Pseudomonas aeruginosa Bloodstream Infection, Resistance, and Mortality: Do Solid Organ Transplant Recipients Do Better or Worse?
Abstract
:1. Introduction
2. Methods
2.1. Setting
2.2. Definitions
- (1)
- Bloodstream infection (BSI): Bloodstream infection was defined as a bacterial infection identified via blood culture. The bacteremia source was determined on the basis of clinical criteria and isolation from a clinically significant site of infection of the same organism found in the blood isolate, on the basis of species identification and antibiotic susceptibility results. Central line-associated BSI was defined as positive blood culture in the presence of a central line, with the source of BSI documented as line-associated by the treating clinical team. Catheter-related bacteremia was documented when the blood isolate was cultured from the catheter tip (≥103 cfu/mL).
- (2)
- Bacteremia was considered to be primary or of unknown source in patients in whom no source of bacteremia was identified.
- (3)
- Carbapenem resistance (CR) was defined if the isolate tested resistant to at least one of the carbapenem antibiotics (meropenem, doripenem, or imipenem).
- (4)
- Septic shock: Sepsis episodes requiring the use of vasopressors due to persistent hypotension despite fluid therapy with a causal and temporal relationship with the BSI episode [12].
- (5)
- Bacteremia was considered to be hospital-acquired, healthcare-related or community-acquired, as described elsewhere [13]. Empirical antibiotic therapy was considered appropriate when the patient received a proper dosage by an adequate route of at least one in vitro active antimicrobial agent within 24 h after blood cultures were obtained and before antibiotic susceptibility results were reported.
- (6)
- Prior antibiotic therapy was defined as the receipt of any systemic antibiotic for ≥48 h in the previous month.
- (7)
- Persistent bacteremia: Two or more positive blood cultures obtained on different calendar days with isolation of the same microorganism during the same infectious episode.
- (8)
- Neutropenia: Less than 500 neutrophils per microliter of blood.
2.3. Microbiological Procedures
2.4. Statistical Analysis
3. Results
Solid Organ Transplant
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oriol, I.; Sabé, N.; Melilli, E.; Lladó, L.; González-Costello, J.; Soldevila, L.; Carratalà, J. Factors influencing mortality in solid organ transplant recipients with bloodstream infection. Clin. Microbiol. Infect. 2015, 21, 1104.e9–1104.e14. [Google Scholar] [CrossRef]
- Oriol, I.; Sabé, N.; Simonetti, A.F.; Lladó, L.; Manonelles, A.; González, J.; Tubau, F.; Carratalà, J. Changing trends in the aetiology, treatment and outcomes of bloodstream infection occurring in the first year after solid organ transplantation: A single-centre prospective cohort study. Transpl. Int. 2017, 30, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Wagener, M.M.; Obman, A.; Cacciarelli, T.V.; de Vera, M.E.; Gayowski, T. Bacteremias in liver transplant recipients: Shift toward gram-negative bacteria as predominant pathogens. Liver Transplant. 2004, 10, 844–849. [Google Scholar] [CrossRef]
