Molecular Epidemiology of Staphylococcus aureus and MRSA in Bedridden Patients and Residents of Long-Term Care Facilities
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Colonization with S. aureus and MRSA
2.2. In Vitro Antimicrobial Susceptibility Testing
2.3. Detection of the mecA Gene and SCCmec Characterization
2.4. Risk Factors for MRSA Carriage
2.5. Determination of the Clonal Profile of MRSA Isolates by Pulsed-Field Gel Electrophoresis
2.6. Molecular Typing of MRSA by Multilocus Sequence Typing
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Inclusion and Exclusion Criteria
4.3. Sample Collection
4.4. Phenotypic Identification of S. aureus
4.5. Genotypic Identification of S. aureus
4.6. Antimicrobial Susceptibility Tests
4.7. Determination of Minimum Inhibitory Concentration (MIC)
4.8. Molecular Detection of the mecA Gene and Characterization of SCCmec
4.9. Pulsed-Field Gel Electrophoresis (PFGE)
4.10. Multilocus Sequence Typing (MLST)
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Population size (finite population correlation factor or FCP) (N): 350;
- Hypothetical % frequency of the outcome factor in the population (p): 33% ± 5;
- Confidence limits as % of 100 (absolute ±%) (d): 5%;
- Design effect (DEFF): 1;
- Equation: n = [DEFF ∗ Np(1 − p)]/[(d2/Z21 − α/2 ∗ (N − 1) + p ∗ (1 − p)];
- Sample size (95% confidence interval): 173.
Appendix B. Questionnaire
References
- Chambers, H. The Changing Epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 2001, 7, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.; Sun, L.; Smith, D.; Laxminarayan, R. The Changing Epidemiology of Methicillin-Resistant Staphylococcus aureus in the United States: A National Observational Study. Am. J. Epidemiology 2013, 177, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Nimmo, G.R.; Bergh, H.; Nakos, J.; Whiley, D.; Marquess, J.; Huygens, F.; Paterson, D. Replacement of healthcare-associated MRSA by community-associated MRSA in Queensland: Confirmation by genotyping. J. Infect. 2013, 67, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Otto, M. Community-associated MRSA: What makes them special? Int. J. Med. Microbiol. 2013, 303, 324–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cataldo, M.A.; Taglietti, F.; Petrosillo, N. Methicillin-Resistant Staphylococcus aureus: A Community Health Threat. Postgrad. Med. 2010, 122, 16–23. [Google Scholar] [CrossRef]
- Braga, E.D.V.; Aguiar-Alves, F.; Freitas, M.D.F.N.D.; De E Silva, M.O.; Correa, T.V.; E Snyder, R.; De Araújo, V.A.; Marlow, M.A.; Riley, L.W.; Setúbal, S.; et al. High prevalence of Staphylococcus aureus and methicillin-resistant S. aureus colonization among healthy children attending public daycare centers in informal settlements in a large urban center in Brazil. BMC Infect. Dis. 2014, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lo, W.-T.; Wang, C.-C.; Lin, W.-J.; Wang, S.-R.; Teng, C.-S.; Huang, C.-F.; Chen, S.-J. Changes in the Nasal Colonization with Methicillin-Resistant Staphylococcus aureus in Children: 2004-2009. PLoS ONE 2010, 5, e15791. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Chen, L.F.; Fowler, V.G. Colonization, pathogenicity, host susceptibility, and therapeutics for Staphylococcus aureus: What is the clinical relevance? Semin. Immunopathol. 2011, 34, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Safdar, N.; Bradley, E. The Risk of Infection after Nasal Colonization with Staphylococcus aureus. Am. J. Med. 2008, 121, 310–315. [Google Scholar] [CrossRef]
