Endophytic Fungi as a Source of Antibacterial Compounds—A Focus on Gram-Negative Bacteria
Abstract
:1. Introduction
2. Natural Products from Endophytic Microorganisms as a Resource in the Search for Bioactive Molecules
2.1. Mechanisms of Action Antimicrobial
2.1.1. Mechanisms of Action in the Cell Membrane
2.1.2. Mechanisms of Action in the Cell Wall
2.1.3. Mechanisms of the Action in the Protein Synthesis
2.1.4. Mechanisms of Action in the Nucleic Acid Synthesis
2.1.5. Mechanisms of Action in the Metabolisms of the Folic Acid
3. Natural Products against Gram-Negative Bacteria
4. Discussion
4.1. Acids
4.2. Alkaloids
4.3. Anthraquinones and Derivatives
4.4. Benzofuranoids
4.5. Benzophenone and Derivatives
4.6. Benzopyrones
4.7. Biphenyl Derivative
4.8. Butyrolactone Derivative
4.9. Carboxamides
4.10. Quinone Derivative
4.11. Cyclic Peptide
4.12. Terpenes
4.13. Cytochalasan-Type Alkaloids
4.14. Cytochalasins and Derivatives
4.15. Decalin Polyketides
4.16. Depsipeptide
4.17. Desmethyl Fusarin C Derivatives
4.18. Diketopiperazine and Epipolythiodioxopiperazine
4.19. Ergosterol Derivatives
4.20. Fusaric Acid Derivatives
4.21. Helvolic Acid Derivative
4.22. Indene Derivative
4.23. Indole Alkaloids
4.24. Indole Diterpenoids
4.25. Isocoumarin and Derivatives
4.26. Naphthoquinones
4.27. Phenalenone Derivative
4.28. Phenolic Compounds
4.29. Phomosine Derivatides
4.30. Phthalate
4.31. Phthalide Derivative
4.32. Polyketide and Derivative
4.33. Polysaccharides
4.34. Pyrones
4.35. Sesquiterpenoids and Terpenes Derivatives
4.36. Sirenin Derivatives
4.37. Triterpenoid
4.38. Xanthones
4.39. α-Pyrone and Derivatives and γ-Pyrones Derivatives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spellberg, B.; Powers, J.H.; Brass, E.P.; Miller, L.G.; Edwards, J.E. Trends in antimicrobial drug development: Implications for the future. Clin. Infect. Dis. 2004, 38, 1279–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B. Microbial resistance to antibiotics. an evolving and persistent problem. Lancet 1982, 2, 83–88. [Google Scholar] [CrossRef]
- Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H.W.; Scheld, W.M.; Bartlett, J.G.; Edwards, J. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the infectious diseases society of america. Clin. Infect. Dis. 2008, 46, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Soc. 2017, 32, 76. [Google Scholar] [CrossRef]
- Essack, S. Antibiotic resistance and one health: A mapping project. Lancet Glob. Health 2018, 6, S27. [Google Scholar] [CrossRef]
- Sridhar, S.; Turbett, S.E.; Harris, J.B.; LaRocque, R.C. Antimicrobial-resistant bacteria in international travelers. Curr. Opin. Infect. Dis. 2021, 34, 423–431. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling drug-resistant infections globally: Final report and recommendations. In Review on Antimicrobial Resistance—Government of the United Kingdom; Review on Antimicrobial Resistance: London, UK, 2016. [Google Scholar]
- Thongsamer, T.; Neamchan, R.; Blackburn, A.; Acharya, K.; Sutheeworapong, S.; Tirachulee, B.; Pattanachan, P.; Vinitnantharat, S.; Zhou, X.Y.; Su, J.Q.; et al. Environmental antimicrobial resistance is associated with faecal pollution in central thailand’s coastal aquaculture region. J. Hazard. Mater. 2021, 416, 125718. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drevinek, P.; Canton, R.; Krogh, H.; Hoffman, L.; Coenye, T.; Burgel, P.; Davies, J.C. New concepts in antimicrobial resistance in cystic fibrosis respiratory infections. J. Cyst. Fibros. 2022. [Google Scholar] [CrossRef]
- Waters, V.; Ratjen, F. Combination antimicrobial susceptibility testing for acute exacerbations in chronic infection of Pseudomonas aeruginosa in cystic fibrosis (Review). Cochrane Libr. 2017, 2017, CD006961. [Google Scholar] [CrossRef]
- Chatham-Stephens, K.; Medalla, F.; Hughes, M.; Appiah, G.D.; Aubert, R.D.; Caidi, H.; Angelo, K.M.; Walker, A.T.; Hatley, N.; Masani, S.; et al. Emergence of extensively drug-resistant salmonella typhi infections among travelers to or from pakistan-United States, 2016–2018. Pediatric Infect. Dis. J. 2019, 68, 11–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokhrel, A. Antimicrobial (antibiotic) resistance: An evolving threat to medicine. Ann. Med. Surg. 2022, 81, 104357. [Google Scholar] [CrossRef] [PubMed]
