of honey on growth and viability of Bifidobacterium spp. and Lactobacillus spp. in milk. Cienc. Tecnnol. 2008, 28, 935–942. [Google Scholar]
- Popa, D.; Ustunol, Z. Influence of sucrose, high fructose corn syrup and honey from different floral sources on growth and acid production by lactic acid bacteria and bifidobacteria. Int. J. Dairy Technol. 2011, 64, 247–253. [Google Scholar] [CrossRef]
- Sanz, M.L.; Polemis, N.; Morales, V.; Corzo, N.; Drakoularakou, A.; Gibson, G.R.; Rastall, R.A. In vitro investigation into the potential prebiotic. J. Agric. Food. 2005, 53, 2914–2921. [Google Scholar] [CrossRef]
- Krauze, A.; Zalewski, R.I. Classification of honeys by principal component analysis on the basis of chemical and physical parameters. Z. Für Lebensm.-Unters. Und Forsch. 1991, 192, 19–23. [Google Scholar] [CrossRef]
- Kaškoiene, V.; Venskutonis, P.R. Floral markers in honey of various botanical and geographic origins: A review. Comp. Rev. 2010, 9, 620–634. [Google Scholar]
- Bogdanov, S.; Martin, P. Honey authenticity. Mitt. Aus Lebensm. Und Hyg. 2002, 93, 232–254. [Google Scholar]
- Gibson, G.R.; Fuller, R. Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J. Nutr. 2000, 130, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, P.; Satishi Kumar, R.; Paari, K.A.; Pattukumar, V.; Arul, V. Probiotics and its functionally valubale products-a rewiev. Crit. Rev. Food Sci. Nutr. 2013, 53, 641–658. [Google Scholar] [CrossRef] [PubMed]
- Travers, M.A.; Florent, I.; Kohl, L.; Grellire, P. Probiotics for the control of parasites: An overview. J. Parasitol. Res. 2011, 2011, 610769. [Google Scholar] [CrossRef]
- Alizadeh Behbajani, B.; Noshad, M.; Falah, F. Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microb. Pathog. 2019, 136, 103677. [Google Scholar] [CrossRef]
- Fonesca, H.C.; de Sousa Melo, D.; Lacerda Ramos, C.; Ribeiro Dias, D.; Freitas Schwan, R. Probiotic properties of lactobacilli and their ability to inhibit the adhesion of entheropathogenic bacteria to Caco-2 and HT-29 cells. Probiotics Antimicrob. Protein. 2021, 13, 102–112. [Google Scholar] [CrossRef]
- Lin, J.; Lee, I.S.; Slonczewski, J.L.; Foster, J.W. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J. Bacteriol. 1995, 177, 4097–4104. [Google Scholar] [CrossRef] [Green Version]
- Brenneman, K.E.; Willingham, C.; Kong, W.; Curtis, R., 3rd; Roland, K.L. Low-pH rescue of acid-sensitive Salmonella enterica serovar Typhi strains by a rhamnose-regulated arginine decarboxylase system. J. Bacteriol. 2013, 195, 3062–3072. [Google Scholar] [CrossRef] [Green Version]
- Kajiwara, S.; Gandhi, H.; Ustunol, Z. Effect of honey on the growth of and acid production by human intestinal Bifidobacterium spp.: An in vitro comparison with commercial oligosaccharides and inulin. J. Food Prot. 2002, 65, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Jan Mei, S.; Mohd Nordin, M.S.; Norrakiah, A.S. Fructooligosaccharides in honey and effects of honey on growth of Bifidobacterium longum BB 536. Int. Food Res. J. 2010, 17, 557–561. [Google Scholar]
- Janković, T.; Frece, J.; Abram, M.; Gobin, I. Aggregation ability of potential probiotic Lactobacillus plantarum strains. Int. J. Sanit. Eng. Res. 2012, 6, 19–24. [Google Scholar]
