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Abstract: Abattoir workers have been identified as high-risk for livestock-associated Staphylococcus
aureus carriage. This study investigated S. aureus carriage in abattoir workers in Western Kenya. Nasal
swabs were collected once from participants between February-November 2012. S. aureus was isolated
using bacterial culture and antibiotic susceptibility testing performed using the VITEK 2 instrument
and disc diffusion methods. Isolates underwent whole genome sequencing and Multi Locus Sequence
Types were derived from these data. S. aureus (n = 126) was isolated from 118/737 (16.0%) participants.
Carriage was higher in HIV-positive (24/89, 27.0%) than HIV–negative participants (94/648, 14.5%;
p = 0.003). There were 23 sequence types (STs) identified, and half of the isolates were ST152 (34.1%)
or ST8 (15.1%). Many isolates carried the Panton-Valentine leucocidin toxin gene (42.9%). Only
three isolates were methicillin resistant S. aureus (MRSA) (3/126, 2.4%) and the prevalence of MRSA
carriage was 0.4% (3/737). All MRSA were ST88. Isolates from HIV-positive participants (37.0%) were
more frequently resistant to sulfamethoxazole/trimethoprim compared to isolates from HIV-negative
participants (6.1%; p < 0.001). Similarly, trimethoprim resistance genes were more frequently detected
in isolates from HIV-positive (81.5%) compared to HIV-negative participants (60.6%; p = 0.044).
S. aureus in abattoir workers were representative of major sequence types in Africa, with a high
proportion being toxigenic isolates. HIV-positive individuals were more frequently colonized by
antimicrobial resistant S. aureus which may be explained by prophylactic antimicrobial use.

Keywords: S. aureus; MSSA; MRSA; abattoir; slaughterhouse; Kenya; HIV; AMR; antimicrobial resistance

1. Introduction

Staphylococcus aureus is a common commensal of the skin, thought to persistently
colonize approximately one third of the human population [1]. Nasal carriage of S. aureus is
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a recognized risk factor for skin and soft tissue infections (SSTI) in the clinical setting [2,3].
S. aureus may also cause food poisoning and more serious conditions such as pneumonia,
endocarditis, osteomyelitis, sepsis, and toxic shock syndrome [4]. HIV-positive individuals
are more likely to be colonized by S. aureus, which accounts for significant morbidity in
this group compared to the general population [5].

The sub-Saharan region is recognized as the world’s epicenter of the HIV/AIDS
epidemic. The prevalence of HIV in Kenya is 5% [6]. The Kenyan Ministry of Health
recommends the use of sulfamethoxazole/trimethoprim for the management of oppor-
tunistic infections in all HIV positive patients regardless of immunological status [7]. The
prophylactic use of sulfamethoxazole/trimethoprim in HIV-positive individuals results in
significant protection from a range of pathogens including Toxoplasma gondii, Salmonella
sp., Haemophilus sp., Staphylococcus sp., and Pneumocystis jiroveci [8]. However, prophylactic
use of sulfamethoxazole/trimethoprim in HIV-positive individuals in the sub-Saharan
region has led to the emergence of antibiotic resistant and multidrug resistant S. aureus
strains [9,10].

Antimicrobial resistance (AMR) poses a threat to life since infections caused by multi-
drug resistant organisms have fewer treatment options available [11]. This is particu-
larly important for the HIV-positive population. Injudicious use of antibiotics in human
medicine, coupled with extensive antibiotic use in livestock production for both therapeutic
and non-therapeutic reasons has led to the development of antibiotic resistant bacteria
in people and animals [12,13]. Multi-drug resistant methicillin sensitive S. aureus (MSSA)
and methicillin resistant S. aureus (MRSA) have been detected in animals and meat prod-
ucts [14]. There has also been documented transmission to livestock keepers and abattoir
workers [15,16]. This implies that, abattoir workers’ nares can be colonized by S. aureus
from contaminated meat, transforming them into carriers or reservoirs of S. aureus. Carriers
can transmit the bacteria from their noses to other body parts, to the general population, or
contaminate foods and food surfaces during handling [17]. These transmission routes have
been reported in several European countries [18,19].

Multi-locus sequence typing is conducted on S. aureus to understand the molecular
epidemiology of the isolates including the evolution, source attribution and transmission
through the sequencing of seven housekeeping genes [20]. Clonal complexes (CC) de-
scribe S. aureus lineages by grouping sequence types (STs) where at least 5/7 alleles are
identical between STs in the group [21]. The dominant STs vary between countries and
within countries depending on the source. The dominant MSSA STs in Africa are ST5,
ST8, ST15, ST30, ST121, ST152 and the dominant MRSA STs are ST5, ST8, ST80, ST88,
ST239/ST241 [22]. There is limited information of the predominant sequence types in
Kenya but there are increased reports of ST5, ST8, ST22, with the predominant MRSA ST
being ST239/241 [23–28].