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0189621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, I.B.; Maillard, J.Y.; Simões, L.C.; Simões, M. Emerging contaminants affect the microbiome of water systems—Strategies for their mitigation. Npj Clean Water 2020, 3, 39. [Google Scholar] [CrossRef]
- Baharoglu, Z.; Garriss, G.; Mazel, D. Multiple pathways of genome plasticity leading to development of antibiotic resistance. Antibiotics 2013, 2, 288–315. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The who priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- WHO. 2021 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis; WHO: Geneva, Switzerland, 2021; ISBN 9789240021303. Available online: Who.int/publications/i/item/9789240047655 (accessed on 10 October 2022).
- Rahman, M.S.; Koh, Y.S. A novel antibiotic agent, cefiderocol, for multidrug-resistant gram-negative bacteria. J. Bacteriol. Virol. 2020, 50, 218–226. [Google Scholar] [CrossRef]
- Smith, R.; Coast, J. The true cost of antimicrobial resistance. BMJ 2013, 346, f1493. [Google Scholar] [CrossRef] [Green Version]
- CDC. Antibiotic Resistance Threats in the United States, 2019; US Department of Health and Human Services, Centres for Disease Control and Prevention: Atlanta, GA, USA, 2019.
- Chokshi, A.; Sifri, Z.; Cennimo, D.; Horng, H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019, 11, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod. 2004, 67, 257–268. [Google Scholar] [CrossRef]
- Viegas, C., Jr.; Bolzani, V.d.S.; Barreiro, E.J. Os produtos naturais e a química medicinal moderna. Quim. Nova 2006, 29, 326–337. [Google Scholar] [CrossRef] [Green Version]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. vi. the isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef]
- Strohl, W.R. The role of natural products in a modern drug discovery program. Drug Discov. Today 2000, 5, 39–41. [Google Scholar] [CrossRef]
- Alvin, A.; Miller, K.I.; Neilan, B.A. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol. Res. 2014, 169, 483–495. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [Green Version]
- Specian, V.; Orlandelli, R.C.; Felber, A.C.; Azevedo, J.L.; Pamphile, J. Metabólitos secundários de interesse farmacêutico produzidos por fungos endofíticos. Cient. Ciênc. Biol. Saúde 2014, 16, 345–351. [Google Scholar]
- Melo, I.S.; Azevedo, J.L. (Eds.) Ecologia Microbiana; Embrapa: Jaguariúna, Brazil, 1998; ISBN 85-85771-01-1. [Google Scholar]
- De Bary, A. Morphologie und physiologie der pilze, flechten und myxomyceten; Biodiversity Heritage Library: Leipzig, Germany, 1866; p. 316. [Google Scholar]
- Wilson, D. Endophyte: The evolution of a term, and clarification of its use and definition. Oikos 1995, 73, 274–276. [Google Scholar] [CrossRef]
- Slama, H.B.; Bouket, A.C.; Alenezi, F.N.; Pourhassan, Z.; Golińska, P.; Oszako, T.; Belbahri, L. Potentials of endophytic fungi in the biosynthesis of versatile secondary metabolites and enzymes. Forests 2021, 12, 1784. [Google Scholar] [CrossRef]
- Yadav, A.N. Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. Acta Sci. Microbiol. 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Martinez-Klimova, E.; Rodríguez-Peña, K.; Sánchez, S. Endophytes as sources of antibiotics. Biochemical Pharmacology 2017, 134, 1–17. [Google Scholar] [CrossRef]
- Sharma, A.; Malhotra, B.; Kharkwal, H.; Kulkarni, G.T.; Kaushik, N. Therapeutic agents from endophytes harbored in asian medicinal plants. Phytochem. Rev. 2020, 19, 691–720. [Google Scholar] [CrossRef]
- Neto, P.A.S.P.; De Azevedo, J.L.; Caetano, L.C. Microrganismos endofíticos em plantas: Status atual e perspectivas. Boletín Latinoam. Y Del Caribe De Plantas Med. Y Aromáticas 2004, 3, 69–72. Available online: http://www.Redalyc.Org/Articulo.Oa?Id=85630404 (accessed on 1 October 2022).