- Berenger, B.; Doucette, K.; Smith, S. Epidemiology and risk factors for nosocomial bloodstream infections in solid organ transplants over a 10-year period. Transpl. Infect. Dis. 2016, 18, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Shendi, A.M.; Wallis, G.; Painter, H.; Harber, M.; Collier, S. Epidemiology and impact of bloodstream infections among kidney transplant recipients: A retrospective single-center experience. Transpl. Infect. Dis. 2018, 20, e12815. [Google Scholar] [CrossRef] [PubMed]
- Bodro, M.; Sabé, N.; Tubau, F.; Lladó, L.; Baliellas, C.; González-Costello, J.; Cruzado, J.M.; Carratalà, J. Extensively drug-resistant pseudomonas aeruginosa bacteremia in solid organ transplant recipients. Transplantation 2015, 99, 616–622. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.E.; D’Agata, E.M.C.; Paterson, D.L.; Clarke, L.; Qureshi, Z.A.; Potoski, B.A.; Peleg, A.Y. Pseudomonas aeruginosa bacteremia over a 10-year period: Multidrug resistance and outcomes in transplant recipients. Transpl. Infect. Dis. 2009, 11, 227–234. [Google Scholar] [CrossRef]
- Herrera, S.; Bodro, M.; Soriano, A. Predictors of multidrug resistant Pseudomonas aeruginosa involvement in bloodstream infections. Curr. Opin. Infect. Dis. 2021, 34, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Guillamet, C.V.; Vazquez, R.; Noe, J.; Micek, S.T.; Kollef, M.H. A cohort study of bacteremic pneumonia the importance of antibiotic resistance and appropriate initial therapy? Medicine 2016, 95, e4708. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Kim, S.; Kim, H.; Park, S.; Choe, Y.; Oh, M.; Kim, E.; Choe, K. Pseudomonas aeruginosa bacteremia: Risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin. Infect. Dis. 2003, 37, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Friedman, N.D.; Kaye, K.S.; Stout, J.; McGarry, S.A.; Trivette, S.L.; Briggs, J.P.; Lamm, W.; Clark, C.; MacFarquhar, J.; Walton, A.L.; et al. Health care-associated bloodstream infections in adults: A reason to change the accepted definition of community-acquired infections. Ann. Intern. Med. 2002, 137, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Aira, A.; Fehér, C.; Rubio, E.; Soriano, A. The Intestinal Microbiota as a Reservoir and a Therapeutic Target to Fight Multi-Drug-Resistant Bacteria: A Narrative Review of the Literature. Infect. Dis. Ther. 2019, 8, 469–482. [Google Scholar] [CrossRef]
- Bodro, M.; Sabé, N.; Tubau, F.; Llado, L.; Baliellas, C.; Roca, J.; Cruzado, J.M.; Carratala, J. Risk factors and outcomes of bacteremia caused by drug-resistant ESKAPE pathogens in solid-organ transplant recipients. Transplantation 2013, 96, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, M.; Li, X.; Dong, H.; Ming, L. Trends in antimicrobial resistance in bloodstream infections at a large tertiary-care hospital in China: A 10-year retrospective study (2010–2019). J. Glob. Antimicrob. Resist. 2021, 29, 413–419. [Google Scholar] [CrossRef]
- Kang, J.S.; Moon, C.; Mun, S.J.; Lee, J.E.; Lee, S.O.; Lee, S.; Lee, S.H. Antimicrobial Susceptibility Trends and Risk Factors for Antimicrobial Resistance in Pseudomonas aeruginosa Bacteremia: 12-Year Experience in a Tertiary Hospital in Korea. J. Korean Med. Sci. 2021, 36, 1–15. [Google Scholar] [CrossRef]
