Multi-Drug Resistant Staphylococcus aureus Carriage in Abattoir Workers in Busia, Kenya
Abstract
:1. Introduction
2. Results
2.1. Description of Study Population
2.2. Prevalence of MRSA and MSSA among HIV-Positive and HIV-Negative Participants
2.3. Genetic Diversity of MSSA and MRSA STs in HIV-Positive and HIV-Negative Participants
2.4. Prevalence of PVL Gene and Toxic Shock Syndrome Toxin-1 (TSST-1) Gene Carriage
2.5. Prevalence of Phenotypic Antibiotic Resistant S. aureus Carriage in Participants
2.6. Prevalence of MDR S. aureus
2.7. Prevalence of Genotypic Antibiotic Resistance in MSSA and MRSA Strains
3. Discussion
4. Materials and Methods
4.1. Study Site
4.2. Study Population
4.3. Data and Sample Collection
4.4. Phenotypic Antimicrobial Susceptibility Testing
4.5. Molecular Genotyping
4.6. Genomic Analyses
4.7. Statistical Analyses
4.8. Ethical Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, R.E. Healthy carriage of Staphylococcus aureus: Its prevalence and importance. Bacteriol. Rev. 1963, 27, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Sakr, A.; Brégeon, F.; Mège, J.L.; Rolain, J.M.; Blin, O. Staphylococcus aureus nasal colonization: An update on mechanisms, epidemiology, risk factors, and subsequent infections. Front. Microbiol. 2018, 9, 2419. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, H.F.L.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Velasco, V.; Quezada-Aguiluz, M.; Bello-Toledo, H. Staphylococcus aureus in the Meat Supply Chain: Detection Methods, Antimicrobial Resistance, and Virulence Factors. In Staphylococcus and Streptococcus; Kırmusaoğlu, S., Ed.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Hidron, A.; Moanna, M.D.A.; Russell Kempker, M.D.; David Rimland, M.D. Methicillin-resistant Staphylococcus aureus in HIV-infected patients. Infect. Drug Resist. 2010, 73, 73–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NACC. Kenya HIV Estimates Report 2018; National AIDS Control Council: Nairobi, Kenya, 2018. [Google Scholar]
- Ministry of Health. National Manual for the Management of HIV-Related Opportunistic Infections and Conditions; Ojoo, S., Ed.; Ministry of Health: Nairobi, Kenya, 2008. Available online: http://guidelines.health.go.ke:8000/media/National_Manual_for_the_management_of_HIV_related_OIs.pdf (accessed on 23 October 2022).
- Dworkin, M.S.; Williamson, J.; Jones, J.L.; Kaplan, J.E. Prophylaxis with Trimethoprim-Sulfamethoxazole for Human Immunodeficiency Virus—Infected Patients: Impact on Risk for Infectious Diseases. Clin. Infect. Dis. 2001, 60601, 393–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.N.; Rose, D.A.; Hadley, W.K.; Perdreau-Remington, F.; Lam, P.K.; Gerberding, J.L. Emergence of Trimethoprim-Sulfamethoxazole Resistance in the AIDS Era. J. Infect. Dis. 1999, 180, 1809–1818. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.G.; Matee, M.I.N. Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrob. Resist. Infect. Control 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Dweba, C.C.; Zishiri, O.T.; El Zowalaty, M.E. Methicillin-resistant staphylococcus aureus: Livestock-associated, antimicrobial, and heavy metal resistance. Infect. Drug Resist. 2018, 11, 2497–2509. [Google Scholar] [CrossRef]