- Jiang, L.; Xie, M.; Chen, G.; Qiao, J.; Zhang, H.; Zeng, X. Phenolics and carbohydrates in buckwheat honey regulate the human intestinal microbiota. Evid.-Based Complement. Altern. Med. 2020, 2020, 6432942. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, R.; Kaur, A. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli. Ecol. Food Nutr. 2011, 50, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Bogdanov, S. Harmonised Methods of the International Honey Commission; International Honey Commission Bremen: Bremen, Germany, 2009. [Google Scholar]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Potočnjak, M.; Pušić, P.; Frece, J.; Abram, M.; Janković, T.; Gobin, I. Three new Lactobacillus plantarum strains in the probiotic toolbox against gut pathogen Salmonella enterica serotype Typhimurium. Food Technol. Biotechnol. 2017, 55, 48–54. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters; EUCAST: Växjö, Sweden, 2021. [Google Scholar]
Samples | El. Conductivity/ (mS/cm) | w(Water)/ % | w(Ash)/ % | Glucose/ g/100g | Fructose/ g/100g | Sucrose/ g/100g | Total Phenols/ mgGAE/100g |
---|---|---|---|---|---|---|---|
HS 1 | 1.22 | 19.1 | 0.62 | 23.15 | 31.25 | - | 231 |
HS 2 | 1.17 | 18.4 | 0.59 | 24.08 | 32.27 | - | 228 |
HS 3 | 1.22 | 17.7 | 0.62 | 23.45 | 32.15 | - | 225 |
Bacteria | S. Typhimurium | L. plantarum | ||
---|---|---|---|---|
Samples | MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) |
HS 1 | 150 ± 50 | 175 ± 43.3 | 400 ± 0.0 | >400 |
HS 2 | 125 ± 43.3 | 125 ± 43.3 | 400 ± 0.0 | >400 |
HS 3 | 125 ± 43.3 | 125 ± 43.3 | 400 ± 0.0 | >400 |
Meropenem | 0.06 ± 0.0 | 0.06 ± 0.0 | ND | ND |
Gentamicin | ND | ND | 0.004 ± 0.0 | 0.004 ± 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mežnarić, S.; Brčić Karačonji, I.; Crnković, G.; Lesar, A.; Pavlešić, T.; Vučković, D.; Gobin, I. Combined Inhibitory Effect of Fir (Abies alba Mill.) Honeydew Honey and Probiotic Bacteria Lactiplantibacillus plantarum on the Growth of Salmonella enterica Serotype Typhimurium. Antibiotics 2022, 11, 145. https://doi.org/10.3390/antibiotics11020145
Mežnarić S, Brčić Karačonji I, Crnković G, Lesar A, Pavlešić T, Vučković D, Gobin I. Combined Inhibitory Effect of Fir (Abies alba Mill.) Honeydew Honey and Probiotic Bacteria Lactiplantibacillus plantarum on the Growth of Salmonella enterica Serotype Typhimurium. Antibiotics. 2022; 11(2):145. https://doi.org/10.3390/antibiotics11020145
Chicago/Turabian StyleMežnarić, Silvestar, Irena Brčić Karačonji, Goranka Crnković, Andrija Lesar, Tomislav Pavlešić, Darinka Vučković, and Ivana Gobin. 2022. "Combined Inhibitory Effect of Fir (Abies alba Mill.) Honeydew Honey and Probiotic Bacteria Lactiplantibacillus plantarum on the Growth of Salmonella enterica Serotype Typhimurium" Antibiotics 11, no. 2: 145. https://doi.org/10.3390/antibiotics11020145
APA StyleMežnarić, S., Brčić Karačonji, I., Crnković, G., Lesar, A., Pavlešić, T., Vučković, D., & Gobin, I. (2022). Combined Inhibitory Effect of Fir (Abies alba Mill.) Honeydew Honey and Probiotic Bacteria Lactiplantibacillus plantarum on the Growth of Salmonella enterica Serotype Typhimurium. Antibiotics, 11(2), 145. https://doi.org/10.3390/antibiotics11020145