- Fadiji, A.E.; Babalola, O.O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 2020, 8, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.T.; Habbu, P.V.; Kulkarni, V.H.; Jagadish, K.S.; Pandey, A.R.; Sutariya, V.N. Endophytic microbes: A novel source for biologically/pharmacologically active secondary metabolites. Asian J. Pharmacol. Toxicol. 2014, 2, 1–16. [Google Scholar]
- Kırmusaoğlu, S.; Gareayaghi, N.; Kocazeybek, B.S. Introductory chapter: The action mechanisms of antibiotics and antibiotic resistance. In Antimicrobials. Antibiotic Resistance, Antibiofilm Strategies and Activity Methods; Kırmusaoğlu, S., Ed.; Intechopen: London, UK, 2019; p. 9. [Google Scholar]
- Tortora, G.J.; Funke, B.R.; Case, C.L. Anatomia Functional De Células Procarióticas E Eucarióticas, 10th ed.; Microbiologia: Porto Alegre, Brazil, 2000; p. 967. [Google Scholar]
- Scherer, C.B. Mecanismos de ação de antimicrobianos e resistência bacteriana antimicrobial mechanisms of action and bacterial resistance. Rev. De Educ. Contin. Em Dermatol. E Alergol. Veterinária 2016, 4, 12–20. [Google Scholar]
- Conrad, R.S.; Gilleland, H.E. Lipid alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. J. Bacteriol. 1981, 148, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Soares, G.M.S.; Figueiredo, L.C.; Faveri, M.; Cortelli, S.C.; Duarte, P.M.; Feres, M. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. J. Appl. Oral Sci. 2012, 20, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300–305. [Google Scholar] [CrossRef]
- Von Nussbaum, F.; Brands, M.; Hinzen, B.; Weigand, S.; Häbich, D. Antibacterial natural products in medicinal chemistry—Exodus or revival? Angew. Chem.—Int. Ed. 2006, 45, 5072–5129. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, I.; Hawkey, P.M.; Hinton, M. Tetracyclines, molecular and clinical aspects. J. Antimicrob. Chemother. 1992, 29, 245–277. [Google Scholar] [CrossRef] [PubMed]
- Bozdogan, B.; Appelbaum, P.C. Oxazolidinones: Activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents 2004, 23, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007, 128, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Qureshi, A.; Hassan, W. Mechanisms of action by antimicrobial agents: A review. McGill J. Med. 2021, 19. [Google Scholar] [CrossRef]
- Silva, F.D.A.; Liotti, R.G.; Ana Paula deAraújo, B.; De Melo Reis, É.; Passos, M.B.S.; Dos Santos, E.L.; Sampaio, O.M.; Januário, A.H.; Branco, C.L.B.; Da Silva, G.F.; et al. Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) ducke and bioactivity of their secondary metabolites. PLoS ONE 2018, 13, e0195874. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.X.; Li, J.; Zhang, J.M.; Jin, X.J.; Yu, B.; Fang, J.G.; Wu, Q.X. Isolation, identification, and activity evaluation of chemical constituents from soil fungus Fusarium avenaceum SF-1502 and endophytic fungus Fusarium proliferatum AF-04. J. Agric. Food Chem. 2019, 67, 1839–1846. [Google Scholar] [CrossRef]
- Pinheiro, E.A.A.; Carvalho, J.M.; Dos Santos, D.C.P.; De Oliveira Feitosa, A.; Marinho, P.S.B.; Guilhon, G.M.S.P.; De Souza, A.D.L.; Da Silva, F.M.A.; Andrey, A.M. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant bauhinia guianensis. Nat. Prod. Res. 2013, 27, 1633–1638. [Google Scholar] [CrossRef]
- Li, X.B.; Chen, G.Y.; Liu, R.J.; Zheng, C.J.; Song, X.M.; Han, C.R. A new biphenyl derivative from the mangrove endophytic fungus Phomopsis longicolla HL-2232. Nat. Prod. Res. 2017, 31, 2264–2267. [Google Scholar] [CrossRef]