- Waters, A.E.; Contente-Cuomo, T.; Buchhagen, J.; Liu, C.M.; Watson, L.; Pearce, K.; Foster, J.T.; Bowers, J.; Driebe, E.M.; Engelthaler, D.M.; et al. Multidrug-resistant staphylococcus aureus in US meat and poultry. Clin. Infect. Dis. 2011, 52, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Van Loo, I.; Huijsdens, X.; Tiemersma, E.; De Neeling, A.; Van De Sande-Bruinsma, N.; Beaujean, D.; Voss, A.; Kluytmans, J. Emergence of methicillin-resistant Staphylococcus aureus of animal origin in humans. Emerg. Infect. Dis. 2007, 13, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Leibler, J.H.; Jordan, J.A.; Brownstein, K.; Lander, L.; Price, L.B.; Perry, M.J. Staphylococcus aureus nasal carriage among beefpacking workers in a Midwestern United States slaughterhouse. PLoS ONE 2016, 11, e0148789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivbule, M.; Miklaševičs, E.; Čupane, L.; Berziņa, L.; Balinš, A.; Valdovska, A. Presence of methicillin-resistant Staphylococcus aureus in slaughterhouse environment, pigs, carcasses, and workers. J. Vet. Res. 2017, 61, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Van Rijen, M.M.L.; Bosch, T.; Verkade, E.J.M.; Schouls, L.; Kluytmans, J.A.J.W. Livestock-associated MRSA carriage in patients without direct contact with livestock. PLoS ONE 2014, 9, e100294. [Google Scholar] [CrossRef] [Green Version]
- Larsen, J.; Petersen, A.; Sørum, M.; Stegger, M.; van Alphen, L.; Valentiner-Branth, P.; Knudsen, L.K.; Larsen, L.S.; Feingold, B.; Price, L.B.; et al. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011. Eurosurveillance 2015, 20, 30021. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Day, N.P.J.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 2002, 99, 7687–7692. [Google Scholar] [CrossRef] [Green Version]
- Schaumburg, F.; Alabi, A.S.; Peters, G.; Becker, K. New epidemiology of Staphylococcus aureus infection in Africa. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Lawal, O.U.; Ayobami, O.; Abouelfetouh, A.; Mourabit, N.; Kaba, M.; Egyir, B.; Abdulgader, S.M.; Shittu, A.O. A 6-Year Update on the Diversity of Methicillin-Resistant Staphylococcus aureus Clones in Africa: A Systematic Review. Front. Microbiol. 2022, 13, 860436. [Google Scholar] [CrossRef]
- Nyasinga, J.; Omuse, G.; John, N.; Nyerere, A.; Abdulgader, S.; Newton, M.; Whitelaw, A.; Revathi, G. Epidemiology of Staphylococcus aureus Infections in Kenya: Current State, Gaps and Opportunities. Open J. Med. Microbiol. 2020, 10, 204–221. [Google Scholar] [CrossRef]
- Kyany’a, C.; Nyasinga, J.; Matano, D.; Oundo, V.; Wacira, S.; Sang, W.; Musila, L. Phenotypic and genotypic characterization of clinical Staphylococcus aureus isolates from Kenya. BMC Microbiol. 2019, 19, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiken, A.M.; Mutuku, I.M.; Sabat, A.J.; Akkerboom, V.; Mwangi, J.; Scott, J.A.G.; Morpeth, S.C.; Friedrich, A.W.; Grundmann, H. Carriage of Staphylococcus aureus in Thika Level 5 Hospital, Kenya: A cross-sectional study. Antimicrob. Resist. Infect. Control 2014, 3, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omuse, G.; Zyl, K.N.; Hoek, K.; Abdulgader, S.; Kariuki, S.; Whitelaw, A.; Revathi, G. Molecular characterization of Staphylococcus aureus isolates from various healthcare institutions in Nairobi, Kenya: A cross sectional study. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 51. [Google Scholar] [CrossRef] [Green Version]
- Nyasinga, J.; Kyany’a, C.; Okoth, R.; Oundo, V.; Matano, D.; Wacira, S.; Sang, W.; Musembi, S.; Musila, L. A six-member SNP assay on the iPlex MassARRAY platform provides a rapid and affordable alternative for typing major African Staphylococcus aureus types. Access Microbiol. 2019, 1, e000018. [Google Scholar] [CrossRef]
- McCormick, J.K.; Yarwood, J.M.; Schlievert, P.M. Toxic shock syndrome and bacterial superantigens: An update. Annu. Rev. Microbiol. 2001, 55, 77–104. [Google Scholar] [CrossRef] [PubMed]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef]
