Comparative Analysis of Complicated Urinary Tract Infections Caused by Extensively Drug-Resistant Pseudomonas aeruginosa and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae
Abstract
1. Introduction
2. Methods
2.1. Hospital Setting, Study Design, and Study Population
2.2. Clinical Variables, Data Sources, and Definitions
2.3. Outcomes and Follow-Up
2.4. Microbiological Studies
2.5. Statistical Analysis
2.6. Cost Estimation
2.7. Ethics
3. Results
3.1. Primary Outcome: Clinical Failure
3.2. Secondary Outcomes: Mortality, Microbiological Assessment, and Economic Analysis
3.3. Adverse Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef] [PubMed]
- Poole, K. Pseudomonas aeruginosa: Resistance to the max. Front. Microbiol. 2011, 2, 65. [Google Scholar] [CrossRef] [PubMed]
- Breidenstein, E.B.; de la Fuente-Núñez, C.; Hancock, R.E. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 2011, 19, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updat. 2015, 21–22, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Hooper, D.C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med. 2010, 362, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- WHO. Media Centre. News Release. WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed. 2017. Available online: http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/ (accessed on 24 September 2022).
- Foxman, B.; Brown, P. Epidemiology of urinary tract infections: Transmission and risk factors, incidence, and costs. Infect. Dis. Clin. N. Am. 2003, 17, 227–241. [Google Scholar] [CrossRef]
- Kucheria, R.; Dasgupta, P.; Sacks, S.H.; Khan, M.S.; Sheerin, N.S. Urinary tract infections: New insights into a common problem. Postgrad. Med. J. 2005, 81, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Sihra, N.; Goodman, A.; Zakri, R.; Sahai, A.; Malde, S. Nonantibiotic prevention and management of recurrent urinary tract infection. Nat. Rev. Urol. 2018, 15, 750–776. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222, Erratum in Lancet 2020, 396, 1562. [Google Scholar] [CrossRef]
- Tandogdu, Z.; Wagenlehner, F.M. Global epidemiology of urinary tract infections. Curr. Opin. Infect. Dis. 2016, 29, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Zorrilla, S.; Becerra-Aparicio, F.; López Montesinos, I.; Ruiz de Gopegui, E.; Grau, I.; Pintado, V.; Padilla, B.; Benito, N.; Boix-Palop, L.; Fariñas, M.C.; et al. A Large Multicenter Prospective Study of Community-Onset Healthcare Associated Bacteremic Urinary Tract Infections in the Era of Multidrug Resistance: Even Worse than Hospital Acquired Infections? Infect. Dis. Ther. 2021, 10, 2677–2699. [Google Scholar] [CrossRef]
- Gomila, A.; Carratalà, J.; Eliakim-Raz, N.; Shaw, E.; Tebé, C.; Wolkewitz, M.; Wiegand, I.; Grier, S.; Vank, C.; Cuperus, N.; et al. Clinical outcomes of hospitalised patients with catheter-associated urinary tract infection in countries with a high rate of multidrug-resistance: The COMBACTE-MAGNET RESCUING study. Antimicrob. Resist. Infect. Control. 2019, 8, 198. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, J.P.; Shaw, E.; Padilla, B.; Pintado, V.; Calbo, E.; Benito, N.; Gamallo, R.; Gozalo, M.; Rodríguez-Baño, J.; ITUBRAS Group; et al. Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: A prospective multicentre cohort study in the era of antimicrobial resistance. Clin. Microbiol. Infect. 2013, 19, 962–968. [Google Scholar] [CrossRef]
- Afessa, B.; Green, B. Bacterial pneumonia in hospitalized patients with HIV infection: The Pulmonary Complications, ICU Support, and Prognostic Factors of Hospitalized Patients with HIV (PIP) Study. Chest 2000, 117, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Colodner, R.; Rock, W.; Chazan, B.; Keller, N.; Guy, N.; Sakran, W.; Raz, R. Risk factors for the development of extended-spectrum beta-lactamase-producing bacteria in nonhospitalized patients. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; Nordmann, P.; Laupland, K.B.; Poirel, L. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J. Antimicrob. Chemother. 2005, 56, 52–59. [Google Scholar] [CrossRef]
- Peña, C.; Gómez-Zorrilla, S.; Oriol, I.; Tubau, F.; Dominguez, M.A.; Pujol, M.; Ariza, J. Impact of multidrug resistance on Pseudomonas aeruginosa ventilator-associated pneumonia outcome: Predictors of early and crude mortality. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 413–420. [Google Scholar] [CrossRef]
- Peña, C.; Cabot, G.; Gómez-Zorrilla, S.; Zamorano, L.; Ocampo-Sosa, A.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; et al. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin. Infect. Dis. 2015, 60, 539–548. [Google Scholar] [CrossRef]
- Nathwani, D.; Raman, G.; Sulham, K.; Gavaghan, M.; Menon, V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2014, 3, 32. [Google Scholar] [CrossRef] [PubMed]
- Morales, E.; Cots, F.; Sala, M.; Comas, M.; Belvis, F.; Riu, M.; Salvadó, M.; Grau, S.; Horcajada, J.P.; Montero, M.M.; et al. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv. Res. 2012, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Rozenkiewicz, D.; Esteve-Palau, E.; Arenas-Miras, M.; Grau, S.; Duran, X.; Sorlí, L.; Montero, M.M.; Horcajada, J.P. Clinical and Economic Impact of Community-Onset Urinary Tract Infections Caused by ESBL-Producing Klebsiella pneumoniae Requiring Hospitalization in Spain: An Observational Cohort Study. Antibiotics 2021, 10, 585. [Google Scholar] [CrossRef] [PubMed]
- Richelsen, R.; Smit, J.; Schønheyder, H.C.; Laxsen Anru, P.; Gutiérrez-Gutiérrez, B.; Rodríguez-Bãno, J.; Nielsen, H. Outcome of community-onset ESBL-producing Escherichia coli and Klebsiella pneumoniae bacteraemia and urinary tract infection: A population-based cohort study in Denmark. J. Antimicrob. Chemother. 2020, 75, 3656–3664. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Lee, C.H.; Hsieh, C.C.; Ko, W.C.; Lee, C.C. Etiology of community-onset monomicrobial bacteremic pneumonia and its clinical presentation and outcome: Klebsiella and Pseudomonas matters. J. Infect. Chemother. 2018, 24, 53–58. [Google Scholar] [CrossRef]
- López Montesinos, I.; Gómez-Zorrilla, S.; Palacios-Baena, Z.R.; Prim, N.; Echeverria-Esnal, D.; Gracia, M.P.; Montero, M.M.; Durán-Jordà, X.; Sendra, E.; Sorli, L.; et al. Aminoglycoside or Polymyxin Monotherapy for Treating Complicated Urinary Tract Infections Caused by Extensively Drug-Resistant Pseudomonas aeruginosa: A Propensity Score-Adjusted and Matched Cohort Study. Infect. Dis. Ther. 2022, 11, 335–350. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Friedman, N.D.; Kaye, K.S.; Stout, J.E.; McGarry, S.A.; Trivette, S.L.; Briggs, J.P.; Lamm, W.; Clark, C.; MacFarquhar, J.; Walton, A.L.; et al. Health care—Associated bloodstream infections in adults: A reason to change the accepted definition of community-acquired infections. Ann. Intern. Med. 2002, 137, 791–797. [Google Scholar] [CrossRef]
- Jones, A.E.; Trzeciak, S.; Kline, J.A. The Sequential Organ Failure Assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit. Care Med. 2009, 37, 1649–1654. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Rhee, J.Y.; Kwon, K.T.; Ki, H.K.; Shin, S.Y.; Jung, D.S.; Chung, D.R.; Ha, B.C.; Peck, K.R.; Song, J.H. Scoring systems for prediction of mortality in patients with intensive care unit-acquired sepsis: A comparison of the Pitt bacteremia score and the Acute Physiology and Chronic Health Evaluation II scoring systems. Shock 2009, 31, 146–150. [Google Scholar] [CrossRef] [PubMed]
- EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance Version 2.0 (2017-07-11). Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf. (accessed on 30 September 2022).
- EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance Version 1.0 v 1.0 (2013-12-11). Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_v1.0_20131211.pdf. (accessed on 30 September 2022).
- Brown, D.F.; Brown, L. Evaluation of the E test, a novel method of quantifying antimicrobial activity. J. Antimicrob. Chemother. 1991, 27, 185–190. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Steiger, S.N.; Comito, R.R.; Nicolau, D.P. Clinical and economic implications of urinary tract infections. Expert Rev. Pharm. Outcomes Res. 2017, 17, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Espinar, M.J.; Miranda, I.M.; Costa-de-Oliveira, S.; Rocha, R.; Rodrigues, A.G.; Pina-Vaz, C. Urinary Tract Infections in Kidney Transplant Patients Due to Escherichia coli and Klebsiella pneumoniae-Producing Extended-Spectrum β-Lactamases: Risk Factors and Molecular Epidemiology. PLoS ONE 2015, 10, e0134737. [Google Scholar] [CrossRef] [PubMed]
- Lautenbach, E.; Patel, J.B.; Bilker, W.B.; Edelstein, P.H.; Fishman, N.O. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Risk factors for infection and impact of resistance on outcomes. Clin. Infect. Dis. 2001, 32, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Miftode, I.L.; Nastase, E.V.; Miftode, R.Ș.; Miftode, E.G.; Iancu, L.S.; Luncă, C.; Anton Păduraru, D.T.; Costache, I.I.; Stafie, C.S.; Dorneanu, O.S. Insights into multidrug-resistant K. pneumoniae urinary tract infections: From susceptibility to mortality. Exp. Ther. Med. 2021, 22, 1086. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, G.I.; Sethi, S. Pseudomonas infection in chronic obstructive pulmonary disease. Future Microbiol. 2012, 7, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Willmann, M.; Klimek, A.M.; Vogel, W.; Liese, J.; Marschal, M.; Autenrieth, I.B.; Peter, S.; Buhl, M. Clinical and treatment-related risk factors for nosocomial colonisation with extensively drug-resistant Pseudomonas aeruginosa in a haematological patient population: A matched case control study. BMC Infect. Dis. 2014, 14, 650. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gómez-Zorrilla, S.; Camoez, M.; Tubau, F.; Cañizares, R.; Periche, E.; Dominguez, M.A.; Ariza, J.; Peña, C. Prospective observational study of prior rectal colonization status as a predictor for subsequent development of Pseudomonas aeruginosa clinical infections. Antimicrob. Agents Chemother. 2015, 59, 5213–5219. [Google Scholar] [CrossRef] [PubMed]
- Buhl, M.; Peter, S.; Willmann, M. Prevalence and risk factors associated with colonization and infection of extensively drug-resistant Pseudomonas aeruginosa: A systematic review. Expert. Rev. Anti-Infect. Ther. 2015, 13, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.P.; Lewis, J.S., II. The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: Background, organization, functions, and processes. J. Clin. Microbiol. 2020, 58, e01864-19. [Google Scholar] [CrossRef]
- Montero, M.M.; López Montesinos, I.; Knobel, H.; Molas, E.; Sorlí, L.; Siverio-Parés, A.; Prim, N.; Segura, C.; Duran-Jordà, X.; Grau, S.; et al. Risk Factors for Mortality among Patients with Pseudomonas aeruginosa Bloodstream Infections: What Is the Influence of XDR Phenotype on Outcomes? J. Clin. Med. 2020, 9, 514. [Google Scholar] [CrossRef] [PubMed]
- Peña, C.; Gómez-Zorrilla, S.; Suarez, C.; Dominguez, M.A.; Tubau, F.; Arch, O.; Oliver, A.; Pujol, M.; Ariza, J. Extensively drug-resistant Pseudomonas aeruginosa: Risk of bloodstream infection in hospitalized patients. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2791–2797. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.I.; Kim, S.H.; Park, W.B.; Lee, K.D.; Kim, H.B.; Kim, E.C.; Oh, M.D.; Choe, K.W. Bloodstream infections caused by antibiotic-resistant gram-negative bacilli: Risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. Antimicrob. Agents Chemother. 2005, 49, 760–766. [Google Scholar] [CrossRef]
- Tumbarello, M.; Sanguinetti, M.; Montuori, E.; Trecarichi, E.M.; Posteraro, B.; Fiori, B.; Citton, R.; D’Inzeo, T.; Fadda, G.; Cauda, R.; et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: Importance of inadequate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2007, 51, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Long, Y.; Liu, H.; Chen, D.; Liu, D.; Xu, Y.; Xie, X. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: Risk factors and clinical outcome. Intensive Care Med. 2002, 28, 1718–1723. [Google Scholar] [CrossRef] [PubMed]
