Risk Factors and Outcomes for Multidrug Resistant Pseudomonas aeruginosa Infection in Immunocompromised Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Setting
2.2. Matching Criteria
2.3. Study Variables and Definitions
2.4. Statistical Analysis
3. Results
3.1. Study Cohort
3.2. Results of AST
3.3. Clinical Presentation and Therapeutic Management
3.4. Risk Factors for MDR-PSA Infection
3.5. Complications and Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Falagas, M.; Kopterides, P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: A systematic review of the literature. J. Hosp. Infect. 2006, 64, 7–15. [Google Scholar] [CrossRef]
- Callejas-Díaz, A.; Fernández-Pérez, C.; Ramos-Martínez, A.; Múñez-Rubio, E.; Sánchez-Romero, I.; Núñez, J.A.V. Impact of Pseudomonas aeruginosa bacteraemia in a tertiary hospital: Mortality and prognostic factors. Med. Clínica 2019, 152, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Bodro, M.; Sabé, N.; Tubau, F.; Lladó, L.; Baliellas, C.; González-Costello, J.; Cruzado, J.M.; Carratalà, J. Extensively Drug-Resistant Pseudomonas aeruginosa Bacteremia in Solid Organ Transplant Recipients. Transplantation 2015, 99, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Kara Ali, R.; Surme, S.; Balkan, I.I.; Salihoglu, A.; Sahin Ozdemir, M.; Ozdemir, Y.; Mete, B.; Can, G.; Ar, M.C.; Tabak, F.; et al. An eleven-year cohort of bloodstream infections in 552 febrile neutropenic patients: Resistance profiles of Gram-negative bacteria as a predictor of mortality. Ann. Hematol. 2020, 99, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Righi, E.; Peri, A.M.; Harris, P.N.A.; Wailan, A.; Liborio, M.; Lane, S.W.; Paterson, D.L. Global prevalence of carbapenem resistance in neutropenic patients and association with mortality and carbapenem use: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 668–677. [Google Scholar] [CrossRef] [Green Version]
- Vardakas, K.Z.; Rafailidis, P.I.; Konstantelias, A.A.; Falagas, M.E. Predictors of mortality in patients with infections due to multi-drug resistant Gram negative bacteria: The study, the patient, the bug or the drug? J. Infect. 2013, 66, 401–414. [Google Scholar] [CrossRef]
- Hernández-Jiménez, P.; López-Medrano, F.; Fernández-Ruiz, M.; Silva, J.T.; Corbella, L.; San-Juan, R.; Ruiz-Ruigómez, M.; Lizasoain, M.; Rodríguez-Goncer, I.; Díaz-Regañón, J.; et al. Derivation of a score to predict infection due to multidrug-resistant Pseudomonas aeruginosa: A tool for guiding empirical antibiotic treatment. J. Glob. Antimicrob. Resist. 2022, 29, 215–221. [Google Scholar] [CrossRef]
- Garner, J.S.; Jarvis, W.R.; Emori, T.G.; Horan, T.C.; Hughes, J.M. CDC definitions for nosocomial infections, 1988. Am. J. Infect. Control 1988, 16, 128–140. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- McCabe, W.R.; Jackson, G.G. Gram-Negative Bacteremia: II. Clinical, Laboratory, and Therapeutic Observations. Arch. Intern. Med. 1962, 110, 856–864. [Google Scholar] [CrossRef]
- Chow, J.W.; Yu, V.L. Combination antibiotic therapy versus monotherapy for gram-negative bacteraemia: A commentary. Int. J. Antimicrob. Agents 1999, 11, 7–12. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tofas, P.; Samarkos, M.; Piperaki, E.-T.; Kosmidis, C.; Triantafyllopoulou, I.-D.; Kotsopoulou, M.; Pantazatou, A.; Perlorentzou, S.; Poulli, A.; Vagia, M.; et al. Pseudomonas aeruginosa bacteraemia in patients with hematologic malignancies: Risk factors, treatment and outcome. Diagn. Microbiol. Infect. Dis. 2017, 88, 335–341. [Google Scholar] [CrossRef]