- McGrath, B.; Rutledge, F.; Broadfield, E. Necrotising Pneumonia, Staphylococcus Aureus and Panton-Valentine Leukocidin. J. Intensive Care Soc. 2008, 9, 170–172. [Google Scholar] [CrossRef] [Green Version]
- Shallcross, L.J.; Fragaszy, E.; Johnson, A.M.; Hayward, A.C. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: A systematic review and meta-analysis. Lancet Infect. Dis. 2013, 13, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Voyich, J.M.; Otto, M.; Mathema, B.; Braughton, K.R.; Whitney, A.R.; Welty, D.; Long, R.D.; Dorward, D.W.; Gardner, D.J.; Lina, G.; et al. Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J. Infect. Dis. 2006, 194, 1761–1770. [Google Scholar] [CrossRef]
- Labandeira-Rey, M.; Couzon, F.; Boisset, S.; Brown, E.L.; Bes, M.; Benito, Y.; Barbu, E.M.; Vazquez, V.; Höök, M.; Etienne, J.; et al. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 2007, 315, 1130–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillet, Y.; Issartel, B.; Vanhems, P.; Fournet, J.-C.; Lina, G.; Bes, M.; Vandenesch, F.; Piémont, Y.; Brousse, N.; Floret, D.; et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 2002, 359, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Breurec, S.; Zriouil, S.B.; Fall, C.; Boisier, P.; Brisse, S.; Djibo, S.; Etienne, J.; Fonkoua, M.C.; Perrier-Gros-Claude, J.D.; Pouillot, R.; et al. Epidemiology of methicillin-resistant Staphylococcus aureus lineages in five major African towns: Emergence and spread of atypical clones. Clin. Microbiol. Infect. 2011, 17, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.; Ganner, M.; McGuane, S.; Pitt, T.L.; Cookson, B.D.; Kearns, A.M. Staphylococcus aureus isolates carrying panton-valentine leucocidin genes in England and Wales: Frequency, characterization, and association with clinical disease. J. Clin. Microbiol. 2005, 43, 2384–2390. [Google Scholar] [CrossRef] [Green Version]
- Adesiyun, A.A.; Lenz, W.; Schaal, K.P. Production of toxic shock syndrome toxin-1 (TSST-1) by Staphylococcus aureus strains isolated from humans, animals and foods in Nigeria. Microbiologica 1992, 15, 125–133. [Google Scholar] [PubMed]
- GoK. National Policy for the Prevention and Containment of Antimicrobial Resistance, Nairobi, Kenya: Government of Kenya, April 2017. 2017. Available online: https://www.health.go.ke/wp-content/uploads/2017/04/Kenya-AMR-Containment-Policy-_Final_April.pdf (accessed on 23 October 2022).
- Lucia Preoţescu, L.; Streinu-Cercel, O. Prevalence of nasal carriage of S aureus in children. Germs 2013, 3, 49–51. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit. Care 2017, 21, 211. [Google Scholar] [CrossRef] [Green Version]
- Odetokun, I.A.; Ballhausen, B.; Adetunji, V.O.; Ghali-Mohammed, I.; Adelowo, M.T.; Adetunji, S.A.; Fetsch, A. Staphylococcus aureus in two municipal abattoirs in Nigeria: Risk perception, spread and public health implications. Vet. Microbiol. 2018, 216, 52–59. [Google Scholar] [CrossRef]
- Olalekan, A.O.; Schaumburg, F.; Nurjadi, D.; Dike, A.E.; Ojurongbe, O.; Kolawole, D.O.; Kun, J.F.; Zanger, P. Clonal expansion accounts for an excess of antimicrobial resistance in Staphylococcus aureus colonising HIV-positive individuals in Lagos, Nigeria. Int. J. Antimicrob. Agents 2012, 40, 268–272. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Kauffman, C.A.; Goodman, R.P.; Squier, C.; Arbeit, R.D.; Singh, N.; Wagener, M.M.; Yu, V.L. Nasal carriage of and infection with Staphylococcus aureus in HIV-infected patients. Ann. Intern. Med. 1999, 130, 221–225. [Google Scholar] [CrossRef]