- Morata, L.; Cobos-Trigueros, N.; Martínez, J.A.; Soriano, A.; Almela, M.; Marco, F.; Sterzik, H.; Núñez, R.; Hernández, C.; Mensa, J. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob. Agents Chemother. 2012, 56, 4833–4837. [Google Scholar] [CrossRef] [PubMed]
- Micek, S.T.; Lloyd, A.E.; Ritchie, D.J.; Reichley, R.M.; Fraser, V.J.; Kollef, M.H. Pseudomonas aeruginosa bloodstream infection: Importance of appropriate initial antimicrobial treatment. Antimicrob. Agents Chemother. 2005, 49, 1306–1311. [Google Scholar] [CrossRef]
- Osih, R.B.; McGregor, J.C.; Rich, S.E.; Moore, A.C.; Furuno, J.P.; Perencevich, E.N.; Harris, A.D. Impact of empiric antibiotic therapy on outcomes in patients with Pseudomonas aeruginosa bacteremia. Antimicrob. Agents Chemother. 2007, 51, 839–844. [Google Scholar] [CrossRef]
- Suárez, C.; Peña, C.; Gavaldà, L.; Tubau, F.; Manzur, A.; Dominguez, M.A.; Pujol, M.; Gudiol, F.; Ariza, J. Influence of carbapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. Int. J. Infect. Dis. 2010, 14 (Suppl. 3), e73–e78. [Google Scholar] [CrossRef] [PubMed]
- Lodise TPJr Patel, N.; Kwa, A.; Graves, J.; Furuno, J.P.; Graffunder, E.; Lomaestro, B.; McGregor, J.C. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: Impact of delayed appropriate antibiotic selection. Antimicrob. Agents Chemother. 2007, 51, 3510–3515. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, S.E. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 2006, 42, S82–S89. [Google Scholar] [CrossRef] [PubMed]
- Riu, M.; Chiarello, P.; Terradas, R.; Sala, M.; Garcia-Alzorriz, E.; Castells, X.; Grau, S.; Cots, F. Cost Attributable to Nosocomial Bacteremia. Analysis According to Microorganism and Antimicrobial Sensitivity in a University Hospital in Barcelona. PLoS ONE 2016, 11, e0153076. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, K.; Buczek, D.; Pedersen, T.; Hjerde, E.; Raffelsberger, N.; Suzuki, Y.; Brisse, S.; Holt, K.; Samuelsen, Ø.; Sundsfjord, A. Detection of Klebsiella pneumoniae human gut carriage: A comparison of culture, qPCR, and whole metagenomic sequencing methods. Gut Microbes 2022, 14, 2118500. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, B.; Wysocka, M.; Michalik, M.; Gołębiewska, J. Urinary Tract Infections Caused by K. pneumoniae in Kidney Transplant Recipients—Epidemiology, Virulence and Antibiotic Resistance. Front. Cell. Infect. Microbiol. 2022, 12, 861374. [Google Scholar] [CrossRef] [PubMed]
- Bonkat (Chair), G.; Bartoletti, R.; Bruyère, F.; Cai, T.; Geerlings, S.E.; Köves, B.; Schubert, S.; Pilatz, A.; Veeratterapillay, R.; Wagenlehner, F. Guidelines Associates; EAU Guidelines on Urological Infections; Devlies, W., Horváth, J., Mantica, G., Mezei, T., Pradere, B., Eds.; European Asociation of Urology: Arnhem, The Netherlands, 2022. [Google Scholar]
- Grupo de Trabajo EPINE. Encuesta de Prevalencia de Infecciones Relacionadas con la Asistencia Sanitaria y uso de Antimicrobianos en Hospitales de Agudos en España 2012–2021; SEMPSPGS: Madrid, Spain, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2020; ECDC: Stockholm, Sweden, 2022.
Overall Cohort (n = 201) | |||
---|---|---|---|
XDR P. aeruginosa (n = 101) | ESBL-K. pneumoniae (n = 100) | p-Value | |
Demographics | |||
Age (years), m (IQR) | 76 (67–82) | 77 (64–83) | 0.312 |
Male sex | 80 (79.2) | 65 (65) | 0.025 |
Underlying condition | |||
Charlson comorbidity index, m (IQR) | 7 (5–9) | 6 (4.25–8) | 0.150 |
Diabetes mellitus | 30 (29.7) | 46 (46) | 0.017 |
COPD | 31 (30.7) | 16 (16) | 0.014 |
Congestive heart failure | 17 (16.8) | 20 (20) | 0.562 |
Cirrhosis | 4 (4.0) | 7 (7) | 0.343 |
Neurological disorder | 25 (24.8) | 22 (22) | 0.645 |
Hematologic malignancy | 17 (16.8) | 9 (9) | 0.098 |
Solid tumor malignancy | 49 (48.5) | 24 (24) | 0.000 |
Immunosuppression | |||
Neutropenia | 6 (5.9) | 5 (5) | 0.769 |
Nephro-urological history | |||
Chronic kidney disease | 25 (24.8) | 40 (40) | 0.021 |
Dialysis | 6 (5.9) | 1 (1) | 0.118 |
Renal transplant | 5 (5.0) | 19 (19) | 0.002 |
Benign prostatic hypertrophy | 30 (29.7) | 27 (27) | 0.671 |
Obstructive urinary disease | 12 (11.9) | 14 (14) | 0.654 |
Recurrent UTI | 49 (48.5) | 58 (58) | 0.178 |
Indwelling urinary catheter in last 14 days | 69 (68.3) | 42 (42) | 0.000 |