Isolates of S. aureus may carry genes for virulence factors such as Panton-Valentine
leukocidin (PVL), and the toxic shock syndrome toxin (TSST-1) [29–31]. PVL is a viru-
lence factor which is associated with SSTI and has a debatable role in causing necrotizing
pneumonia [32–35] whereas TSST-1 results in toxic shock syndrome leading to lethal hy-
potension [29]. In sub-Saharan Africa S. aureus isolates more frequently carry the pvl gene
with the median prevalence of pvl-positive MRSA being 33% (range from 0 to 77%; n = 15),
compared to Europe where less than 5% of S. aureus isolates carry the pvl gene [23,36,37].
There is very little information about the prevalence of tsst-1 gene carriage in Africa with
one study in Nigeria reporting carriage in human isolates to be 16% [38].

Here, we report on a study of MSSA/MRSA nasal carriage of abattoir workers in rural
abattoirs in Busia County, western Kenya. This study aimed to establish the prevalence
of MSSA and MRSA colonization and describe genetic characteristics of isolates obtained
from abattoir workers in order to understand the epidemiology of S. aureus in this pop-
ulation of workers exposed to livestock. This was done by investigating the prevalence
of pvl and tsst-1 genes, antimicrobial susceptibility and diversity of STs. Due to the high
proportion of HIV-positive individuals in this population we also endeavored to use this
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dataset to understand the effect of prophylactic use of sulfamethoxazole/trimethoprim
in HIV-positive individuals on the emergence of MSSA/MRSA antibiotic resistance and
associated virulence by comparing HIV-positive and HIV-negative workers. Genotypic
characterization of virulent strains and their antibiotic resistance profiles will contribute to
understanding the potential sources and transmission routes of S. aureus in this setting. This
information will be valuable to Kenya’s National Policy for the prevention and containment
of AMR [39].

2. Results
2.1. Description of Study Population

A total of 737/738 abattoir workers, recruited between February and November 2012,
consented to a blood sample and a single nasal swab which was cultured for the presence
of S. aureus. One participant declined to provide a blood sample and was excluded.

The majority of participants were men 711/737 (96.5%) and the mean age was 39 (range
18–82 years). The number of participants who tested positive for HIV was 89/737 (12.1%,
95%CI 9.9–14.7%). Additionally, 127/737 (17.2%) of participants had taken antibiotics in
the previous month.

2.2. Prevalence of MRSA and MSSA among HIV-Positive and HIV-Negative Participants

S. aureus was isolated from 118/737 (16.0%; 95%CI 13.6–18.8%) participants. From
118 positive samples, 126 isolates were cultured in total since four participants had two
separate strains and a further two participants had three strains identified from the same
sample. Three isolates were MRSA and 123 isolates were MSSA, giving a prevalence of
MRSA carriage of 0.4% (95%CI 0.1–1.2%), and MSSA carriage of 15.6 % (95%CI 13.2–18.5%),
respectively (Table 1). There were no known relationships between the three MRSA carriers,
and individuals worked at different abattoirs.

Table 1. Prevalence of MSSA and MRSA isolated from Abattoir workers in Busia County.

HIV-Status
Number of S. aureus

Isolates
(Number of MRSA)

Number of Workers Who
Yielded Staph. aureus

(%, 95% Confidence Interval)

Number of Workers
Carrying MRSA Isolates

(%, 95%CI)

Number of Workers
Carrying MSSA Isolates

(%, 95%CI)

HIV-positive (n = 89) 27 (1) 24
(27.0%, 95%CI 18.9–37.1)

1
(1.1%, 95%CI 0.3–6.0)

23
(25.8%, 95%CI 18.0–26.0)

HIV-negative (n = 648) 99 (2) 94
(14.5%, 95%CI 11.9–17.4)

2
(0.3%, 95%CI 0.1–1.1)

92
(14.2%, 95%CI 11.7–17.1)

Total abattoir workers
(n = 737) 126 (3) 118

(16.0%, 95%CI 13.5–29.0)
3

(0.4%, 95%CI 0.1–1.2)
115

(15.6%, 95%CI 13.1–18.3)

Of the HIV-positive workers, 24/89 were positive for S. aureus (27.0% (95%CI 19.1–
36.7%). In contrast, 94/648 HIV-negative workers were positive for S. aureus (14.5%, 95%CI
12.0–17.4%) (Chi2 = 9.081, df = 1, p = 0.003). There were 27 S. aureus isolates cultured from
HIV-positive workers (26 MSSA and 1 MRSA) and 99 S. aureus isolates from HIV-negative
individuals (97 MSSA and 2 MRSA). There was no difference in detection of MRSA in the
two groups (HIV-negative 2/99, 2.0% versus HIV-positive 1/27, 3.7%; Chi2 = 0.263, df = 1,
p = 0.608). There was no significant difference between the proportion of HIV-positive
workers (17/89, 19.1%) and HIV-negative workers (110/647, 17.0%) who had recently taken
antibiotics (Chi2 = 0.241, df = 1, p = 0.623).