- Ouedraogo, A.S.; Dunyach-Remy, C.; Kissou, A.; Sanou, S.; Poda, A.; Kyelem, C.G.; Solassol, J.; Bañuls, A.L.; Van De Perre, P.; Ouédraogo, R.; et al. High nasal carriage rate of Staphylococcus aureus containing panton-valentine leukocidin- and EDIN-encoding genes in community and hospital settings in Burkina Faso. Front. Microbiol. 2016, 7, 1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraef, C.; Alabi, A.S.; Peters, G.; Becker, K.; Kremsner, P.G.; Rossatanga, E.G.; Mellmann, A.; Grobusch, M.P.; Zanger, P.; Schaumburg, F. Co-detection of Panton-Valentine leukocidin encoding genes and cotrimoxazole resistance in Staphylococcus aureus in Gabon: Implications for HIV-patients’ care. Front. Microbiol. 2015, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Vandenesch, F.; Naimi, T.; Enright, M.C.; Lina, G.; Nimmo, G.R.; Heffernan, H.; Liassine, N.; Bes, M.; Greenland, T.; Reverdy, M.E.; et al. Community-acquired methicillin-resistant staphylococcus aureus carrying panton-valentine leukocidin genes: Worldwide emergence. Emerg. Infect. Dis. 2003, 9, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Van Cleef, B.A.G.L.; Broens, E.M.; Voss, A.; Huijsdens, X.W.; Züchner, L.; Van Benthem, B.H.B.; Kluytmans, J.A.J.W.; Mulders, M.N.; Van De Giessen, A.W. High prevalence of nasal MRSA carriage in slaughterhouse workers in contact with live pigs in the Netherlands. Epidemiol. Infect. 2010, 138, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Wangai, F.K.; Masika, M.M.; Maritim, M.C.; Seaton, R.A. Methicillin-resistant Staphylococcus aureus (MRSA) in East Africa: Red alert or red herring? BMC Infect. Dis. 2019, 19, 596. [Google Scholar] [CrossRef]
- Kpeli, G.; Buultjens, A.H.; Giulieri, S.; Owusu-Mireku, E.; Aboagye, S.Y.; Baines, S.L.; Seemann, T.; Bulach, D.; da Silva, A.G.; Monk, I.R.; et al. Genomic analysis of ST88 communityacquired methicillin resistant Staphylococcus aureus in Ghana. PeerJ 2017, 2017, 3047. [Google Scholar] [CrossRef] [Green Version]
- Odetokun, I.A.; Afolaranmi, Z.M.; Nuhu, A.A.; Borokinni, B.O.; Ghali-Mohammed, I.; Cisse, H.; Alhaji, N.B. Knowledge and self-reported food safety practices among meat consumers in Ilorin, Nigeria. Dialogues Health 2022, 1, 100039. [Google Scholar] [CrossRef]
- Kemp, S.A.; Pinchbeck, G.L.; Fèvre, E.M.; Williams, N.J. A Cross-Sectional Survey of the Knowledge, Attitudes, and Practices of Antimicrobial Users and Providers in an Area of High-Density Livestock-Human Population in Western Kenya. Front. Vet. Sci. 2021, 8, 1070. [Google Scholar] [CrossRef]
- Roisin, S.; Nonhoff, C.; Denis, O.; Struelens, M.J. Evaluation of new Vitek 2 card and disk diffusion method for determining susceptibility of Staphylococcus aureus to oxacillin. J. Clin. Microbiol. 2008, 46, 2525–2528. [Google Scholar] [CrossRef] [Green Version]
- Conceição, T.; Coelho, C.; de Lencastre, H.; Aires-de-Sousa, M. Frequent occurrence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) strains in two African countries. J. Antimicrob. Chemother. 2015, 70, 3200–3204. [Google Scholar] [CrossRef]
- Boonsiri, T.; Watanabe, S.; Tan, X.E.; Thitiananpakorn, K.; Narimatsu, R.; Sasaki, K.; Takenouchi, R.; Sato’o, Y.; Aiba, Y.; Kiga, K.; et al. Identification and characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Sci. Rep. 2020, 10, 16907. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines on Post-Exposure Prophylaxis for HIV and the Use of Co-Trimoxazole Prophylaxis for HIV-Related Infections among Adults, Adolescents and Children: Recommendations for a Public Health Approach: Supplement to the 2013 Consolidated Guidelines on th [Internet]. 2014. Available online: https://apps.who.int/iris/handle/10665/145719 (accessed on 23 October 2022).