- Sun, P.; Huo, J.; Kurtán, T.; Mándi, A.; Antus, S.; Tang, H.; Drager, S.; Schulz, B.; Hussain, H.; Krohn, K.; et al. Structural and stereochemical studies of hydroxyanthraquinone derivatives from the endophytic fungus Coniothyrium sp. Chirality 2012, 25, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Yu, M.; Lin, T.; Zhang, L. Secondary metabolites of Xylaria Sp., An endophytic fungus from Taxus mairei. Nat. Prod. Res. 2016, 30, 2442–2447. [Google Scholar] [CrossRef]
- Cai, R.; Jiang, H.; Zang, Z.; Li, C.; She, Z. New benzofuranoids and phenylpropanoids from the the mangrove endophytic fungus, Aspergillus sp. ZJ-68. Mar. Drugs 2019, 17, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, Z.; Li, X.M.; Li, C.S.; Wang, B.G. Diverse secondary metabolites produced by marine-derived fungus Nigrospora sp. MA75 on various culture media. Chem. Biodivers. 2012, 9, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.X.; Tan, H.B.; Chen, K.; Zhao, L.Y.; Chen, Y.C.; Li, S.N.; Li, H.H.; Zhang, W.M. Cytosporins A-D, novel benzophenone derivatives from the endophytic fungus: Cytospora rhizophorae A761. Org. Biomol. Chem. 2019, 17, 2346–2350. [Google Scholar] [CrossRef]
- Wang, X.Z.; Luo, X.H.; Xiao, J.; Zhai, M.M.; Yuan, Y.; Zhu, Y.; Crews, P.; Yuan, C.S.; Wu, Q.X. Pyrone derivatives from the endophytic fungus Alternaria tenuissima sp-07 of chinese herbal medicine Salvia przewalskii. Fitoterapia 2014, 99, 184–190. [Google Scholar] [CrossRef]
- Akhter, N.; Pan, C.; Liu, Y.; Shi, Y.; Wu, B. Isolation and structure determination of a new indene derivative from endophytic fungus Aspergillus flavipes Y-62. Nat. Prod. Res. 2019, 33, 2939–2944. [Google Scholar] [CrossRef]
- Noriler, S.A.; Savi, D.C.; Ponomareva, L.V.; Rodrigues, R.; Rohr, J.; Thorson, J.S.; Glienke, C.; Shaaban, K.A. Vochysiamides a and b: Two new bioactive carboxamides produced by the new species Diaporthe vochysiae. Fitoterapia 2019, 138, 104273. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.M.; Liang, X.A.; Zhang, H.C.; Liu, R. Cytotoxic and antibiotic cyclic pentapeptide from an endophytic Aspergillus tamarii of Ficus carica. J. Agric. Food Chem. 2016, 64, 3789–3793. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Liu, T.K.; Shi, Q.; Yang, X.L. Sesquiterpenoids and diterpenes with antimicrobial activity from Leptosphaeria sp. Xl026, an endophytic fungus in Panax notoginseng. Fitoterapia 2019, 137, 104243. [Google Scholar] [CrossRef]
- Xue, M.; Zhang, Q.; Gao, J.; Li, H.; Tian, J.; Pescitelli, G. Chaetoglobosin vb from endophytic Chaetomium globosum: Absolute configuration of chaetoglobosins. Chirality 2012, 24, 668–674. [Google Scholar] [CrossRef]
- Yang, L.J.; Liao, H.X.; Bai, M.; Huang, G.L.; Luo, Y.P.; Niu, Y.Y.; Zheng, C.J.; Wang, C.Y. One new cytochalasin metabolite isolated from a mangrove-derived fungus Daldinia eschscholtzii HJ001. Nat. Prod. Res 2018, 32, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Jouda, J.B.; Tamokou, J.d.D.; Mbazoa, C.D.; Douala-Meli, C.; Sarkar, P.; Bag, P.K.; Wandji, J. Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in Garcinia kola (heckel) nut. BMC Complementary Altern. Med. 2016, 16, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Kusari, S.; Lamshöft, M.; Schüffler, A.; Laatsch, H.; Spiteller, M. Antibacterial secondary metabolites from an endophytic fungus, Eupenicillium sp. LG41. J. Nat. Prod. 2014, 77, 2335–2341. [Google Scholar] [CrossRef]