2.3. Genetic Diversity of MSSA and MRSA STs in HIV-Positive and HIV-Negative Participants

Multi-locus sequence typing from the whole genome sequencing of the 126 S. aureus
isolates identified eleven clonal complexes, consisting of CC1, CC5, CC8, CC15, CC22,
CC25, CC30, CC72, CC80, and CC88 (Figure 1). The largest cluster of isolates was CC152.
Two ST types accounted for approximately half of all isolates with ST152 (43/126, 34.1%),
and ST8 (19/126, 15.1%,) most frequently identified, followed by ST72 (9/126, 7.1%), ST80
(7/126, 5.6%) and ST22 (5/126, 4%). The three MRSA isolates were all ST88.
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MRSA isolates are indicated by a triangle symbol and MSSA by circles. Phenotypic antimi-
crobial resistance is indicated by dark grey bars (resistant), white bars (intermediate), and
light grey (susceptible). Antimicrobials: PEN—benzylpenicillin, CEF—cefoxitin, OXA—oxacillin,
CIP—ciprofloxacin, ERY—erythromycin, CHL—chloramphenicol, DAP—daptomycin, FUS—fusidic
acid, GEN—gentamicin, LZD- linezolid, NIT—nitrofurantoin, RIF—rifampicin, TEI—teicoplanin,
TET—tetracycline, TMP—trimethoprim, VAN—vancomycin, CLI—clindamycin.

HIV-positive participants carried 8 different STs and HIV-negative participants carried
23 different STs, indicating roughly equivalent genetic diversity in the two groups. There
was no difference in the carriage of ST152 in HIV-negative (35/99, 35.4%) versus HIV-
positive participants (8/27, 29.6%; Chi2 = 0.315, df = 1, p = 0.575). ST8 was isolated at
a higher proportion from HIV-positive (11/27, 40.7%) than HIV-negative participants
(8.1%, 8/99) (Chi2 = 17.460, df = 1, p < 0.001). All ST72 were recovered from HIV-negative
participants (Supplementary Table S1).

2.4. Prevalence of PVL Gene and Toxic Shock Syndrome Toxin-1 (TSST-1) Gene Carriage

Almost half of isolates (54/126, 42.9%) were pvl-positive. There was no difference in
prevalence of pvl gene carriage between isolates from HIV-positive workers (10/27, 37.0%)
and isolates from HIV-negative participants (44/99, 44.4%; Chi2 = 0.471, df = 1, p = 0.493).
The majority of pvl-positive isolates were ST152 (39/54, 72.2%). Other STs, with pvl gene
carriage were ST1633 (4/54, 7.4%), ST30 (3/53, 5.6%), ST88 (2/54, 3.7%), ST80 (2/54, 3.7%),
ST2430 (1/54, 1.9%), ST22 (1/54, 1.9%), and ST5 (1/54, 1.9%). The tsst-1 gene was identified
in 15/126 isolates (11.9%), the majority of which were ST 72 (9/15, 60%). The remainder
were ST22 (3/15, 20%), ST707 (2/15, 13.3%) and ST8 (1/15, 6.7%). The majority of tsst-1
positive isolates (n = 14) were detected in HIV-negative participants. The three MRSA
isolates were negative for both genes.

2.5. Prevalence of Phenotypic Antibiotic Resistant S. aureus Carriage in Participants

Antibiotic susceptibility testing of the 126 S. aureus isolates using the VITEK 2 in-
strument demonstrated that all isolates were susceptible to chloramphenicol, daptomycin,
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fusidic acid, mupirocin, nitrofurantoin, rifampicin, teicoplanin, tigecycline, vancomycin,
and clindamycin. Resistance was very low to cefoxitin (2/126, 1.6%), ciprofloxacin (2/126,
1.6%), erythromycin (4/126, 3.2%), gentamicin (2/126, 1.6 %), linezolid (1/126, 0.8 %),
oxacillin (1/126, 0.8%), and inducible resistance to clindamycin (4/126, 3.2%). Higher
levels of resistance were detected to penicillin-G (123/126, 97.6%); trimethoprim (81/126,
64.3%), tetracycline (33/126, 26.2%) by VITEK 2, and sulfamethoxazole/trimethoprim by
disc diffusion (16/126, 12.7%) (Table 2).