Other urological devices in last 14 days | 18 (17.8) | 17 (17) | 0.878 |
Urological neoplasia | 21 (20.8) | 14 (14) | 0.204 |
UTI classification | 0.021 | ||
Acute pyelonephritis | 8 (7.9) | 19 (19) | |
Complicated UTI | 93 (92.1) | 81 (81) | |
Acute prostatitis | 3 (3.2) | 18 (22.5) | 0.000 |
UTI due to indwelling urethral catheter | 42 (44.2) | 28 (35) | 0.215 |
Obstructive uropathy | 2 (2.1) | 11 (13.8) | 0.003 |
Neurogenic bladder | 3 (3.2) | 0 (0.0) | 0.251 |
Urinary tract abnormalities | 32 (33.7) | 3 (3.8) | 0.000 |
Acquisition | 0.000 | ||
Community-acquired | 0 (0.0) | 21 (2) | 0.000 |
Healthcare-related | 51 (50.5) | 49 (49) | 0.832 |
Nosocomial | 50 (49.5) | 30 (30) | 0.005 |
HCA risk factors | |||
Hospital stay in last 3 months | 57 (56.4) | 69 (69) | 0.066 |
Surgery in last 3 months | 38 (37.6) | 24 (24) | 0.037 |
ICU admission in last 3 months | 22 (21.8) | 8 (8) | 0.006 |
Residence in long-term care facility | 14 (13.9) | 9 (9) | 0.279 |
Antibiotic exposure in last 3 months | 87 (86.1) | 80 (80) | 0.246 |
Baseline illness severity | |||
SOFA score, m (IQR) | 1 (0–3) | 2 (0–3) | 0.260 |
qSOFA score, m (IQR) | 0 (0–1) | 0 (0–0.75) | 0.374 |
SAPS II, m (IQR) | 36 (28.5–41) | 35.5 (28–42) | 0.801 |
Sepsis or septic shock | 32 (31.7) | 33 (32.7) | 0.880 |
ICU admission | 12 (11.9) | 9 (9) | 0.504 |
Bacteremia | 21 (20.8) | 29 (29) | 0.178 |
Pitt score, m (IQR) | 1 (0–2) | 0 (0–2) | 0.969 |
Management | |||
Appropriate treatment—empirical | 80 (79.2) | 44 (45) | 0.000 |
Appropriate treatment—definitive | 97 (96.0) | 98 (98.0) | 0.683 |
72h delay to initiate appropriate antibiotic therapy | 54 (53.5) | 39 (39) | 0.040 |
Inadequate source control | 11 (10.9) | 11 (11) | 0.980 |
Length of hospital stay (days) from onset of UTI, m (IQR) | 16 (11–22.5) | 14 (8–21.75) | 0.293 |
Overall Cohort (n = 201, Clinical Failure at Day 7-of Treatment = 37) | ||||||
---|---|---|---|---|---|---|
Clinical Failure (n = 37) | Non-Clinical Failure (n = 165) | Unadjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | |
Microorganism | ||||||
XDR P. aeruginosa | 29 (78.4) | 72 (43.9) | 4.63 (2.00–10.74) | <0.001 | 4.34 (1.71–11.04) | 0.002 |
ESBL K. pneumoniae | 8 (21.6) | 92 (56.1) | 0.22 (0.09–0.50) | <0.001 | ||
Demographic information | ||||||
Age (years), m (IQR) | 78 (71–85) | 75 (65–82) | 1.03 (0.99–1.07) | 0.061 | 1.03 (0.99–1.07) | 0.104 |
Male sex | 28 (75.7) | 117 (71.3) | 1.25 (0.55–2.85) | 0.596 | 0.99 (0.99–0.39) | 0.999 |
Underlying condition | ||||||
Charlson comorbidity index, m(IQR) | 8 (5–10) | 6.50 (5–8.85) | 1.09 (0.95–1.25) | 0.189 | 1.07 (0.92–1.25) | 0.373 |
Diabetes Mellitus | 10 (27) | 66 (40.2) | 0.55 (0.25–1.21) | 0.138 | ||
COPD | 8 (21.6) | 39 (23.8) | 0.88 (0.37–2.09) | 0.779 | ||
Congestive heart failure | 8 (21.6) | 29 (17.7) | 1.28 (0.53–3.09) | 0.577 | ||
Cirrhosis | 3 (8.1) | 8 (4.9) | 1.72 (0.43–6.82) | 0.440 | ||
Neurological disorder | 7 (18.9) | 40 (24.4) | 0.72 (0.30–1.77) | 0.479 | ||
Hematologic malignancy | 10 (27.0) | 16 (9.8) | 3.42 (1.40–8.34) | 0.007 | ||
Solid tumor malignancy | 17 (45.9) | 56 (34.1) | 1.63 (0.80–3.37) | 0.180 | ||
Immunosuppression | ||||||
Neutropenia | 2 (5.4) | 9 (5.5) | 0.98 (0.20–4.75) | 0.984 | ||
Nephro-urological history | ||||||
Chronic kidney disease | 14 (37.8) | 51 (31.1) | 1.34 (0.64–2.83) | 0.430 | ||
Dialysis | 5 (13.5) | 2 (1.2) | 12.65(2.35–68.11) | 0.003 | ||
Renal transplant | 1 (2.7) | 23 (14.0) | 0.17 (0.22–1.30) | 0.088 | ||
Benign prostatic hypertrophy | 12 (32.4) | 45 (27.4) | 1.26 (0.58–2.73) | 0.543 | ||
Obstructive urinary disease | 6 (16.2) | 20 (12.2) | 1.39 (0.51–3.75) | 0.512 | ||
Recurrent UTI | 19 (51.4) | 88 (53.7) | 0.91 (0.44–1.86) | 0.799 | ||
Indwelling urinary catheter in last 14 days | 21 (56.8) | 90 (54.9) | 1.08 (0.52–2.21) | 0.836 | ||
Other urological devices in last 14 days | 6 (16.2) | 29 (17.7) | 0.90 (0.34–2.35) | 0.832 | ||
Urological neoplasia | 8 (21.6) | 27 (16.5) | 1.40 (0.57–3.40) | 0.456 | ||
UTI classification | ||||||
Acute pyelonephritis | 3 (8.1) | 24 (14.6) | 0.51 (0.14–1.81) | 0.301 | ||
Complicated UTI | 35 (92.1) | 139 (85.3) | 1.94 (0.55–6.83) | 0.301 | ||
Acute prostatitis | 3 (8.6) | 18 (12.9) | 0.63 (0.17–2.29) | 0.488 | ||
UTI due to indwelling urethral catheter | 15 (42.9) | 55 (39.3) | 1.15 (0.54–2.45) | 0.700 | ||
Obstructive uropathy | 4 (11.4) | 9 (6.4) | 1.87 (0.54–6.50) | 0.320 | ||
Neurogenic bladder | 0 (0) | 3 (2.1) | - | - | ||