- Benito, N.; Franco, M.; Ribera, A.; Soriano, A.; Rodríguez-Pardo, D.; Sorlí, L.; Fresco, G.; Fernández-Sampedro, M.; del Toro, M.D.; Guío, L.; et al. Time trends in the aetiology of prosthetic joint infections: A multicentre cohort study. Clin. Microbiol. Infect. 2016, 22, 732.e1–732.e8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lin, Q.; Liu, L.; Ma, R.; Chen, J.; Shen, Y.; Zhu, G.; Jiang, E.; Mi, Y.; Han, M.; et al. Risk Factors and Outcomes of Antibiotic-resistant Pseudomonas aeruginosa Bloodstream Infection in Adult Patients with Acute Leukemia. Clin. Infect. Dis. 2020, 71, S386–S393. [Google Scholar] [CrossRef]
- Palavutitotai, N.; Jitmuang, A.; Tongsai, S.; Kiratisin, P.; Angkasekwinai, N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLoS ONE 2018, 13, e0193431. [Google Scholar] [CrossRef] [Green Version]
- Babich, T.; Naucler, P.; Valik, J.K.; Giske, C.G.; Benito, N.; Cardona, R.; Rivera, A.; Pulcini, C.; Fattah, M.A.; Haquin, J.; et al. Risk factors for mortality among patients with Pseudomonas aeruginosa bacteraemia: A retrospective multicentre study. Int. J. Antimicrob. Agents 2019, 55, 105847. [Google Scholar] [CrossRef]
- Tam, V.H.; Rogers, C.A.; Chang, K.-T.; Weston, J.S.; Caeiro, J.-P.; Garey, K.W. Impact of multidrug-resistant Pseudomonas aeruginosa bacteremia on patient outcomes. Antimicrob. Agents Chemother. 2010, 54, 3717–3722. [Google Scholar] [CrossRef]
- Kadri, S.S.; Lai, Y.L.; Warner, S.; Strich, J.R.; Babiker, A.; Ricotta, E.; Demirkale, C.Y.; Dekker, J.P.; Palmore, T.N.; Rhee, C.; et al. Inappropriate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: A retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals. Lancet Infect. Dis. 2020, 21, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Repetto, E.; Trecarichi, E.M.; Bernardini, C.; DE Pascale, G.; Parisini, A.; Rossi, M.; Molinari, M.P.; Spanu, T.; Viscoli, C.; et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: Risk factors and mortality. Epidemiol. Infect. 2011, 139, 1740–1749. [Google Scholar] [CrossRef]
- Chumbita, M.; Puerta-Alcalde, P.; Gudiol, C.; Garcia-Pouton, N.; Laporte-Amargós, J.; Ladino, A.; Albasanz-Puig, A.; Helguera, C.; Bergas, A.; Grafia, I.; et al. Impact of Empirical Antibiotic Regimens on Mortality in Neutropenic Patients with Bloodstream Infection Presenting with Septic Shock. Antimicrob. Agents Chemother. 2022, 66, e0174421. [Google Scholar] [CrossRef] [PubMed]
- Rosanova, M.T.; Mussini, M.S.; Arias, A.P.; Sormani, M.I.; Mastroianni, A.; García, M.E.; Reijtman, V.; Sarkis, C. Epidemiological features and risk factors for mortality in Pseudomonas aeruginosa bacteremia in children. Arch. Argent. Pediatr. 2019, 117, 128–131. [Google Scholar] [PubMed]
- Dantas, R.C.; Ferreira, M.L.; Gontijo-Filho, P.P.; Ribas, R.M. Pseudomonas aeruginosa bacteraemia: Independent risk factors for mortality and impact of resistance on outcome. J. Med. Microbiol. 2014, 63, 1679–1687. [Google Scholar] [CrossRef]
- Eichenberger, E.M.; Troy, J.; Ruffin, F.; Dagher, M.; Thaden, J.T.; Ford, M.L.; Fowler, V.G. Gram-negative bacteremia in solid organ transplant recipients: Clinical characteristics and outcomes as compared to immunocompetent non-transplant recipients. Transpl. Infect. Dis. 2022, 24, e13969. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Pang, X.-Y.; Shen, C.; Han, L.-Z.; Deng, Y.-X.; Chen, X.-S.; Zhang, J.-J.; Xia, Q.; Qian, Y.-B. High mortality associated with gram-negative bacterial bloodstream infection in liver transplant recipients undergoing immunosuppression reduction. World J. Gastroenterol. 2020, 26, 7191–7203. [Google Scholar] [CrossRef]