- Samonis, G.; Vardakas, K.Z.; Kofteridis, D.P.; Dimopoulou, D.; Andrianaki, A.M.; Chatzinikolaou, I.; Katsanevaki, E.; Maraki, S.; Falagas, M.E. Characteristics, risk factors and outcomes of adult cancer patients with extensively drug-resistant Pseudomonas aeruginosa infections. Infection 2014, 42, 721–728. [Google Scholar] [CrossRef]
- Carrillo-Larco, R.M.; Anza-Ramírez, C.; Saal-Zapata, G.; Villarreal-Zegarra, D.; Zafra-Tanaka, J.H.; Ugarte-Gil, C.; Bernabé-Ortiz, A. Type 2 diabetes mellitus and antibiotic-resistant infections: A systematic review and meta-analysis. J. Epidemiol. Community Health 2021, 76, 75–84. [Google Scholar] [CrossRef]
- Raman, G.; Avendano, E.E.; Chan, J.; Merchant, S.; Puzniak, L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2018, 7, 794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.T.; Fernández-Ruiz, M.; Aguado, J.M. Multidrug-resistant Gram-negative infection in solid organ transplant recipients: Implications for outcome and treatment. Curr. Opin. Infect. Dis. 2018, 31, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, D.; Kreil, S.; Nolte, F.; Hofmann, W.K.; Miethke, T.; Klein, S.A. Multidrug-resistant organisms in allogeneic hematopoietic cell transplantation. Eur. J. Haematol. 2017, 98, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 212527. [Google Scholar] [CrossRef]
- Montero, M.M.; Sala, M.; Riú, M.; Belvis, F.; Salvado, M.; Grau, S.; Horcajada, J.P.; Alvarez-Lerma, F.; Terradas, R.; Orozco-Levi, M.; et al. Risk factors for multidrug-resistant Pseudomonas aeruginosa acquisition. Impact of antibiotic use in a double case–control study. Eur. J. Clin. Microbiol. 2010, 29, 335–339. [Google Scholar] [CrossRef]
- Palavutitotai, N.; Jitmuang, A.; Tongsai, S.; Kiratisin, P.; Angkasekwinai, N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLoS ONE 2018, 13, e0193431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aloush, V.; Navon-Venezia, S.; Seigman-Igra, Y.; Cabili, S.; Carmeli, Y. Multidrug-Resistant Pseudomonas aeruginosa: Risk Factors and Clinical Impact. Antimicrob. Agents Chemother. 2006, 50, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalil, A.C.; Syed, A.; Rupp, M.E.; Chambers, H.; Vargas, L.; Maskin, A.; Miles, C.D.; Langnas, A.N.; Florescu, D.F. Is Bacteremic Sepsis Associated with Higher Mortality in Transplant Recipients than in Nontransplant Patients? A Matched Case-Control Propensity-Adjusted Study. Clin. Infect. Dis. 2015, 60, 216–222, Erratum in Clin. Infect. Dis. 2015, 60, 1590. [Google Scholar] [CrossRef] [PubMed]
- Malinis, M.; Mawhorter, S.D.; Jain, A.; Shrestha, N.; Avery, R.K.; Van Duin, D. Staphylococcus Aureus Bacteremia in Solid Organ Transplant Recipients: Evidence for improved survival when compared with nontransplant patients. Transplantation 2012, 93, 1045–1050. [Google Scholar] [CrossRef]
- Recio, R.; Sánchez-Diener, I.; Viedma, E.; Meléndez-Carmona, M.; Villa, J.; Orellana, M.; Mancheño, M.; Juan, C.; Zamorano, L.; Lora-Tamayo, J.; et al. Pathogenic characteristics of Pseudomonas aeruginosa bacteraemia isolates in a high-endemicity setting for ST175 and ST235 high-risk clones. Eur. J. Clin. Microbiol. 2020, 39, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Kiani, M.; Astani, A.; Eslami, G.; Khaledi, M.; Afkhami, H.; Rostami, S.; Zarei, M.; Rezaei Khozani, N.; Zandi, H. Upstream region of OprD mutations in imipenem-resistant and imipenem-sensitive Pseudomonas isolates. AMB Express 2021, 11, 82. [Google Scholar] [CrossRef]