Urinary tract abnormalities | 6 (17.1) | 29 (20.7) | 0.79 (0.30–2.08) | 0.637 | ||
Acquisition | ||||||
Community-acquired | 3 (8.1) | 18 (11) | 1.05 (0.27–4.04) | 0.933 | ||
Healthcare-related | 15 (40.5) | 85 (51.8) | 1.06 (0.27–4.04) | 0.933 | ||
Nosocomial | 19 (51.4) | 61 (37.2) | 0.56 (0.27–1.15) | 0.115 | ||
HCA risk factors | ||||||
Hospital stay in last 3 months | 19 (51.4) | 107 (65.2) | 0.56 (0.27–1.15) | 0.117 | ||
Surgery in last 3 months | 8 (21.6) | 54 (32.9) | 0.56 (0.24–1.31) | 0.183 | ||
ICU admission in last 3 months | 5 (13.5) | 25 (15.2) | 0.87 (0.30–2.44) | 0.790 | ||
Residence in long-term care | 4 (10.8) | 19 (11.6) | 0.92 (0.30–2.90) | 0.894 | ||
Antibiotic exposure in last 3 months | 31 (83.8) | 136 (82.9) | 1.06 (0.40–2.80) | 0.900 | ||
Baseline illness severity | ||||||
SOFA score, m (IQR) | 2 (1–4) | 1 (0.00–3) | 1.06 (0.95–1.20) | 0.303 | ||
qSOFA score, m (IQR) | 0.00 (0.00–1) | 0.00 (0.00–1) | 2.08 (1.22–3.55) | 0.007 | 1.97 (1.11–3.51) | 0.020 |
SAPS II | 36 (29.50–45) | 36 (28–41) | 1.03 (1.00–1.07) | 0.022 | ||
Sepsis or septic shock | 15 (40.5) | 50 (30.5) | 1.55 (0.74–3.24) | 0.240 | ||
ICU admission | 4 (10.8) | 17 (10.4) | 1.04 (0.33–3.32) | 0.936 | ||
Bacteremia | 11 (29.7) | 39 (23.8) | 1.35 (0.61–2.99) | 0.451 | ||
Pitt score, m (IQR) | 1 (1–4) | 0 (0–2.00) | 1.62 (1.05–2.50) | 0.027 | ||
Management | ||||||
Appropriate empirical treatment | 9 (24.3) | 67 (40.9) | 0.46 (0.20–1.05) | 0.065 | 1.07 (0.33–3.48) | 0.906 |
Appropriate definitive treatment | 35 (94.6) | 160 (97.6) | 0.43 (0.77–2.48) | 0.351 | ||
72h delay to initiate appropriate antibiotic treatment | 21 (56.8) | 72 (43.9) | 1.67 (0.81–3.44) | 0.159 | 1.36 (0.48–3.83) | 0.549 |
Inadequate source control | 6 (16) | 16 (9.8) | 1.79 (0.65–4.94) | 0.261 | 1.86 (0.59–5.87) | 0.288 |
Overall Cohort (n = 201, Clinical Failure at End of Treatment = 28) | ||||||
---|---|---|---|---|---|---|
Clinical Failure (n = 28) | Non-Clinical Failure (n = 173) | Unadjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | |
Microorganism | ||||||
XDR P. aeruginosa | 20 (71.4) | 81 (46.8) | 2.84 (1.18–6.79) | 0.019 | 2.31 (0.83–6.44) | 0.108 |
ESBL-K. pneumoniae | 8 (28.6) | 92 (53.2) | 0.35 (0.14–0.84) | 0.019 | ||
Demographic information | ||||||
Age (years), m (IQR) | 76 (69–87) | 76 (65–82) | 1.03 (0.99–1.07) | 0.103 | 1.03 (0.99–1.08) | 0.134 |
Male sex | 20 (71.4) | 125 (72.3%) | 0.96 (0.39–2.32) | 0.928 | 0.71 (0.26–1.96) | 0.515 |
Underlying condition | ||||||
Charlson comorbidity index, m (IQR) | 8 (7–9.75) | 6 (5–8) | 1.20 (1.03–1.39) | 0.017 | 1.20 (1.01–1.43) | 0.036 |
Diabetes Mellitus | 9 (32.1) | 67 (38.7) | 0.75 (0.32–1.75) | 0.506 | ||
COPD | 6 (21.4) | 41 (23.7) | 0.87 (0.33–2.31) | 0.792 | ||
Congestive heart failure | 9 (32.1) | 28 (16.2) | 2.45 (1.00–5.97) | 0.048 | ||
Cirrhosis | 3 (10.7) | 8 (4.6) | 2.47 (0.61–9.95) | 0.202 | ||
Neurological disorder | 9 (32.1) | 38 (22) | 1.68 (0.70–4.02) | 0.241 | ||
Hematologic malignancy | 5 (17.9) | 21 (12.1) | 1.57 (0.54–4.58) | 0.406 | ||
Solid tumor malignancy | 15 (53.6) | 58 (33.5) | 2.28 (1.02–5.12) | 0.044 | ||
Immunosuppression | ||||||
Neutropenia | 1 (3.6) | 10 (5.8) | 0.60 (0.74–4.90) | 0.637 | ||
Nephro-urological history | ||||||
Chronic kidney disease | 11 (39.3) | 54 (31.2) | 1.42 (0.62–3.25) | 0.399 | ||
Dialysis | 2 (7.1) | 5 (2.9) | 2.58 (0.47–14.02) | 0.271 | ||
Renal transplant | 0 (0) | 24 (13.9) | - | - | ||
Benign prostatic hypertrophy | 8 (28.6) | 49 (28.3) | 1.01 (0.41–2.45) | 0.978 | ||
Obstructive urinary disease | 5 (17.9) | 21 (12.1) | 1.57 (0.54–4.58) | 0.406 | ||
Recurrent UTI | 17 (60.7) | 90 (52) | 1.42 (0.63–3.22) | 0.394 | ||
Indwelling urinary catheter in last 14 days | 16 (57.1) | 95 (54.9) | 1.09 (0.48–2.45) | 0.826 | ||
Other urological devices in last 14 days | 5 (17.9) | 30 (17.3) | 1.03 (0.36–2.94) | 0.947 | ||
Urological neoplasia | 8 (28.6) | 27 (15.6) | 2.16 (0.86–5.41) | 0.099 | ||
UTI classification | ||||||
Acute pyelonephritis | 0 (0) | 27 (15.6) | - | - | ||
Complicated UTI | 28 (100) | 146 (84.4) | - | - | ||
Acute prostatitis | 2 (7.1) | 19 (12.9) | 0.51 (0.11–2.36) | 0.396 | ||
UTI due to indwelling urethral catheter | 11 (39.3) | 59 (40.1) | 0.96 (0.42–2.20) | 0.933 | ||
Obstructive uropathy | 2 (7.1) | 11 (7.5) | 0.95 (0.20–4.54) | 0.950 | ||
Neurogenic bladder | 0 (0) | 3 (2) | - | - | ||