Table 2. Prevalence of antibiotic resistant Staph. aureus carriage among HIV-positive and HIV-negative
abattoir workers in Busia County.

Total Number of Isolates
n = 126 (%)

Isolates from HIV-Positive
Workers n = 27 (%)

Isolates from
HIV-Negative Workers

n = 99 (%)
Chi2 Test

Sulfamethoxazole/
trimehoprim resistance 16 (12.7) 10 (37.0) 6 (6.1) Chi2 = 18.098, df = 1, p <0.001

Penicillin 123 (97.6) 26 (100) 96 (97.0) NA
Trimethoprim 81 (64.3) 21 (77.8) 60 (60.6) Chi2 = 2.712, df = 1, p = 0.100

Cefoxitin 2 (1.6%) 1 (3.7) 2 (2.0) Chi2 = 0.263, df = 1, p = 0.608
Tetracycline 33 (26.2) 10 (37.0) 23 (23.2) Chi2 = 2.075, df = 1, p = 0.150

Erythromycin 4 (3.2) 2 (7.4) 2 (2.0) Chi2 = 2.007, df = 1, p = 0.157
Inducible resistance to clindamycin 4 (3.2) 2 (7.4) 2 (2.0) Chi2 = 2.007, df = 1, p = 0.157

Gentamicin 2 (1.6) 0 2 (2.0) NA
Ciprofloxacin 2 (1.6) 2 (7.4) 0 NA

Oxacillin 1 (0.8) 0 1 (1.0) NA
Linezolid 1 (0.8) 0 1 (1.0) NA

Panton Valentine Leukocidin gene 54 (42.9) 10 (37.0) 44 (44.4) Chi2 = 0.471, df = 1, p = 0.493
Toxic shock syndrome toxin-1 gene 15 (11.9) 1 (3.7) 14 (14.1) Chi2 = 2.176, df = 1, p = 0.140

Multidrug-resistant 34 (27.0) 9 (33.3) 25 (25.3) Chi2 =0.683, df = 1, p = 0.409
Trimethoprim-Penicillin-Tetracycline

MDR 28 (22.2) 8 (29.6) 20 (20.2) Chi2 = 1.076, df = 1, p = 0.230

Resistance to trimethoprim was not significantly different between isolates from HIV-
positive (21/27, 77.8%) and HIV negative (60/90, 60.6%) participants (Chi2 = 2.712, df = 1,
p = 0.100). In contrast, resistance to sulfamethoxazole/trimethoprim by disc diffusion was
more common in HIV-positive participants (10/27, 37.0%) compared with HIV-negative par-
ticipants (6/99, 6.1%, Chi2 = 18.098, df = 1, p < 0.001). Most sulfamethoxazole-trimethoprim
resistance isolates were ST8 (12/16, 75%), others being ST80, ST25 and ST152. Of the
sixteen sulfamethoxazole/trimethoprim resistant isolates only one was pvl-positive and
none carried the tsst-1 gene.

2.6. Prevalence of MDR S. aureus

A total of 34/126 (27.0% (95%CI 20.0–35.3%) isolates were multidrug resistant from the
VITEK 2 results. The proportion of MDR isolates was higher in isolates from HIV-positive
(9/27, 33.3%) than in isolates from HIV-negative participants (25/99, 25.3%), although
this was not statistically significant (Chi2 = 0.683, df = 1, p = 0.409). The most common
resistance combination was trimethoprim, penicillin, and tetracycline, observed in 82.4%
(28/34) of MDR isolates and accounting for 22.2% (28/126) of all S. aureus isolates (Figure 1).
There was no significant difference between isolates demonstrating the resistance pattern
of trimethoprim, penicillin and tetracycline from HIV-negative (8/27, 29.6%) versus HIV-
positive participants (20/99, 20.2%) (Chi2 = 1.076, df = 1, p = 0.230). There was no significant
difference in the proportion of carriage of MDR isolates between groups with recent and
no recent antibiotic use (8/25, 32.0% versus 26/101, 25.7%) (Chi2 = 0.401, df = 1, p = 0.527).

MDR isolates were predominantly ST8 (26.5%, 9/34) and ST80 (7/34, 20.6%). MDR
isolates were less frequently pvl positive (9/34, 26.5%) than non-MDR isolates (45/92,
48.9%) (Chi2 = 5.046, df = 1, p = 0.025). Of the MDR isolates, 8.8% (3/34) were positive for
tsst-1 compared to 13.0% (12/92) of the non-MDR isolates (Chi2 = 0.415, df = 1, p = 0.519).