- Recio, R.; Mancheño, M.; Viedma, E.; Villa, J.; Orellana, M.; Lora-Tamayo, J.; Chaves, F. Predictors of mortality in bloodstream infections caused by pseudomonas aeruginosa and impact of antimicrobial resistance and bacterial virulence. Antimicrob. Agents Chemother. 2020, 64, e01759-19. [Google Scholar] [CrossRef] [PubMed]
- Peña, C.; Suarez, C.; Gozalo, M.; Murillas, J.; Almirante, B.; Pomar, V.; Aguilar, M.; Granados, A.; Calbo, E.; Rodríguez-Baño, J.; et al. Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob. Agents Chemother. 2012, 56, 1265–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total n = 2057 | |
---|---|
Men | 64% |
Age, median (SD) | 63 (SD19) |
Comorbidities | |
Diabetes mellitus | 18% |
COPD | 10% |
Ischemic cardiopathy | 15% |
Hematologic malignancy | 22% |
Liver cirrhosis | 6% |
HIV | 6% |
Risk factors | |
Urinary catheter | 33% |
Venous catheter | 64% |
Neutropenia | 15% |
Hospital-acquired | 85% |
Community-acquired | 15% |
Source | |
Catheter-related | 31% |
Primary | 22% |
Urinary tract infection | 15% |
Abdominal infection | 14% |
Respiratory | 15% |
Outcomes | |
ICU admission | 15% |
Mechanical ventilation | 10% |
Septic shock | 19% |
Inappropiate empirical antibitic therapy | 29% |
Persistant BSI | 13% |
Mortality (30 days) | 20% |
OR (95% CI) | p Value | |
---|---|---|
Age | 0.98 (0.97–1.01) | 0.151 |
Female | 1.12 (0.71–1.77) | 0.621 |
Solid organ transplant | 1.39 (0.71–2.78) | 0.343 |
Diabetes mellitus | 1.15 (0.64–2.05) | 0.634 |
COPD | 0.77 (0.31–1.90) | 0.584 |
HIV | 1.54 (0.59–3.98) | 0.372 |
Hematologic malignancy | 2.71 (1.33–5.51) | 0.006 |
Solid malignancy | 0.89 (0.46–1.72) | 0.743 |
Neutropenia | 0.65 (0.33–1.29) | 0.224 |
Hospital-acquired | 0.73 (0.34–1.58) | 0.429 |
Urinary catheter | 0.76 (0.46–1.26) | 0.292 |
Vascular catheter | 1.12 (0.74–1.70) | 0.569 |
Steroid therapy | 0.79 (0.48–1.30) | 0.362 |
Prior carbapenem therapy | 2.37 (1.46–3.86) | <0.001 |
Source | 1.34 (0.84–2.14) | 0.217 |
Persistent bacteremia | 0.60 (0.29–1.23) | 0.168 |
Septic shock | 1.00(0.57–1.76) | 0.975 |
OR (95% C.I.) | p Value | |
---|---|---|
Sex | 0.86 (0.60–1.23) | 0.417 |
Age | 1.03 (1.02–1.04) | <0.001 |
Solid organ transplant | 0.58 (0.31–1.11) | 0.104 |
Hospital-acquired | 1.42 (0.83–2.43) | 0.196 |
Diabetes mellitus | 1.13 (0.73–1.75) | 0.560 |
COPD HIV Hematologic malignancy Solid malignancy | 1.01 (0.59–1.70) 1.88 (0.78–4.55) 1.87 (1.11–3.15) 1.11 (0.70–1.74) | 0.970 0.157 0.017 0.645 |
Neutropenia | 0.88 (0.53–1.47) | 0.640 |
Urinary catheter | 2.05 (0.37–3.06) | <0.001 |
Steroid therapy | 1.35 (0.92–1.98) | 0.114 |
Persistent bacteremia | 1.64 (0.97–2.77) | 0.065 |
Septic shock | 6.57 (4.54–9.51) | <0.001 |
High-risk source * | 4.96 (3.32–7.43) | <0.001 |
Adequate empirical therapy | 0.52 (0.35–0.75) | 0. 001 |
Carbapenem-resistant PAE | 1.53(1.01–2.29) | 0.036 |
Total n = 2057 | SOT Patients n = 265 | Non-SOT Patients n = 1792 | p | |
---|---|---|---|---|
Men | 64% | 76% | 63% | <0.001 |
Age, median (SD) | 63 (SD19) | 56 y (SD 13) | 65 y (SD 20) | 0.03 |
Heart transplant | 9 (3%) | |||
Kidney transplant | 130 (549%) | |||
Liver transplant | 105 (40%) | |||
Kidney–pancreas transplant | 21 (8%) | |||
Comorbidities | ||||
Diabetes mellitus | 18% | 24% | 17% | 0.008 |