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Marbou, W.J.T.; Kuete, V. Bacterial resistance and immunological profiles in HIV-infected and non-infected patients at Mbouda AD LUCEM Hospital in Cameroon. J. Infect. Public Health 2017, 10, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Günthard, H.F.; Saag, M.S.; Benson, C.A.; Del Rio, C.; Eron, J.J.; Gallant, J.E.; Hoy, J.F.; Mugavero, M.J.; Sax, P.E.; Thompson, M.A.; et al. Antiretroviral drugs for treatment and prevention of HIV infection in Adults: 2016 recommendations of the international antiviral society-USA Panel. JAMA—J. Am. Med. Assoc. 2016, 316, 191–210. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.A.J.; De Glanville, W.A.; Thomas, L.F.; Kariuki, S.; de Clare Bronsvoort, B.M.; Fèvre, E.M. Working conditions and public health risks in slaughterhouses in western Kenya. BMC Public Health 2017, 17, 14. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.L.; Harris, A.D.; Johnson, J.A.; Silbergeld, E.K.; Morris, J.G. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci. USA 2002, 99, 6434–6439. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Global Strategy for Containment of Antimicrobial Resistance; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Seppälä, H.; Klaukka, T.; Vuopio-Varkila, J.; Muotiala, A.; Helenius, H.; Lager, K.; Huovinen, P. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N. Engl. J. Med. 1997, 337, 441–446. [Google Scholar] [CrossRef]
- Fèvre, E.M.; de Glanville, W.A.; Thomas, L.F.; Cook, E.A.J.; Kariuki, S.; Wamae, C.N. An integrated study of human and animal infectious disease in the Lake Victoria crescent small-holder crop-livestock production system, Kenya. BMC Infect. Dis. 2017, 17, 457. [Google Scholar] [CrossRef] [Green Version]
- Ligozzi, M.; Bernini, C.; Bonora, M.G.; De Fatima, M.; Zuliani, J.; Fontana, R. Evaluation of the VITEK 2 system for identification and antimicrobial susceptibility testing of medically relevant gram-positive cocci. J. Clin. Microbiol. 2002, 40, 1681–1686. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Sensitivity Testing. CLSI Supplement M100, 29th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Wang, M.; Wei, H.; Zhao, Y.; Shang, L.; Di, L.; Lyu, C.; Liu, J. Analysis of multidrug-resistant bacteria in 3223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. Bosn. J. Basic Med. Sci. 2019, 19, 86–93. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falagas, M.E.; Koletsi, P.K.; Bliziotis, I.A. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J. Med. Microbiol. 2006, 55, 1619–1629. [Google Scholar] [CrossRef] [Green Version]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Lina, G.; Piémont, Y.; Godail-Gamot, F.; Bes, M.; Peter, M.O.; Gauduchon, V.; Vandenesch, F.; Etienne, J. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 1999, 29, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
- Jarraud, S.; Mougel, C.; Thioulouse, J.; Lina, G.; Meugnier, H.; Forey, F.; Nesme, X.; Etienne, J.; Vandenesch, F. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 2002, 70, 631–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Coll, F.; Raven, K.E.; Knight, G.M.; Blane, B.; Harrison, E.M.; Leek, D.; Enoch, D.A.; Brown, N.M.; Parkhill, J.; Peacock, S.J. Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: A genomic epidemiology analysis. Lancet Microbe 2020, 1, e328–e335. [Google Scholar] [CrossRef]
- Richardson, E.J.; Bacigalupe, R.; Harrison, E.M.; Weinert, L.A.; Lycett, S.; Vrieling, M.; Robb, K.; Hoskisson, P.A.; Holden, M.T.G.; Feil, E.J.; et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2018, 2, 1468–1478. [Google Scholar] [CrossRef]