Highly resistant MDR S. aureus that were resistant to at least five antibiotic classes
were isolated from one HIV-positive and three HIV-negative participants.
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2.7. Prevalence of Genotypic Antibiotic Resistance in MSSA and MRSA Strains

The most common resistance genes detected were beta-lactamase resistance gene
blaZ (123/126, 96.9%); trimethoprim resistance gene dfrG (78/126, 61.9%), and tetracycline
resistance gene tetK (32/126, 25.4%). Other resistance genes detected included dfrA (4/126,
3.2%), tetM (1/126, 0.8%), erythromycin resistance gene ermC (4/126, 3.2%), and gentamicin
resistance gene aacA-aphD (2/126, 1.6%). HIV-positive individuals were significantly more
frequently colonized by S. aureus harboring dfrA and dfrG genes (22/27, 81.5%) compared
to HIV-negative persons (60/99, 60.6%; Chi2 = 4.045, df = 1, p = 0.044). There was no
significant difference prevalence of tetK and tetM genes between HIV-positive participants
(9/27, 33.3%) compared to HIV-negative persons (24/99, 24.2%; (Chi2 = 0.902, df = 1,
p = 0.342).

There was almost 100% agreement between phenotypic and genotypic resistance
patterns for benzylpenicillin (121/123, 98.4%), trimethoprim (81/82, 98.8%), tetracycline
(31/33 93.9%), erythromycin (4/4, 100%), and gentamicin (2/2, 100%). However, there was
discrepancy between the MRSA isolates identified by the presence of mecA gene (n = 3)
and those demonstrating oxacillin resistance (n = 1/3, 33.3%) and cefoxitin resistance
(n = 2/3, 66.6%).

3. Discussion

This study described the nasal carriage of S. aureus in abattoir workers in western
Kenya. The overall nasal carriage of S. aureus in this population was 16.0% where 15.6%
were MSSA and 0.4% were MRSA. Humans are asymptomatically colonized with nasal
S. aureus in the range of between 20–30% [40] with MRSA colonization varying between
studies and dictated by the methodology used [41]. The carriage of S. aureus in this
population was lower than expected but consistent with another study conducted in
abattoir workers in Nigeria where the prevalence of S. aureus carriage was 13.5% [42].

The study population was made up of two groups: HIV-positive abattoir workers and
HIV-negative abattoir workers which had an impact on the phenotypes and genotypes of S.
aureus isolates in this population. The prevalence of HIV infection in this population (12%)
was higher than the national average (5%). The reasons for the increased HIV positivity in
this population may be related to the sociodemographic group but this was not explored
further in this study. The prevalence of S. aureus nasal carriage of HIV-positive abattoir
workers was significantly higher, 27.0%, when compared to HIV-negative abattoir workers,
14.5%. HIV infection is considered a risk factor for S. aureus colonization [22]. This difference
in nasal carriage has been reported in previous studies in Africa. In Lagos, Nigeria, HIV-
positive study participants were more likely to be colonised with S. aureus (33%) compared
to HIV-negative participants (21%) [43]. These findings in the sub-Saharan region, suggest
that HIV individuals are predisposed to S. aureus nasal colonization. Nasal colonization
can lead to opportunistic infection in immunocompromised people, and the infection can
be life-threatening if not treated promptly [2,44]. This highlights the need to monitor AMR
in this population to determine treatment options and improve antimicrobial stewardship.

There was a high proportion of toxigenic strains of S. aureus carrying the pvl gene
(42.9%) and the tsst-1 gene (11.9%). This is consistent with other studies conducted in sub-
Saharan Africa where the carriage of pvl genes (33%) is higher than that reported in Europe
(5%) [22]. The majority of pvl positive strains were ST152-MSSA, which is one of the pre-
dominant pvl-positive clones in Africa [22,36,45]. The carriage of pvl-positive S. aureus puts
abattoir workers at risk of opportunistic deep skin and soft tissue infections [36,46,47]. The
carriage of S. aureus pvl-positive strains was not significantly different between HIV-positive
abattoir workers (37.0%) and HIV-negative abattoir workers (44.4%) which is consistent
with reports from Nigeria, where the proportion of S. aureus pvl-positive strains were evenly
distributed between isolates from HIV-positive and HIV-negative individuals [43].

There was an inverse relationship between pvl carriage and AMR, with 26.5% of MDR
isolates being pvl positive compared to non-MDR isolates (48.9%) (p = 0.025). This differs
from other studies in the region where pvl carriage has been associated with MDR. An
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association between pvl carriage and sulfamethoxazole/trimethoprim resistance has been
observed in Gabon and Nigeria among HIV-positive individuals [43,46].