Urinary tract abnormalities | 7 (25) | 28 (19) | 1.41 (0.54–3.66) | 0.472 | ||
Acquisition | ||||||
Community-acquired | 2 (7.1) | 19 (11) | 0.70 (0.14–3.38) | 0.662 | ||
Healthcare-related | 13 (46.4) | 87 (50.3) | 1.42 (0.30–6.81) | 0.662 | ||
Nosocomial | 13 (46.4) | 67 (38.7) | 1.37 (0.61–3.06) | 0.441 | ||
HCA risk factors | ||||||
Hospital stay in last 3 months | 14 (50) | 112 (64.7) | 0.54 (0.24–1.21) | 0.138 | ||
Surgery in last 3 months | 3 (10.7) | 59 (34.1) | 0.23 (0.06–0.80) | 0.021 | ||
ICU admission in last 3 months | 4 (14.3) | 26 (15) | 1.52 (0.47–4.93) | 0.477 | ||
Residence in long-term care | 4 (14.3) | 19 (11) | 1.35 (0.42–4.31) | 0.612 | ||
Antibiotic exposure in last 3 months | 25 (89.3) | 142 (82.1) | 1.81 (0.51–6.40) | 0.352 | ||
Baseline illness severity | ||||||
SOFA score, m (IQR) | 2 (1–3) | 1 (0–3) | 1.06 (0.93–1.20) | 0.330 | ||
q SOFA score, m (IQR) | 1 (0.00–1) | 0.00 (0.00–1) | 2.24 (1.26–3.96) | 0.006 | 2.19 (1.15–4.18) | 0.017 |
SAPS II | 36.50 (32–45.75) | 36 (28–41) | 1.03 (1.00–1.07) | 0.033 | ||
Sepsis or septic shock | 11 (39.3) | 54 (31.2) | 1.42 (0.62–3.25) | 0.399 | ||
ICU admission | 4 (14.3) | 17 (9.8) | 1.52 (0.47–4.93) | 0.477 | ||
Bacteremia | 9 (32.1) | 41 (23.7) | 1.52 (0.64–3.62) | 0.340 | ||
Pitt score, m (IQR) | 1 (1–4) | 0.00 (0.00–2.00) | 1.58 (1.02–2.44) | 0.041 | ||
Management | ||||||
Appropriate empirical treatment | 6 (21.4) | 70 (40.5) | 0.40 (0.15–1.04) | 0.060 | 1.43 (0.33–6.21) | 0.635 |
Appropriate definitive treatment | 28 (100) | 167 (96.5) | - | - | ||
72h delay starting appropriate antibiotic treatment | 17 (60.7) | 76 (43.9) | 1.97 (0.87–4.45) | 0.103 | 1.43 (0.40–5.07) | 0.575 |
Inadequate source control | 6 (21.4) | 16 (9.2) | 2.67 (0.94–7.56) | 0.063 | 2.38 (0.68–8.29) | 0.174 |
Overall Cohort (n = 201, 30-Day Mortality = 23) | ||||||
---|---|---|---|---|---|---|
Deaths (n = 23) | Alive (n= 178) | Unadjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | |
Microorganism | ||||||
XDR P. aeruginosa | 10 (43.5) | 91 (51.5) | 0.73 (0.30–1.76) | 0.491 | 0.73 (0.30–1.78) | 0.487 |
ESBL-K. pneumoniae | 13 (56.5) | 87 (48.9) | 1.36 (0.56–3.26) | 0.491 | ||
Demographic information | ||||||
Age (years), m (IQR) | 79 (73–87) | 75 (65–82) | 1.05 (1.00–1.09) | 0.041 | 1.06 (1.01–1.11) | 0.020 |
Male sex | 15 (65.2) | 130 (73) | 0.69 (0.27–1.73) | 0.433 | 0.65 (0.26–1.56) | 0.341 |
Underlying condition | ||||||
Charlson comorbidity index, m(IQR) | 9 (7–10) | 6.50 (5–8) | 1.20 (1.02–1.41) | 0.026 | 1.20 (1.03–1.40) | 0.020 |
Diabetes Mellitus | 7 (30.4) | 69 (38.8) | 0.69 (0.27–1.76) | 0.440 | ||
COPD | 6 (26.1) | 41 (23) | 1.17 (0.43–3.18) | 0.745 | ||
Congestive heart failure | 8 (34.8) | 29 (16.3) | 2.74 (1.06–7.05) | 0.037 | ||
Cirrhosis | 2 (8.7) | 9 (5.1) | 1.78 (0.36–8.83) | 0.476 | ||
Neurological disorder | 6 (26.1) | 41 (23) | 1.17 (0.43–3.18) | 0.745 | ||
Hematologic malignancy | 3 (13) | 23 (12.9) | 1.01 (0.27–3.67) | 0.987 | ||
Solid tumor malignancy | 12 (52.2) | 61 (34.3) | 2.09 (0.87–5.01) | 0.098 | ||
Immunosuppression | ||||||
Neutropenia | 0 (0) | 11 (6.2) | - | - | ||
Nephro-urological history | ||||||
Chronic kidney disease | 9 (39.1) | 56 (31.5) | 1.40 (0.57–3.42) | 0.461 | ||
Dialysis | 2 (8.7) | 5 (2.8) | 3.29 (0.60–18.06) | 0.169 | ||
Renal transplant | 0 (0.0) | 23 (13) | - | - | ||
Benign prostatic hypertrophy | 8 (34.8) | 49 (27.5) | 1.40 (0.56–3.52) | 0.469 | ||
Obstructive urinary disease | 3 (13) | 23 (12.9) | 1.01 (0.27–3.67) | 0.987 | ||
Recurrent UTI | 14 (60.9) | 93 (52.2) | 1.42 (0.58–3.45) | 0.437 | ||
Indwelling urinary catheter in last 14 days | 10 (43.5) | 101 (56.7) | 0.58 (0.24–1.40) | 0.233 | ||
Other urological devices in last 14 days | 3 (13) | 32 (18) | 0.68 (0.19–2.44) | 0.559 | ||
Urological neoplasia | 7 (30.4) | 28 (15.7) | 2.34 (0.88–6.21) | 0.087 | ||
UTI classification | 0.325 | |||||
Acute pyelonephritis | 1 (4.3) | 26 (14.6) | 0.26 (0.34–2.05) | 0.204 | ||
Complicated UTI | 22 (95.7) | 152 (84.9) | 3.76 (0.48–29.13) | 0.204 | ||
Acute prostatitis | 2 (9.5) | 19 (12.3) | 0.74 (0.16–3.46) | 0.711 | ||
UTI due to indwelling urethral catheter | 6 (28.6) | 64 (41.6) | 0.56 (0.20–1.52) | 0.259 | ||
Obstructive uropathy | 2 (9.5) | 11 (7.1) | 1.36 (0.28–6.64) | 0.697 | ||
Neurogenic bladder | 0 (0) | 3 (1.9) | - | - | ||
Urinary tract abnormalities | 4 (19) | 31 (20.1) | 0.93 (0.29–2.97) | 0.907 | ||
Acquisition | ||||||