- Rodrigues, M.V.P.; Fortaleza, C.M.C.B.; Souza, C.S.M.; Teixeira, N.B.; Cunha, M.D.L.R.D.S.D. Genetic Determinants of Methicillin Resistance and Virulence among Staphylococcus aureus Isolates Recovered from Clinical and Surveillance Cultures in a Brazilian Teaching Hospital. ISRN Microbiol. 2012, 2012, 975143. [Google Scholar] [CrossRef]
- Rebelo, M.; Pereira, B.; Lima, J.; Decq-Mota, J.; Vieira, J.D.; Costa, J.N. Predictors of in-hospital mortality in elderly patients with bacteraemia admitted to an Internal Medicine ward. Int. Arch. Med. 2011, 4, 33. [Google Scholar] [CrossRef]
- Bierowiec, K.; Płoneczka-Janeczko, K.; Rypuła, K. Is the Colonisation of Staphylococcus aureus in Pets Associated with Their Close Contact with Owners? PLoS ONE 2016, 11, e0156052. [Google Scholar] [CrossRef] [Green Version]
- Aschbacher, R.; Pagani, E.; Confalonieri, M.; Farina, C.; Fazii, P.; Luzzaro, F.; Montanera, P.G.; Piazza, A.; Pagani, L. Review on colonization of residents and staff in Italian long-term care facilities by multidrug-resistant bacteria compared with other European countries. Antimicrob. Resist. Infect. Control 2016, 5, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, C.; Smith, M.; Tunney, M. Infection control strategies for preventing the transmission of meticillin-resistant Staphylococcus aureus (MRSA) in nursing homes for older people. Cochrane Database Syst. Rev. 2008, 1, CD006354. [Google Scholar] [CrossRef]
- Jans, B.; Schoevaerdts, D.; Huang, T.-D.; Berhin, C.; Latour, K.; Bogaerts, P.; Nonhoff, C.; Denis, O.; Catry, B.; Glupczynski, Y. Epidemiology of Multidrug-Resistant Microorganisms among Nursing Home Residents in Belgium. PLoS ONE 2013, 8, e64908. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.Y.; Bartsch, S.M.; Wong, K.F.; Singh, A.; Avery, T.R.; Kim, D.S.; Brown, S.; Murphy, C.R.; Yilmaz, S.L.; Potter, M.A.; et al. The Importance of Nursing Homes in the Spread of Methicillin-resistant Staphylococcus aureus (MRSA) Among Hospitals. Med. Care 2013, 51, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Milheiriço, C.; Oliveira, D.C.; de Lencastre, H. Update to the Multiplex PCR Strategy for Assignment of mec Element Types in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 3374–3377. [Google Scholar] [CrossRef] [Green Version]
- Rondeau, C.; Chevet, G.; Blanc, D.; Gbaguidi-Haore, H.; Decalonne, M.; Dos Santos, S.; Quentin, R.; Van Der Mee-Marquet, N. Current Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in Elderly French People: Troublesome Clones on the Horizon. Front. Microbiol. 2016, 7, 31. [Google Scholar] [CrossRef]
- Kwetkat, A.; Pfister, W.; Pansow, D.; Pletz, M.W.; Sieber, C.C.; Hoyer, H. Naso- and oropharyngeal bacterial carriage in nursing home residents: Impact of multimorbidity and functional impairment. PLoS ONE 2018, 13, e0190716. [Google Scholar] [CrossRef] [Green Version]
- Da Silveira, M.; Cunha, M.D.L.R.D.S.D.; De Souza, C.S.M.; Correa, A.A.F.; Fortaleza, C.M.C.B. Nasal colonization with methicillin-resistant Staphylococcus aureus among elderly living in nursing homes in Brazil: Risk factors and molecular epidemiology. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 18. [Google Scholar] [CrossRef]
- Pires, F.V.; Cunha, M.D.L.R.D.S.D.; Abraao, L.M.; Martins, P.Y.F.; Camargo, C.; Fortaleza, C.M.C.B. Nasal Carriage of Staphylococcus aureus in Botucatu, Brazil: A Population-Based Survey. PLoS ONE 2014, 9, e92537. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.C.; Forshey, B.M.; Hanson, B.M.; Wardyn, S.E.; Moritz, E.D. Molecular and epidemiologic predictors of Staphylococcus aureus colonization site in a population with limited nosocomial exposure. Am. J. Infect. Control 2012, 40, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Hamdan-Partida, A.; Sainz-Espuñes, T.; Bustos-Martínez, J. Characterization and Persistence of Staphylococcus aureus Strains Isolated from the Anterior Nares and Throats of Healthy Carriers in a Mexican Community. J. Clin. Microbiol. 