The prevalence of MRSA carriage (0.4%) identified in this study was low compared to
studies conducted with abattoir workers in Europe (5.6%) [48], and the USA 3.6% [16]. How-
ever, our results are consistent with other reports of MRSA carriage in Kenya (0.8%) [26] but
much lower than studies of MRSA cultured from hospital patients in Kenya (53.4%) [49].
This may suggest that MRSA infection in Kenya is predominantly linked to the hospital
environment rather than acquired from the community. The three MRSA isolates belonged
to ST88, which is referred to as the “African” community-associated (CA-MRSA) clone [50]
but is not the most reported MRSA sequence type in Kenya, which is ST239 [24]. ST88
has been reported in pigs and workers in a Nigerian abattoir and may indicate an an-
imal source [51]. Antimicrobial use in animals is not regulated in Kenya and the most
frequently used antibiotics in animals in western Kenya are oxytetracycline and penicillin-
streptomycin [52]. Further work to understand MRSA carriage in animals, as well as spread
in the human population and environment, is required.

The findings from this study supported prior evidence of S. aureus resistance to peni-
cillin, tetracycline, and sulfamethoxazole/trimethoprim in the sub-Saharan region [22]. The
proportion of isolates that were phenotypically resistant to penicillin (97.6%), tetracycline
(26.2%), and sulfamethoxazole/trimethoprim (12.7%) was consistent with previous studies
from Kenya reporting marked resistance to penicillin (76–100%) and moderate resistance
to tetracycline (15–20%) and sulfamethoxazole/trimethoprim (30–40%) [25,26]. There was
increased frequency of sulfamethoxazole/trimethoprim resistance in HIV-positive abattoir
workers (37%) compared to HIV-negative workers (6.1%) (p < 0.001), with the majority of
resistant strains belonging to ST8-MSSA.

There was high genotype-phenotype concordance between resistance genes detected
and antimicrobial susceptibility test (AST) results for most antimicrobials as has been
previously reported [25]. However, there were two mecA positive MRSA strains that were
susceptible to oxacillin and one of these was also susceptible to cefoxitin. This may be due
to a misclassification error, although the sensitivity of the VITEK 2 instrument for detecting
oxacillin resistance is high (97.5%) [53]. Alternatively, this may indicate oxacillin susceptible
mecA MRSA (OS-MRSA) strains are circulating in this environment. OS-MRSA strains have
previously been identified in other parts of Africa mainly associated with ST88 as described
here [54]. Information regarding the presence of the mecC gene in these isolates was not
available. The presence of OS-MRSA in this setting may complicate treatment options that
are based solely on AST results, since OS-MRSA may be misidentified as MSSA, and these
isolates can develop β-lactam resistance following antibiotic therapy [55].

Sulfamethoxazole/trimethoprim is an effective antibiotic combination in the treat-
ment and prevention of bacterial infections in people who are HIV positive and has been
used to treat Pneumocystis jiroveci pneumonia and other bacterial infections in severely
immunocompromised HIV-positive individuals. The prophylactic use of sulfamethoxa-
zole/trimethoprim in all HIV-positive individuals regardless of CD4 counts, especially
in regions having high prevalence of malaria and/or severe bacterial infections, such
as sub-Saharan region [56], may have resulted in the high prevalence of sulfamethoxa-
zole/trimethoprim resistant S. aureus in Africa [43,46]. This, coupled with the extensive
use of penicillin and tetracycline for use in animal production for both therapeutic and
non-therapeutic purposes in Africa [12], has created a favorable environment for the emer-
gence of multidrug resistance S. aureus through antibiotic related selective pressure [57,58].
These MDR S. aureus reduce the treatment options for effective treatment for HIV-positive
individuals with opportunistic infections. With the presence of MDR S. aureus that are re-
sistant to additional multiple resistant combinations, including erythromycin, clindamycin,
ciprofloxacin and gentamicin, the treatment options will be further diminished and become
more expensive. The improved availability of antiretroviral therapy (ART) in sub-Saharan
Africa, has led to reduction of severely immune compromised HIV-positive individuals
and fewer cases of serious Pneumocystis jiroveci pneumonia and opportunistic infections
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among HIV-positive individuals [59]. Improved health outcomes for HIV-positive in-
dividuals through access to ART may lead to reduced prophylactic use of sulfmethoxa-
zole/trimethoprim in this region. This will aid in the preservation of therapeutic advantages
of this affordable drug in treatment and prevention of bacterial infections.