COPD * | 10% | 5% | 11% | 0.006 |
Ischemic cardiopathy | 15% | 11% | 15% | 0.07 |
Hematologic malignancy | 22% | 5% | 25% | <0.001 |
Liver cirrhosis | 6% | 7% | 6% | 0.9 |
HIV | 6% | 1% | 6% | <0.001 |
Risk factors | ||||
Urinary catheter | 33% | 16% | 33% | <0.001 |
Venous catheter | 64% | 68% | 63% | 0.28 |
Neutropenia | 15% | 8% | 16% | 0.003 |
Hospital-acquired | 85% | 92% | 84% | 0.04 |
Community-acquired | 15% | 8.3% | 16.1% | 0.001 |
Source | ||||
Catheter-related | 31% | 25% | 32% | <0.001 |
Primary | 22% | 16% | 23% | 0.8 |
Urinary tract infection | 15% | 27% | 13% | 0.02 |
Abdominal infection | 14% | 14% | 14% | 0.9 |
Respiratory | 15% | 11% | 16% | 0.04 |
Outcomes | ||||
ICU admission | 15% | 11% | 16% | 0.002 |
Mechanical ventilation | 10% | 7% | 11% | 0.034 |
Septic shock | 19% | 18% | 19% | 0.85 |
Inappropiate empirical antibitic therapy | 29% | 28% | 29% | 0.34 |
Persistant BSI | 13% | 9% | 14% | 0.3 |
Mortality (30 days) | 20% | 13% | 21% | 0.002 |
OR (95% CI) | p Value | |
---|---|---|
Age | 0.98 (0.96–1.01) | 0.322 |
Female sex | 1.12 (0.54–2.33) | 0.745 |
Diabetes mellitus | 0.62 (0.29–1.29) | 0.848 |
COPD | 3.27 (0.71–14.9) | 0.127 |
HIV | 2.45 (0.10–55.2) | 0.571 |
Hematologic malignancy | 1.45 (0.21–9.84) | 0.698 |
Solid malignancy | 0.87 (0.21–3.49) | 0.848 |
Neutropenia | 1.18 (0.31–4.50) | 0.806 |
Nosocomial acquisition | 1.72 (0.48–6.19) | 0.401 |
Urinary catheter | 1.98 (1.1–3.69) | 0.031 |
Venous catheter | 2.05 (1.8–4.25) | 0.013 |
Steroid therapy | 0.82 (0.38–1.76) | 0.616 |
Prior carbapenem therapy | 4.49 (2.10–9.95) | <0.001 |
Source | 1.01 (0.99–1.08) | 0.659 |
Persistent bacteremia | 2.23 (0.81–6.19) | 0.120 |
Shock | 0.67 (0.28–1.58) | 0.366 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, S.; Morata, L.; Sempere, A.; Verdejo, M.; Del Rio, A.; Martínez, J.A.; Cuervo, G.; Hernández-Meneses, M.; Chumbita, M.; Pitart, C.; et al. Pseudomonas aeruginosa Bloodstream Infection, Resistance, and Mortality: Do Solid Organ Transplant Recipients Do Better or Worse? Antibiotics 2023, 12, 380. https://doi.org/10.3390/antibiotics12020380
Herrera S, Morata L, Sempere A, Verdejo M, Del Rio A, Martínez JA, Cuervo G, Hernández-Meneses M, Chumbita M, Pitart C, et al. Pseudomonas aeruginosa Bloodstream Infection, Resistance, and Mortality: Do Solid Organ Transplant Recipients Do Better or Worse? Antibiotics. 2023; 12(2):380. https://doi.org/10.3390/antibiotics12020380
Chicago/Turabian StyleHerrera, Sabina, Laura Morata, Abiu Sempere, Miguel Verdejo, Ana Del Rio, Jose Antonio Martínez, Guillermo Cuervo, Marta Hernández-Meneses, Mariana Chumbita, Cristina Pitart, and et al. 2023. "Pseudomonas aeruginosa Bloodstream Infection, Resistance, and Mortality: Do Solid Organ Transplant Recipients Do Better or Worse?" Antibiotics 12, no. 2: 380. https://doi.org/10.3390/antibiotics12020380
APA StyleHerrera, S., Morata, L., Sempere, A., Verdejo, M., Del Rio, A., Martínez, J. A., Cuervo, G., Hernández-Meneses, M., Chumbita, M., Pitart, C., Puerta, P., Monzó, P., Lopera, C., Aiello, F., Mendoza, S., Garcia-Vidal, C., Soriano, A., & Bodro, M. (2023). Pseudomonas aeruginosa Bloodstream Infection, Resistance, and Mortality: Do Solid Organ Transplant Recipients Do Better or Worse? Antibiotics, 12(2), 380. https://doi.org/10.3390/antibiotics12020380