Variable | MDR-PSA Cases (n = 48) | Non-MDR-PSA Controls (n = 96) | p |
---|---|---|---|
Age, years (mean ± SD) | 62.8 ± 15.6 | 65.5 ± 14.1 | 0.295 |
Male gender, n (%) | 32 (66.7) | 73 (76.0) | 0.23 |
Patient origin at admission, n (%) | 0.707 | ||
Home | 47 (97.9) | 94 (97.9) | |
Long-term care facility | 0 (0.0) | 2 (2.1) | |
Other | 1 (2.1) | 0 (0.0) | |
Hospital-acquired infection, n (%) | 27 (40.9) | 21 (26.9) | 0.076 |
Charlson Comorbidity index, median (IQR) | 3.5 (2–6) | 3 (2–6) | 0.98 |
McCabe-Jackson score, n (%) | 0.31 | ||
Rapidly fatal (<3 months) | 5 (10.4) | 5 (5.2) | |
Ultimately fatal (3 months to 5 years) | 28 (58.3) | 51 (53.1) | |
Non-fatal (>5 years) | 15 (31.25) | 40 (41.7) | |
Underlying disease, n (%) | |||
Diabetes mellitus | 18 (13.3) | 22 (22.92) | 0.066 |
No target organ damage | 15 (31.3) | 15 (15.6) | 0.03 |
Target organ damage | 3 (6.3) | 7 (7.3) | 1.000 |
Chronic lung disease | 3 (6.3) | 10 (10.4) | 0.544 |
Coronary heart disease | 8 (16.7) | 8 (8.3) | 0.134 |
Other heart disease | 5 (10.4) | 10 (10.4) | 1.000 |
Peripheral arterial disease | 4 (8.3) | 4 (4.2) | 0.441 |
Cerebrovascular disease | 2 (4.2) | 2 (2.1) | 0.601 |
Chronic kidney disease | 18 (37.5) | 36 (37.5) | 1.000 |
Liver cirrhosis | 4 (8.3) | 4 (4.2) | 0.441 |
HIV infection | 2 (4.2) | 3 (3.1) | 1.000 |
Type of immunosuppression, n (%) | 0.710 | ||
Solid organ transplantation | 14 (29.2) | 25 (26.0) | |
Hematological malignancy | 13 (27.1) | 22 (22.9) | |
Solid cancer | 18 (37.5) | 45 (46.9) | |
Other a | 3 (6.3) | 4 (4.2) | |
Neutropenia, n (%) | 9 (18.75) | 15 (15.63) | 0.635 |
Previous hospital admission, n (%) b | 18 (37.5) | 26 (27.1) | 0.201 |
Previous ICU admission, n (%) b | 2 (4.2) | 3 (3.1) | 1.000 |
Previous surgical intervention, n (%) b | 8 (16.7) | 9 (9.4) | 0.201 |
Previous receipt of antibiotics, n (%) c | 39 (81.3) | 41 (42.7) | <0.001 |
Previous surveillance for MDR colonization, n (%) c | 26 (54.2) | 35 (36.5) | 0.043 |
Previous MDR colonization, n (%) c | 18 (37.5) | 12 (12.5) | <0.001 |
Methicillin-resistant Staphylococcus aureus | 1 (2.1) | 1 (1.0) | 1.000 |
ESBL-producing Enterobacterales | 2 (4.2) | 4 (4.2) | 1.000 |
MDR Klebsiella spp. | 2 (4.2) | 2 (2.1) | 0.601 |
MDR Pseudomonas aeruginosa | 16 (33.3) | 2 (2.1) | <0.001 |
Variable | MDR-PSA Cases (n = 48) | Non-MDR-PSA Controls (n = 96) | p |
---|---|---|---|
Previous hospital stay, days (mean ± SD) a | 17.3 ± 34.5 | 9.8 ± 21.2 | 0.11 |
Invasive procedures or indwelling catheters in site, n (%) | 27 (56.3) | 46 (47.9) | 0.346 |
Bladder catheter | 22 (45.8) | 35 (36.5) | |
CVC | 4 (21.1) | 9 (25.7) | |
Biliary tract prosthesis | 1 (5.3) | 2 (5.7) | |
Site of infection, n (%) | 1.000 | ||
Upper urinary tract infection | 25 (52.1) | 50 (52.1) | |
Non-urinary catheter-related | 12 (25.0) | 22 (22.9) | |
Urinary catheter-related | 13 (27.1) | 28 (29.2) | |
Febrile neutropenia | 7 (14.6) | 14 (14.6) | |
Non-ventilator-associated pneumonia | 4 (8.3) | 8 (8.3) | |
Ventilator-associated pneumonia | 1 (2.1) | 2 (2.1) | |
Primary bacteremia | 4 (8.3) | 8 (8.3) | |
Intraabdominal infection | 2 (4.2) | 4 (4.2) | |
Biliary tract infection | 3 (6.3) | 6 (6.3) | |
Skin and soft tissue infection | 1 (2.1) | 2 (2.1) | |
CVC-related bacteremia | 1 (2.1) | 2 (2.1) | |
Overall bacteremia, n (%) | 13 (27.1) | 25 (26.0) | 0.894 |
Clinical presentation, n (%) | |||
Sepsis | 44 (91.7) | 82 (85.4) | 0.285 |
Septic shock | 19 (39.6) | 16 (16.7) | 0.003 |
Pitt’s bacteremia score, n (%) | 0.234 | ||