- Kyekyeku, J.O.; Kusari, S.; Adosraku, R.K.; Bullach, A.; Golz, C.; Strohmann, C.; Spiteller, M. Antibacterial secondary metabolites from an endophytic fungus, Fusarium solani JK10. Fitoterapia 2017, 119, 108–114. [Google Scholar] [CrossRef]
- Yang, Y.H.; Yang, D.S.; Li, G.H.; Pu, X.J.; Mo, M.H.; Zhao, P.J. Antibacterial diketopiperazines from an endophytic fungus Bionectria sp. Y1085. J. Antibiot. 2019, 72, 752–758. [Google Scholar] [CrossRef]
- Yu, F.X.; Chen, Y.; Yang, Y.H.; Li, G.H.; Zhao, P.J. A new epipolythiodioxopiperazine with antibacterial and cytotoxic activities from the endophytic fungus Chaetomium sp. m336. Nat. Prod. Res. 2018, 32, 689–694. [Google Scholar] [CrossRef]
- Li, G.; Kusari, S.; Kusari, P.; Kayser, O.; Spiteller, M. Endophytic Diaporthe sp. LG23 produces a potent antibacterial tetracyclic triterpenoid. J. Nat. Prod. 2015, 78, 2128–2132. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Qiao, L.; Zhang, X.; Sun, C.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Fusaricates h-k and fusolanones a-b from a mangrove endophytic fungus Fusarium solani HDN15-410. Phytochemistry 2019, 158, 13–19. [Google Scholar] [CrossRef]
- Liang, X.A.; Ma, Y.M.; Zhang, H.C.; Liu, R. A new helvolic acid derivative from an endophytic Fusarium sp. of Ficus carica. Nat. Prod. Res. 2016, 30, 2407–2412. [Google Scholar] [CrossRef]
- Du, F.Y.; Li, X.M.; Li, C.S.; Shang, Z.; Wang, B.G. Cristatumins a-d, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220. Bioorg. Med. Chem. Lett. 2012, 22, 4650–4653. [Google Scholar] [CrossRef]
- Zhao, J.C.; Wang, Y.L.; Zhang, T.Y.; Chen, Z.J.; Yang, T.M.; Wu, Y.Y.; Sun, C.P.; Ma, X.C.; Zhang, Y.X. Indole diterpenoids from the endophytic fungus Drechmeria sp. as natural antimicrobial agents. Phytochemistry 2018, 148, 21–28. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, A.G.; Savi, D.C.; Mitra, P.; Shaaban, K.A.; Jha, A.K.; Thorson, J.S.; Rohr, J.; Glienke, C. Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiol. 2018, 63, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Yao, F.; Liang, X.; Liu, Q.; Xu, W.; Liang, Y.; Liu, X.; Li, J.; Yang, R. A new phthalide from the endophytic fungus Xylaria sp. GDG-102. Nat. Prod. Res. 2018, 32, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, E.A.A.; Pina, J.R.S.; Feitosa, A.O.; Carvalho, J.M.; Borges, F.C.; Marinho, P.S.B.; Marinho, A.M.R. Bioprospecting of antimicrobial activity of extracts of endophytic fungi from Bauhinia guianensis. Rev. Argent. De Microbiol. 2017, 49, 3–6. [Google Scholar] [CrossRef]
- Gombodorj, S.; Yang, M.H.; Shang, Z.C.; Liu, R.H.; Li, T.X.; Yin, G.P.; Kong, L.Y. New phenalenone derivatives from Pinellia ternata tubers derived Aspergillus sp. Fitoterapia 2017, 120, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Subban, K.; Subramani, R.; Johnpaula, M. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Nat. Prod. Res. 2013, 27, 1445–1449. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.M.; Zheng, C.J.; Chen, G.Y.; Song, X.P.; Han, C.R.; Tang, X.Z.; Liu, R.J.; Ren, L.L. Two new stemphol sulfates from the mangrove endophytic fungus Stemphylium sp. 33231. J. Antibiot. 