Community-acquired | 3 (13) | 18 (10.1) | 1.34 (0.34–5.32) | 0.670 | ||
Healthcare-related | 11 (47.8) | 89 (50) | 0.74 (0.18–2.92) | 1.000 | ||
Nosocomial | 9 (39.1) | 71 (39.7) | 0.96 (0.39–2.35) | 0.944 | ||
HCA risk factors | ||||||
Hospital stay in last 3 months | 16 (69.6) | 110 (61.8) | 1.41 (0.55–3.61) | 0.469 | ||
Surgery in last 3 months | 4 (17.4) | 58 (32.6) | 0.43 (0.14–1.33) | 0.147 | ||
ICU admission in last 3 months | 1 (4.3) | 29 (16.3) | 0.23 (0.30–1.80) | 0.163 | ||
Residence in long-term care | 6 (26.1) | 17 (9.5) | 3.34 (1.16–9.61) | 0.025 | ||
Antibiotic exposure in last 3 months | 21 (91.3) | 146 (82) | 2.30 (0.51–10.31) | 0.276 | ||
Baseline illness severity | ||||||
SOFA score, m (IQR) | 3 (2–5) | 1 (0–3) | 1.11 (0.98–1.26) | 0.082 | 1.10 (0.99–1.22) | 0.064 |
q-SOFA score, m (IQR) | 1 (0.00–1) | 0.00 (0.00–1) | 4.05 (2.10–7.81) | <0.001 | ||
SAPS II | 40 (33–53) | 35 (28–41) | 1.07 (1.03–1.11) | <0.001 | ||
Sepsis or septic shock | 13 (56.5) | 52 (29.2) | 2.73 (1.39–5.33) | 0.003 | ||
ICU admission | 5 (21.7) | 16 (9) | 2.81 (0.92–8.58) | 0.069 | ||
Bacteremia | 7 (30.4) | 43 (24.3) | 1.37 (0.53–3.55) | 0.514 | ||
Pitt score, m (IQR) | 2 (1–5) | 0.00 (0.00–2.00) | 1.74 (1.08–2.81) | 0.022 | ||
Management | ||||||
Appropriate empirical treatment | 7 (30.4) | 69 (38.8) | 0.69 (0.27–1.76) | 0.440 | 0.94 (0.22–4.01) | 0.937 |
Appropriate definitive treatment | 23 (100) | 172 (96.6) | - | - | ||
72h delay to initiate appropriate antibiotic treatment | 14 (60.9) | 79 (44.4) | 1.94 (0.80–4.73) | 0.141 | 2.25 (0.59–8.6) | 0.236 |
Inadequate source control | 5 (21.7) | 17 (9.6) | 3.09 (1.24–7.70) | 0.015 | 3.36 (1.15–9.83) | 0.027 |
Overall Cohort (n = 201, 90-Day Mortality = 48) | ||||||
---|---|---|---|---|---|---|
Deaths (n = 48) | Alive (n = 153) | Unadjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | |
Microorganism | ||||||
XDR P. aeruginosa | 25 (52.1) | 76 (49.7) | 1.10 (0.57–2.10) | 0.771 | 0.86 (0.45–1.64) | 0.656 |
ESBL-K. pneumoniae | 23 (47.9) | 77 (50.3) | 0.90 (0.47–1.73) | 0.771 | ||
Demographic information | ||||||
Age (years), m (IQR) | 76 (65–83) | 76 (66–83) | 1.00 (0.98–1.03) | 0.547 | 1.03 (1.00–1.07) | 0.049 |
Male sex | 33 (68.8) | 112 (73.2) | 0.80 (3.97–1.63) | 0.549 | ||
Underlying condition | ||||||
Charlson comorbidity index, m(IQR) | 9 (6.25–10) | 6 (4–8) | 1.40 (1.21–1.62) | <0.001 | 1.38 (1.22–1.55) | 0.000 |
Diabetes Mellitus | 17 (35.4) | 59 (38.6) | 0.87 (0.44–1.71) | 0.695 | ||
COPD | 14 (29.2) | 33 (21.6) | 1.49 (0.72–3.11) | 0.280 | ||
Congestive heart failure | 10 (20.8) | 27 (17.6) | 1.22 (0.54–2.76) | 0.620 | ||
Cirrhosis | 5 (10.4) | 6 (3.9) | 2.84 (0.82–9.79) | 0.096 | ||
Neurological disorder | 11 (22.9) | 36 (23.5) | 0.96 (0.44–2.08) | 0.930 | ||
Hematologic malignancy | 7 (14.6) | 19 (12.4) | 1.20 (0.47–3.06) | 0.697 | ||
Solid tumor malignancy | 31 (64.6) | 42 (27.5) | 4.81 (2.41–9.60) | <0.001 | ||
Immunosupression | ||||||
Neutropenia | 5 (10.4) | 6 (3.9) | 2.84 (0.82–9.79) | 0.096 | 2.59 (0.90–7.48) | 0.079 |
Nephro-urological history | ||||||
Chronic kidney disease | 15 (31.3) | 50 (32.7) | 0.93 (0.46–1.88) | 0.853 | ||
Dialysis | 3 (6.3) | 4 (2.6) | 2.48 (0.53–11.51) | 0.245 | ||
Renal transplant | 1 (2.1) | 23 (15) | 0.12 (0.16–0.91) | 0.041 | ||
Benign prostatic hypertrophy | 13 (27.1) | 44 (28.8) | 0.92 (0.44–1.90) | 0.822 | ||
Obstructive urinary disease | 8 (16.7) | 18 (11.8) | 1.50 (0.60–3.70) | 0.380 | ||
Recurrent UTI | 24 (50) | 83 (54.2) | 0.84 (0.44–1.61) | 0.607 | ||
Indwelling urinary catheter in last 14 days | 22 (45.8) | 89 (58.2) | 0.60 (0.31–1.16) | 0.136 | ||
Other urological devices in last 14 days | 9 (18.8) | 26 (17) | 1.12 (0.48–2.60) | 0.780 | ||
Urological neoplasia | 11 (22.9) | 24 (15.7) | 1.59 (0.71–3.56) | 0.252 | ||
UTI classification | ||||||
Acute pyelonephritis | 5 (10.4) | 22 (14.4) | 0.69 (0.24–1.94) | 0.484 | ||
Complicated UTI | 43 (89.6) | 131 (85.6) | 1.44 (0.51–4.04) | 0.484 | ||
Acute prostatitis | 4 (9.5) | 17 (12.8) | 0.71 (0.22–2.26) | 0.572 | ||
UTI due to indwelling urethra catheter | 12 (28.6) | 58 (43.6) | 0.51 (0.24–1.09) | 0.086 | ||
Obstructive uropathy | 5 (11.9) | 8 (6) | 2.11 (0.65–6.84) | 0.213 | ||
Neurogenic bladder | 1 (2.4) | 2 (1.5) | 1.59 (0.14–18.07) | 0.705 | ||
Urinary tract abnormalities | 10 (23.8) | 25 (18.8) | 1.35 (0.58–3.10) | 0.480 | ||
Acquisition | ||||||