<2 points | 24 (50.0) | 58 (60.4) | |
≥2 points | 24 (50.0) | 38 (39.6) |
Variable | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p | aOR | 95% CI | p | |
Diabetes mellitus with no target organ damage | 2.45 | 1.08–5.59 | 0.033 | 4.74 | 1.63–13.79 | 0.004 |
Previous receipt of antibiotics | 5.81 | 2.53–13.33 | <0.001 | 5.32 | 1.93–14.73 | 0.001 |
Previous surveillance for MDR colonization | 2.06 | 1.02–4.16 | 0.043 | 1.29 | 0.48–3.43 | 0.616 |
Previous MDR colonization | 4.2 | 1.81–9.74 | <0.001 | 0.29 | 0.05–1.64 | 0.161 |
Previous MDR P. aeruginosa colonization | 23.5 | 5.12–107.8 | <0.001 | 42.1 | 4.49–394.8 | 0.001 |
Septic shock at diagnosis | 3.28 | 1.49–7.21 | 0.003 | 3.73 | 1.36–10.21 | 0.010 |
Variable | MDR-PSA Cases (n = 48) | Non-MDR-PSA Controls (n = 96) | p |
---|---|---|---|
Any complication, n (%) | 14 (29.2) | 11 (11.5) | 0.008 |
Secondary bacteremia | 4 (8.3) | 2 (2.1) | 0.095 |
Requirement of invasive procedure | 4 (8.3) | 3 (3.1) | 0.171 |
Clostridioides difficile infection | 5 (10.4) | 1 (1,0) | 0.016 |
Digestive perforation | 1 (2.8) | 1 (1.0) | 1.000 |
Septic thrombophlebitis | 0 (0.0) | 0 (0.0) | -- |
Secondary pneumonia | 4 (8.33) | 5 (5.21) | 0.481 |
Other complications | |||
Secondary abscess due to P. aeruginosa | 2 (4.2) | 5 (5.2) | 1.000 |
Thromboembolic or hemorrhagic event | 2 (4.2) | 6 (6.3) | 0.719 |
Invasive fungal infection | 0 (0.0) | 3 (3.1) | 0.551 |
Non-Pseudomonas secondary infection | 3 (6.3) | 3 (3.1) | 0.4 |
Treatment-emergent adverse event, n (%) | 3 (6.3) | 5 (5.2) | 1.000 |
Requirement of ICU admission during the index hospitalization, n (%) | 14 (29.2) | 22 (22.9) | 0.414 |
Clinical improvement, n (%) | 26 (54.2) | 78 (81.3) | 0.001 |
Time until clinical improvement, days (median [IQR]) | 11.5 (8–15) | 12 (8–16) | 0.701 |
30-day clinical improvement, n (%) | 25 (52.1) | 76 (79.2) | 0.001 |
Discharged alive by day 30, n (%) | 17 (35.4) | 61 (63.5) | 0.001 |
Length of hospital admission, days (mean [95% CI]) | 19 (12–27) | 19 (15–23) | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Jiménez, P.; López-Medrano, F.; Fernández-Ruiz, M.; Silva, J.T.; Corbella, L.; San-Juan, R.; Lizasoain, M.; Díaz-Regañón, J.; Viedma, E.; Aguado, J.M. Risk Factors and Outcomes for Multidrug Resistant Pseudomonas aeruginosa Infection in Immunocompromised Patients. Antibiotics 2022, 11, 1459. https://doi.org/10.3390/antibiotics11111459
Hernández-Jiménez P, López-Medrano F, Fernández-Ruiz M, Silva JT, Corbella L, San-Juan R, Lizasoain M, Díaz-Regañón J, Viedma E, Aguado JM. Risk Factors and Outcomes for Multidrug Resistant Pseudomonas aeruginosa Infection in Immunocompromised Patients. Antibiotics. 2022; 11(11):1459. https://doi.org/10.3390/antibiotics11111459
Chicago/Turabian StyleHernández-Jiménez, Pilar, Francisco López-Medrano, Mario Fernández-Ruiz, J. Tiago Silva, Laura Corbella, Rafael San-Juan, Manuel Lizasoain, Jazmín Díaz-Regañón, Esther Viedma, and José María Aguado. 2022. "Risk Factors and Outcomes for Multidrug Resistant Pseudomonas aeruginosa Infection in Immunocompromised Patients" Antibiotics 11, no. 11: 1459. https://doi.org/10.3390/antibiotics11111459
APA StyleHernández-Jiménez, P., López-Medrano, F., Fernández-Ruiz, M., Silva, J. T., Corbella, L., San-Juan, R., Lizasoain, M., Díaz-Regañón, J., Viedma, E., & Aguado, J. M. (2022). Risk Factors and Outcomes for Multidrug Resistant Pseudomonas aeruginosa Infection in Immunocompromised Patients. Antibiotics, 11(11), 1459. https://doi.org/10.3390/antibiotics11111459