- Yu, G. Using ggtree to Visualize Data on Tree-Like Structures. Curr. Protoc. Bioinform. 2020, 69, e96. [Google Scholar] [CrossRef]
- Xu, S.; Dai, Z.; Guo, P.; Fu, X.; Liu, S.; Zhou, L.; Tang, W.; Feng, T.; Chen, M.; Zhan, L.; et al. GgtreeExtra: Compact Visualization of Richly Annotated Phylogenetic Data. Mol. Biol. Evol. 2021, 38, 4039–4042. [Google Scholar] [CrossRef]
HIV-Status | Number of S. aureus Isolates (Number of MRSA) | Number of Workers Who Yielded Staph. aureus (%, 95% Confidence Interval) | Number of Workers Carrying MRSA Isolates (%, 95%CI) | Number of Workers Carrying MSSA Isolates (%, 95%CI) |
---|---|---|---|---|
HIV-positive (n = 89) | 27 (1) | 24 (27.0%, 95%CI 18.9–37.1) | 1 (1.1%, 95%CI 0.3–6.0) | 23 (25.8%, 95%CI 18.0–26.0) |
HIV-negative (n = 648) | 99 (2) | 94 (14.5%, 95%CI 11.9–17.4) | 2 (0.3%, 95%CI 0.1–1.1) | 92 (14.2%, 95%CI 11.7–17.1) |
Total abattoir workers (n = 737) | 126 (3) | 118 (16.0%, 95%CI 13.5–29.0) | 3 (0.4%, 95%CI 0.1–1.2) | 115 (15.6%, 95%CI 13.1–18.3) |
Total Number of Isolates n = 126 (%) | Isolates from HIV-Positive Workers n = 27 (%) | Isolates from HIV-Negative Workers n = 99 (%) | Chi2 Test | |
---|---|---|---|---|
Sulfamethoxazole/trimehoprim resistance | 16 (12.7) | 10 (37.0) | 6 (6.1) | Chi2 = 18.098, df = 1, p <0.001 |
Penicillin | 123 (97.6) | 26 (100) | 96 (97.0) | NA |
Trimethoprim | 81 (64.3) | 21 (77.8) | 60 (60.6) | Chi2 = 2.712, df = 1, p = 0.100 |
Cefoxitin | 2 (1.6%) | 1 (3.7) | 2 (2.0) | Chi2 = 0.263, df = 1, p = 0.608 |
Tetracycline | 33 (26.2) | 10 (37.0) | 23 (23.2) | Chi2 = 2.075, df = 1, p = 0.150 |
Erythromycin | 4 (3.2) | 2 (7.4) | 2 (2.0) | Chi2 = 2.007, df = 1, p = 0.157 |
Inducible resistance to clindamycin | 4 (3.2) | 2 (7.4) | 2 (2.0) | Chi2 = 2.007, df = 1, p = 0.157 |
Gentamicin | 2 (1.6) | 0 | 2 (2.0) | NA |
Ciprofloxacin | 2 (1.6) | 2 (7.4) | 0 | NA |
Oxacillin | 1 (0.8) | 0 | 1 (1.0) | NA |
Linezolid | 1 (0.8) | 0 | 1 (1.0) | NA |
Panton Valentine Leukocidin gene | 54 (42.9) | 10 (37.0) | 44 (44.4) | Chi2 = 0.471, df = 1, p = 0.493 |
Toxic shock syndrome toxin-1 gene | 15 (11.9) | 1 (3.7) | 14 (14.1) | Chi2 = 2.176, df = 1, p = 0.140 |
Multidrug-resistant | 34 (27.0) | 9 (33.3) | 25 (25.3) | Chi2 =0.683, df = 1, p = 0.409 |
Trimethoprim-Penicillin-Tetracycline MDR | 28 (22.2) | 8 (29.6) | 20 (20.2) | Chi2 = 1.076, df = 1, p = 0.230 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obanda, B.A.; Gibbons, C.L.; Fèvre, E.M.; Bebora, L.; Gitao, G.; Ogara, W.; Wang, S.-H.; Gebreyes, W.; Ngetich, R.; Blane, B.; et al. Multi-Drug Resistant Staphylococcus aureus Carriage in Abattoir Workers in Busia, Kenya. Antibiotics 2022, 11, 1726. https://doi.org/10.3390/antibiotics11121726
Obanda BA, Gibbons CL, Fèvre EM, Bebora L, Gitao G, Ogara W, Wang S-H, Gebreyes W, Ngetich R, Blane B, et al. Multi-Drug Resistant Staphylococcus aureus Carriage in Abattoir Workers in Busia, Kenya. Antibiotics. 2022; 11(12):1726. https://doi.org/10.3390/antibiotics11121726
Chicago/Turabian StyleObanda, Benear Apollo, Cheryl L. Gibbons, Eric M. Fèvre, Lilly Bebora, George Gitao, William Ogara, Shu-Hua Wang, Wondwossen Gebreyes, Ronald Ngetich, Beth Blane, and et al. 2022. "Multi-Drug Resistant Staphylococcus aureus Carriage in Abattoir Workers in Busia, Kenya" Antibiotics 11, no. 12: 1726. https://doi.org/10.3390/antibiotics11121726
APA StyleObanda, B. A., Gibbons, C. L., Fèvre, E. M., Bebora, L., Gitao, G., Ogara, W., Wang, S. -H., Gebreyes, W., Ngetich, R., Blane, B., Coll, F., Harrison, E. M., Kariuki, S., Peacock, S. J., & Cook, E. A. J. (2022). Multi-Drug Resistant Staphylococcus aureus Carriage in Abattoir Workers in Busia, Kenya. Antibiotics, 11(12), 1726. https://doi.org/10.3390/antibiotics11121726