Multi-drug resistant S. aureus strains colonizing HIV-positive abattoir workers may
be a risk for SSTI since 25% of workers reported being injured at work [60]. MDR S.
aureus could also be transmitted to the community directly or through the meat supply
chain to consumers [4]. In addition, if the respective abattoir workers are hospitalized, the
strains can be spread to hospital staff and compromised inpatients, threatening effective
treatment of resultant infections [61]. Thus, MDR S. aureus-colonized abattoir workers pose
a public health problem in hospitals, community, and food industry in Busia County, which
can extend to other parts of Kenya and neighboring countries of Kenya since Busia is a
border town.

There is a need for increased monitoring of antibiotic usage and surveillance mea-
sures for AMR bacteria in both animals and humans in this region already burdened by
HIV/AIDS infection and where there is rapidly increasing demand for meat products
caused by population growth and urbanization [12]. Additionally, there is a need for
strategies to promote the prudent use of antimicrobials and antimicrobial stewardship
as described by the global strategy [62]. It is particularly important to strategize on the
appropriate use of sulfamethoxazole/trimethoprim, tetracyclines and penicillin in hu-
man and animal healthcare and food production in sub-Saharan region, since there were
high proportions of resistant isolates to these antimicrobials. It has been demonstrated
that a reduction of antibiotic consumption leads to decreased prevalence of antimicrobial
resistance [63]. This can be done through national action plans for the prevention and
containment of AMR with contributions from human and animal health agencies [39].

There was a delay between the collection of samples and the publication of these find-
ings which may limit the usefulness of these results. However, given the lack of available
data regarding the circulating MSSA and MRSA strains and antimicrobial resistance profiles
of S. aureus in this population the data is a valuable contribution to knowledge regarding
AMR in the region and may prove a useful baseline for comparison to future studies. Data
regarding the circulating MSSA and MRSA strains in livestock was not available at the time
of this publication. This information would have been useful to understand the potential
for transmission of isolates between livestock and workers and is a data gap that should be
targeted in future research.

4. Materials and Methods
4.1. Study Site

The study area was a 45 km radius from Busia town including most of Busia County,
and parts of Bungoma, Siaya and Kakamega Counties spanning the 3200 km2 of the
Lake Victoria ecosystem. The predominant industry in the study area is subsistence
agriculture [64]. A census of all abattoirs (n = 156) was conducted in the study area in 2012.
Fourteen abattoirs declined to participate. Participants were recruited from 142 abattoirs,
84 ruminants and 58 porcine [60].

4.2. Study Population

A total of 738 abattoir workers were recruited into the study between February and
November 2012 from a total of 1005 workers (73.3%) in the selected slaughterhouses. In
abattoirs with 12 workers or less all consenting workers were recruited and in abattoirs
with more than 12 workers a random selection of twelve workers were recruited [60].

4.3. Data and Sample Collection

All participants were informed of the project objectives and protocol by a clinical
officer who collected signed informed consent. Data was collected using a structured
questionnaire regarding demographic details, health events and recent antimicrobial use.
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Nasal samples were collected by rotating a sterile swab five times in both anterior nares,
from consenting abattoir workers. The swabs were inoculated in tryptone soya broth with
6% salt and transported in cool boxes to the laboratory for culturing.

Blood was collected by a clinical officer into 4 mL EDTA vacutainers using a butterfly
catheter (BD Vacutainer® Safety-Lok™ blood collection set). Samples were transported in
cool boxes to the laboratory in Busia. Whole blood samples were stored frozen at −40 ◦C
until transportation to the International Livestock Research Institute (ILRI) laboratory in
Nairobi for long term storage at −80 ◦C. HIV testing was performed on whole blood
using the SD Bioline HIV 1/2 Fast 3.0 test strips (Standard Diagnostics Inc., Suwon-si,
South Korea).

Swabs were streaked onto Mannitol Salt agar and incubated at 37 ◦C in air overnight.
Suspect S. aureus isolates, those fermenting mannitol and producing yellow colonies, were
stocked in tryptone soya broth with 10% glycerol and stored at −40 ◦C and transported on
dry ice to Nairobi. Presumptive S. aureus isolates were further cultured onto mannitol salt
agar (MSA) and sub-cultured to obtain pure culture. The S. aureus isolates were identified
using Gram reaction (Gram-positive cocci in clumps), catalase, coagulase (tube method
using rabbit plasma) and DNase tests. Initially, a long sweep of the colonies was done
to allow preservation of genetic diversity of nasal carriage of the participant. During
whole genome sequencing, some samples were shown to consist of mixed isolates and
these samples were recultured to select single colonies for sequencing and antimicrobial
susceptibility testing.