Community acquired | 3 (6.3) | 18 (11.8) | 0.50 (0.14–1.77) | 0.284 | ||
Healthcare-related | 25 (52.1) | 75 (49) | 1.13 (0.59–2.16) | 0.711 | ||
Nosocomial | 20 (41.7) | 60 (39.2) | 1.10 (0.57–2.14) | 0.762 | ||
HCA risk factors | ||||||
Hospital stay in last 3 months | 30 (62.5) | 96 (62.5) | 0.99 (0.50–1.93) | 0.976 | ||
Surgery in last 3 months | 10 (20.8) | 52 (34) | 0.51 (0.23–1.10) | 0.089 | ||
ICU admission in last 3 months | 6 (12.5) | 24 (15.7) | 0.76 (0.29–2.00) | 0.590 | ||
Residence in long-term care | 9 (18.8) | 14 (9.2) | 2.29 (0.92–5.69) | 0.074 | ||
Antibiotic exposure in last 3 months | 43 (89.6) | 124 (81) | 2.01 (0.73–5.52) | 0.175 | ||
Baseline illness severity | ||||||
SOFA score, m (IQR) | 2 (1–5) | 1 (0–3) | 1.11 (0.99–1.25) | 0.066 | ||
q SOFA score, m (IQR) | 1 (0.00–1) | 0.00 (0.00–0.00) | 3.09 (1.79–5.33) | <0.001 | 3.26 (2.09–5.10) | 0.000 |
SAPS II | 41 (33–48.75) | 27 (34–40) | 1.07 (1.03–1.10) | <0.001 | ||
Sepsis or septic shock | 24 (50) | 41 (26.8) | 2.73 (1.39–5.33) | 0.003 | ||
ICU admission | 9 (18.8) | 12 (7.8) | 2.71 (1.06–6.9) | 0.031 | ||
Bacteremia | 18 (37.5) | 32 (20.9) | 2.26 (1.1–4.57) | 0.022 | 1.60 (0.83–3.10) | 0.161 |
Pitt score, m (IQR) | 1 (0,00–3) | 0.00 (0.00–2.00) | 1.14 (0.95–2.10) | 0.083 | ||
Management | ||||||
Appropriate empirical treatment | 20 (41.7) | 56 (36.6) | 1.23 (0.63–2.39) | 0.528 | 0.51 (0.20–1.33) | 0.171 |
Appropriate definitive treatment | 48 (100) | 147 (96.1) | - | 0.999 | ||
72h delay to initiate appropriate antibiotic treatment | 23 (47.9) | 70 (45.8) | 1.09 (0.57–2.08) | 0.793 | 1.72 (0.70–4.26) | 0.238 |
Inadequate source control | 10 (20.8) | 12 (7.8) | 3.09 (1.24–7.7) | 0.015 | 1.91 (0.90–4.07) | 0.091 |
Variables | Univariate MD (95% CI) | p-Value | Multivariate MD (95% CI) | p-Value |
---|---|---|---|---|
XDR P. aeruginosa | 3612.06 (−2204.66, 9428.78) | 0.222 | 3003.16 (−2216.81, 8223.13) | 0.258 |
Bacteremia | 16744.23 (10159.42, 23329.04) | <0.001 | 16228.95 (10394.83, 22063.06) | <0.001 |
Nosocomial acquisition | 15521.47 (9229.19, 21813.75) | <0.001 | 13401.76 (8228.21, 18575.31) | <0.001 |
Appropriate empirical treatment | 5023.74 (−994.78, 11042.26) | 0.101 | ||
Charlson comorbidity index | 276.42 (−944.95, 1497.79) | 0.656 | 100.64 (−912.31, 1113.60) | 0.845 |
Age | −107.81 (−335.44, 119.83) | 0.351 | 21.48 (−196.27, 239.24) | 0.846 |
SOFA | 881.76 (−153.23, 1916.75) | 0.094 | 613.66 (−313.33, 1540.66) | 0.193 |
Length of hospital stay (days) from onset of UTI | 602.95 (544.58, 661.32) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sendra, E.; López Montesinos, I.; Rodriguez-Alarcón, A.; Du, J.; Siverio-Parés, A.; Arenas-Miras, M.; Cañas-Ruano, E.; Prim, N.; Durán-Jordà, X.; Blasco-Hernando, F.; et al. Comparative Analysis of Complicated Urinary Tract Infections Caused by Extensively Drug-Resistant Pseudomonas aeruginosa and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae. Antibiotics 2022, 11, 1511. https://doi.org/10.3390/antibiotics11111511
Sendra E, López Montesinos I, Rodriguez-Alarcón A, Du J, Siverio-Parés A, Arenas-Miras M, Cañas-Ruano E, Prim N, Durán-Jordà X, Blasco-Hernando F, et al. Comparative Analysis of Complicated Urinary Tract Infections Caused by Extensively Drug-Resistant Pseudomonas aeruginosa and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae. Antibiotics. 2022; 11(11):1511. https://doi.org/10.3390/antibiotics11111511
Chicago/Turabian StyleSendra, Elena, Inmaculada López Montesinos, Alicia Rodriguez-Alarcón, Juan Du, Ana Siverio-Parés, Mar Arenas-Miras, Esperanza Cañas-Ruano, Nuria Prim, Xavier Durán-Jordà, Fabiola Blasco-Hernando, and et al. 2022. "Comparative Analysis of Complicated Urinary Tract Infections Caused by Extensively Drug-Resistant Pseudomonas aeruginosa and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae" Antibiotics 11, no. 11: 1511. https://doi.org/10.3390/antibiotics11111511
APA StyleSendra, E., López Montesinos, I., Rodriguez-Alarcón, A., Du, J., Siverio-Parés, A., Arenas-Miras, M., Cañas-Ruano, E., Prim, N., Durán-Jordà, X., Blasco-Hernando, F., García-Alzorriz, E., Cots, F., Ferrández, O., & Gómez-Zorrilla, S. (2022). Comparative Analysis of Complicated Urinary Tract Infections Caused by Extensively Drug-Resistant Pseudomonas aeruginosa and Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae. Antibiotics, 11(11), 1511. https://doi.org/10.3390/antibiotics11111511