2010, 48, 1701–1705. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, A.; Seifried, S.E.; Zhu, L.; Srivastava, D.K.; Bs, R.P.; Shenep, J.L.; Bankowski, M.J.; Hayden, R.T. Increasing prevalence of nasal and rectal colonization with methicillin-resistant Staphylococcus aureus in children with cancer. Pediatr. Blood Cancer 2010, 55, 1317–1322. [Google Scholar] [CrossRef] [Green Version]
- Juyal, D.; Pal, S.; Sayana, A.; Joshi, A. Staphylococcus aureus: A predominant cause of surgical site infections in a rural healthcare setup of Uttarakhand. J. Fam. Med. Prim. Care 2019, 8, 3600–3606. [Google Scholar] [CrossRef]
- Bitkover, C.Y.; Marcusson, E.; Ransjö, U. Spread of coagulase-negative staphylococci during cardiac operations in a modern operating room. Ann. Thorac. Surg. 2000, 69, 1110–1115. [Google Scholar] [CrossRef]
- Nillius, D.; von Müller, L.; Wagenpfeil, S.; Klein, R.; Herrmann, M. Methicillin-Resistant Staphylococcus aureus in Saarland, Germany: The Long-Term Care Facility Study. PLoS ONE 2016, 11, e0153030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couderc, C.; Jolivet, S.; Thiébaut, A.C.M.; Ligier, C.; Remy, L.; Alvarez, A.-S.; Lawrence, C.; Salomon, J.; Herrmann, J.-L.; Guillemot, D.; et al. Fluoroquinolone Use Is a Risk Factor for Methicillin-Resistant Staphylococcus aureus Acquisition in Long-term Care Facilities: A Nested Case-Case-Control Study. Clin. Infect. Dis. 2014, 59, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Nowak, J.E.; Borkowska, B.A.; Pawlowski, B.Z. Sex differences in the risk factors for Staphylococcus aureus throat carriage. Am. J. Infect. Control 2016, 45, 29–33. [Google Scholar] [CrossRef]
- Dulon, M.; Peters, C.; Schablon, A.; Nienhaus, A. MRSA carriage among healthcare workers in non-outbreak settings in Europe and the United States: A systematic review. BMC Infect. Dis. 2014, 14, 363. [Google Scholar] [CrossRef]
- Knox, J.; Uhlemann, A.-C.; Lowy, F.D. Staphylococcus aureus infections: Transmission within households and the community. Trends Microbiol. 2015, 23, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Camoez, M.; Sierra, J.M.; Pujol, M.; Hornero, A.; Martín, R.; Domínguez, M.A. Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus ST398 Resistant to Tetracycline at a Spanish Hospital over 12 Years. PLoS ONE 2013, 8, e72828. [Google Scholar] [CrossRef]
- Verkade, E.; Bosch, T.; Hendriks, Y.; Kluytmans, J. Outbreak of Methicillin-Resistant Staphylococcus aureus ST398 in a Dutch Nursing Home. Infect. Control Hosp. Epidemiol. 2012, 33, 624–626. [Google Scholar] [CrossRef] [Green Version]
- Konemman, E.V.; Allen, S.D.; Sowell, V.R.; Sommer, H.M. Introdução à Microbiologia Médica. In Diagnóstico Microbiológico: Texto e Atlas Colorido, 5th ed.; Medsi: Rio de Janeiro, Brazil, 2001. [Google Scholar]
- Martineau, F.; Picard, F.J.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Species-Specific and Ubiquitous-DNA-Based Assays for Rapid Identification of Staphylococcus aureus. J. Clin. Microbiol. 1998, 36, 618–623. [Google Scholar] [CrossRef] [Green Version]
- CLSI. M100S Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Murakami, K.; Minamide, W.; Wada, K.; Nakamura, E.; Teraoka, H.; Watanabe, S. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J. Clin. Microbiol. 1991, 29, 2240–2244. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.C.; de Lencastre, H. Multiplex PCR Strategy for Rapid Identification of Structural Types and Variants of the mec Element in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2155–2161. [Google Scholar] [CrossRef] [Green Version]