4.4. Phenotypic Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing (AST) was performed using the VITEK 2 instru-
ment (bioMerieux, Marcy-l’Étoile, France), for 20 antimicrobials including: benzylpenicillin,
cefoxitin, oxacillin, ciprofloxacin, erythromycin, chloramphenicol, daptomycin, fusidic
acid, gentamicin, linezolid, mupirocin, nitrofurantoin, rifampicin, teicoplanin, tetracy-
cline, tigecycline, trimethoprim, vancomycin, clindamycin, and inducible resistance to
clindamycin. The Vitek 2 system uses fluorescence, turbidity and colormetric methods to
monitor bacterial growth and uses this to calculate minimum inhibitory concentrations
(MICs) [65].

Additionally, due to the clinical importance, antimicrobial resistance to sulfamethox-
azole/trimethoprim was tested using the Kirby-Bauer disc diffusion using Clinical and
Laboratory Standards Institute (CLSI) guidelines (1.25 + 23.75 µg; TMP/SXT). Zone diame-
ter interpretive standards were: sensitive ≥16 mm, intermediate 11–15 mm and resistant
10 ≤ [66].

Multi-drug resistant S. aureus were defined as isolates that were resistant to three or
more different antimicrobials using the VITEK results [67–69]. Isolates resistant to 5 or
more antimicrobials were described as highly multi-drug resistant.

4.5. Molecular Genotyping

DNA extraction from S. aureus isolates was performed using QIAGEN DNeasy Blood
& Tissue kit (QIAGEN, Valencia, CA, USA). Staphylococcal cassette chromosome (SCC)
mec typing were performed using previously described methods [70]. Isolates with the
mecA gene were classified as MRSA. Panton-Valentine Leukocidin (pvl) and toxic shock syn-
drome toxin-1 (tsst-1) gene detection was done by PCR using previously described oligonu-
cleotide primers [71,72] at the Kenya Medical Research Institute Laboratories (KEMRI),
Nairobi, Kenya.

DNA extraction from S. aureus isolates was performed on a QIAcube, using the
QIAamp 96 HT kit (QIAGEN). Genomic libraries were generated and sequenced on an
Illumina HiSeq 2000 (Illumina Inc., San Diego, CA, USA) at the Wellcome Sanger Institute,
Hinxton, UK. Illumina reads were analysed based on the S. aureus MLST database ( https:
//pubmlst.org/organisms/staphylococcus-aureus, accessed on 31 March 2021) [73], and

https://pubmlst.org/organisms/staphylococcus-aureus
https://pubmlst.org/organisms/staphylococcus-aureus
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analysis of virulence and antimicrobial resistance genes were conducted using virulence
finder database (https://cge.cbs.dtu.dk/services/, accessed on 31 March 2021).

4.6. Genomic Analyses

Paired-end Illumina reads were mapped to the S. aureus reference genome ST22 strain
HO 5096 0412 (accession number HE681097) using Snippy v4.6.0 (https://github.com/
tseemann/snippy, accessed on 31 October 2022). Whole-genome alignments were created
by keeping a version of the reference genome with only substitution variants replaced (i.e.,
SNPs but not indels) using Snippy’s .consensus.subs.fa output files. The S. aureus species
core-genome had been previously derived [74] from a collection of 800 S. aureus from
multiple host species [75]. The portion of the reference genome (2.83 Mb) corresponding to
the core genome (1.76 Mb) was kept from whole-genome alignments and used to generate
maximum likelihood trees using IQ-TREE v1.6.10 with default settings. The resulting
core-genome phylogeny was plotted with isolate metadata using ggtree v.3.0.4 [76] and
ggtreeExtra v.1.2.3 on R v4.1.0 [77].

4.7. Statistical Analyses

Statistical analysis was performed using the chi-squared test. A p-value <0.05 was
considered an indication of significant difference.

4.8. Ethical Approval

The study was approved by the Centre for Microbiology Research Centre Scientific
Committee, Kenya Medical Research Institute scientific steering Committee and Ethical
Review Committee (SSC No 2086 granted 31 October 2011 and 2944 granted 13 May 2015).

5. Conclusions

This study identifies the circulating MSSA and MRSA strains in a population occupa-
tionally exposed to livestock in rural western Kenya. This gives an improved understanding
of the epidemiology of S. aureus particularly the strains, sources, and risk groups in a setting
that has not been previously studied. More importantly, the study indicates the levels of
AMR and prevalence of toxigenic genes in S. aureus isolates, which is particularly impor-
tant in this community with high prevalence of immunocompromised individuals. This
information can contribute to developing measures for the prevention and containment
of AMR.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics11121726/s1, Table S1: Sequence types of MSSA and
MRSA strains isolated from nasal of HIV positive and negative abattoir workers Busia County.
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