- McDougal, L.K.; Steward, C.D.; Killgore, G.E.; Chaitram, J.M.; McAllister, S.K.; Tenover, F.C. Pulsed-Field Gel Electrophoresis Typing of Oxacillin-Resistant Staphylococcus aureus Isolates from the United States: Establishing a National Database. J. Clin. Microbiol. 2003, 41, 5113–5120. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Day, N.P.J.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus Sequence Typing for Characterization of Methicillin-Resistant and Methicillin-Susceptible Clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef]
LTCF | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prevalence | A (N = 7) Small | B (N = 6) Small | C (N = 12) Small | D (N = 6) Small | E (N = 7) Small | F (N = 18) Medium | G (N = 60) Large | H (N = 16) Medium | I (N = 18) Medium | ||||||||||
N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % | ||
Total | S. aureus | 6 | 85.7 | 3 | 50.0 | 7 | 58.3 | 2 | 33.3 | 3 | 42.9 | 5 | 27.7 | 20 | 33.3 | 8 | 50.0 | 3 | 16.6 |
MRSA | 1 | 14.3 | 1 | 16.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 13.3 | 4 | 25.0 | 0 | 0 | |
Nasal | S. aureus | 4 | 57.1 | 1 | 16.7 | 1 | 8.3 | 2 | 33.3 | 0 | 0 | 2 | 11.1 | 12 | 20.0 | 3 | 18.7 | 2 | 11.1 |
MRSA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 6.6 | 2 | 12.5 | 0 | 0 | |
Oral | S. aureus | 1 | 14.3 | 1 | 16.7 | 3 | 25.0 | 0 | 0 | 1 | 14.3 | 0 | 0 | 3 | 5.0 | 3 | 18.7 | 1 | 5.5 |
MRSA | 1 | 14.3 | 1 | 16.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 5.0 | 2 | 12.5 | 0 | 0 | |
Rectal | S. aureus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 14.3 | 2 | 11.1 | 0 | 0 | 0 | 0 | 0 | 0 |
MRSA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Nasal + Oral | S. aureus | 1 | 14.3 | 1 | 16.7 | 2 | 16.7 | 0 | 0 | 0 | 0 | 1 | 5.5 | 3 | 5.0 | 2 | 12.5 | 0 | 0 |
MRSA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.6 | 0 | 0 | 0 | 0 | |
Nasal + Rectal | S. aureus | 0 | 0 | 0 | 0 | 1 | 8.3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3.3 | 0 | 0 | 0 | 0 |
MRSA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Oral + Rectal | S. aureus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 14.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
MRSA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S. aureus (n = 97) | mecA Gene | Oxacillin | Cefoxitin | Linezolid | Q/D | S/T | Vancomycin MIC # (µg/mL) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | S | R | S | R | S | R | S | R | S | |||
MSSA (n = 77) | 0 | 3 * | 74 | 0 | 77 | 0 | 77 | 0 | 77 | 0 | 77 | 0.19–1.5 |
MRSA (n = 20) | 20 | 13 | 7 ** | 13 | 7 ** | 0 | 20 | 0 | 20 | 0 | 20 | 0.19–1.5 |
Total (n = 97) | 20 | 16 | 81 | 13 | 84 | 0 | 97 | 0 | 97 | 0 | 97 | 0.19–1.5 |
Risk Factors | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
S. aureus (n = 76) | Negative (n = 150) | OR (95 %CI) | p | OR (95 %CI) | p | |
Demographic data | ||||||
Male gender | 37 (48.7) | 48 (30.7) | 2.15 (1.22–3.79) | 0.008 | 2.59 (1.41–4.76) | 0.002 |
Age [years], median (quartile) | 77.5 (70–84) | 80 (70–85) | … | 0.41 | ||
Living in a long-term care facility | 56 (73.7) | 94 (62.7) | 1.6 (0.908–3.065) | 0.98 | 2.05 (1.07–3.91) | 0.03 |
Time at risk * [months], median (quartile) | 36 (12–66) | 66 (24–66) | … | 0.003 | ||
Comorbidities | ||||||
Heart disease | 3 (3.9) | 17 (11.3) | 0.32 (0.01–1.13) | 0.07 | 0.18 (0.05–0.70) | 0.01 |
Lung disease | 5 (6.6) | 8 (5.3) | 1.25 (0.40–3.96) | 0.77 | ||
Kidney disease | 4 (5.3) | 3 (2.0) | 2.72 (0.59–12.48) | 0.22 | ||
Liver disease | 0 (0.0) | 2 (1.3) | 0.00 (…–…) | 0.55 | ||
Diabetes mellitus | 19 (25.0) | 29 (19.3) | 1.39 (0.72–2.68) | 0.32 | ||
Central nervous system disease | 20 (26.3) | 33 (22.0) | 1.26 (0.66–2.40) | 0.46 | ||
Cancer | 6 (7.9) | 6 (4.0) | 2.057 (0.64–6.60) | 0.21 | ||
AIDS | 0 (0.0) | 1 (0.7) | 0.00 (…–…) | 1.00 | ||
Pressure ulcer | 6 (7.9) | 9 (6.0) | 1.34 (0.46–3.92) | 0.58 | ||
Charlson Comorbidity Index, median (quartile) | 1 (1–1) | 1 (0–1) | … | 0.25 | 1.35 (1.01–1.92) | 0.047 |
Procedures | ||||||
Hospitalization ** | 14 (18.4) | 19 (12.7) | 1.55 (0.73–3.30) | 0.24 | ||
Surgery ** | 6 (7.9) | 3 (2.0) | 4.20 (1.020–17.28) | 0.064 | 5.99 (1.26–28.92) | 0.02 |
Other invasive procedures ** | 4 (5.3) | 7 (4.7) | 1.13 (0.32–4.004) | 1.00 | ||
Antimicrobial use ** | 10 (13.2) | 9 (6.0) | 2.37 (0.92–6.11) | 0.67 |
Risk Factors | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
MRSA (n = 18) | Negative (n = 208) | OR (95 %CI) | p | OR (95 %CI) | p | |
Demographic data | ||||||
Male gender | 11 (61.1) | 72 (34.6) | 2.96 (1.103–7.98) | 0.03 | 3.29 (1.18–9.17) | 0.02 |
Age [years], median (quartile) | 76 (69.5–83) | 77 (60–85) | … | 0.51 | ||
Living in a long-term care facility | 14 (77.8) | 136 (65.4) | 1.85 (0.58–5.83) | 0.28 | ||
Time at risk * [months], median (quartile) | 36 (18–67.5) | 60 (18–66) | 0.61 | |||
Comorbidities | ||||||
Heart disease | 2 (11.1) | 18 (8.7) | 1.31 (0.28–6.20) | 0.66 | ||
Lung disease | 2 (11.1) | 11 (5.3) | 2.39 (0.45–10.98) | 0.27 | ||
Kidney disease | 1 (5.6) | 6 (2.9) | 1.98 (0.22–17.41) | 0.44 | ||
Liver disease | 0 (0.0) | 2 (1.0) | 0.00 (…–…) | 1.00 | ||
Diabetes mellitus | 1 (5.6) | 47 (22.6) | 0.20 (0.26–1.55) | 0.13 | ||
Central nervous system disease | 5 (27.8) | 48 (23.1) | 1.28 (0.43–3.77) | 0.77 | ||
Cancer | 1 (5.6) | 11 (5.3) | 1.053 (0.12–8.65) | 1.00 | ||
AIDS | 0 (0.0) | 1 (0.5) | 0.00 (…–…) | 1.00 | ||
Pressure ulcer | 3 (16.7) | 12 (5.8) | 3.26 (0.83–12.85) | 0.10 | ||
Charlson Comorbidity Index, median (quartile) | 1 (1–1.5) | 1 (0–1) | … | 0.91 | ||
Procedures | ||||||
Hospitalization ** | 4 (22.2) | 29 (13.9) | 1.76 (0.54–5.73) | 0.30 | ||
Surgery ** | 1 (5.6) | 8 (3.8) | 1.47 (0.17–12.46) | 0.53 | ||
Other invasive procedures ** | 1 (5.6) | 10 (4.8) | 1.16 (0.14–9.65) | 1.00 | ||
Antimicrobial use ** | 2 (11.1) | 17 (8.2) | 1.40 (0.29–6.62) | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.P.; Fortaleza, C.M.C.B.; Teixeira, N.B.; Silva, L.T.P.; de Angelis, C.D.; Ribeiro de Souza da Cunha, M.d.L. Molecular Epidemiology of Staphylococcus aureus and MRSA in Bedridden Patients and Residents of Long-Term Care Facilities. Antibiotics 2022, 11, 1526. https://doi.org/10.3390/antibiotics11111526
Silva LP, Fortaleza CMCB, Teixeira NB, Silva LTP, de Angelis CD, Ribeiro de Souza da Cunha MdL. Molecular Epidemiology of Staphylococcus aureus and MRSA in Bedridden Patients and Residents of Long-Term Care Facilities. Antibiotics. 2022; 11(11):1526. https://doi.org/10.3390/antibiotics11111526
Chicago/Turabian StyleSilva, Lucas Porangaba, Carlos Magno Castelo Branco Fortaleza, Nathalia Bibiana Teixeira, Luís Thadeo Poianas Silva, Carolina Destro de Angelis, and Maria de Lourdes Ribeiro de Souza da Cunha. 2022. "Molecular Epidemiology of Staphylococcus aureus and MRSA in Bedridden Patients and Residents of Long-Term Care Facilities" Antibiotics 11, no. 11: 1526. https://doi.org/10.3390/antibiotics11111526
APA StyleSilva, L. P., Fortaleza, C. M. C. B., Teixeira, N. B., Silva, L. T. P., de Angelis, C. D., & Ribeiro de Souza da Cunha, M. d. L. (2022). Molecular Epidemiology of Staphylococcus aureus and MRSA in Bedridden Patients and Residents of Long-Term Care Facilities. Antibiotics, 11(11), 1526. https://doi.org/10.3390/antibiotics11111526