2015, 68, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Sousa, J.P.B.; Aguilar-Pérez, M.M.; Arnold, A.E.; Rios, N.; Coley, P.D.; Kursar, T.A.; Cubilla-Rios, L. Chemical constituents and their antibacterial activity from the tropical endophytic fungus Diaporthe sp. F2934. J. Appl. Microbiol. 2016, 120, 1501–1508. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Wen, S.; Ding, M.; Guo, H.; Huang, C.; Zhu, X.; Huang, J.; She, Z.; Long, Y. The purification, characterization, and biological activity of new polyketides from mangrove-derived endophytic fungus Epicoccum nigrum SCNU-F0002. Mar. Drugs 2019, 17, 414. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.X.; Kusari, S.; Laatsch, H.; Golz, C.; Kusari, P.; Strohmann, C.; Kayser, O.; Spiteller, M. Antibacterial azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J. Nat. Prod. 2016, 79, 704–710. [Google Scholar] [CrossRef] [Green Version]
- Jouda, J.B.; Kusari, S.; Lamshöft, M.; Mouafo Talontsi, F.; Douala Meli, C.; Wandji, J.; Spiteller, M. Penialidins A-C with strong antibacterial activities from Penicillium sp., an endophytic fungus harboring leaves of Garcinia nobilis. Fitoterapia 2014, 98, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.J.; Yang, H.R.; Wang, H.F.; Zong, M.H.; Lou, W.Y. Immune enhancement activity of a novel polysaccharide produced by Dendrobium officinale endophytic fungus Fusarium solani DO7. J. Funct. Foods 2019, 53, 266–275. [Google Scholar] [CrossRef]
- Cai, R.; Chen, S.; Liu, Z.; Tan, C.; Huang, X.; She, Z. A new α-pyrone from the mangrove endophytic fungus Phomopsis sp. HNY29-2B. Nat. Prod. Res. 2017, 31, 124–130. [Google Scholar] [CrossRef]
- Zhao, T.; Xu, L.L.; Zhang, Y.; Lin, Z.H.; Xia, T.; Yang, D.F.; Chen, Y.M.; Yang, X.L. Three new α-pyrone derivatives from the plant endophytic fungus Penicillium ochrochloronthe and their antibacterial, antifungal, and cytotoxic activities. J. Asian Nat. Prod. Res. 2019, 21, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.M.; Zheng, C.J.; Song, X.P.; Han, C.R.; Chen, W.H.; Chen, G.Y. Antibacterial α-pyrone derivatives from a mangrove-derived fungus Stemphylium sp. 33231 from the south China sea. J. Antibiot. 2014, 67, 401–403. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.; Cechinel Filho, V. Plantas do gênero Bauhinia: Composição química e potencial farmacológico. Quim. Nova 2002, 25, 449–454. [Google Scholar] [CrossRef]
- Stoessl, A. Some metabolites of Alternaria solani. Can. J. Chem. 1969, 47, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Stoesser, N.; Sheppard, A.E.; Peirano, G.; Anson, L.W.; Pankhurst, L.; Sebra, R.; Phan, H.T.T.; Kasarskis, A.; Mathers, A.J.; Peto, T.E.A.; et al. Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli. Sci. Rep. 2017, 7, 5917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doi, Y.; Paterson, D.L. Carbapenemase-producing Enterobacteriaceae. Semin. Respir. Crit. Care Med. 2015, 36, 74–84. [Google Scholar] [PubMed] [Green Version]
- Morrill, H.J.; Pogue, J.M.; Kaye, K.S.; LaPlante, K.L. Treatment Options for Carbapenem-Resistant Enterobacteriaceae Infections. Open Forum Infect. Dis. 2015, 2, ofv050. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, F.L.P.C.; Teixeira, L.M.; Carvalho, M.D.G.S.; Nouér, S.A.; Pinto De Oliveira, M.; Mello, J.L.S.; D’Ávila Freitas, A.; Ferreira, A.L.P.; Amorim, E.D.L.T.; Riley, L.W.; et al. Occurrence of a multidrug-resistant Pseudomonas aeruginosa clone in different hospitals in rio de janeiro, Brazil. J. Clin. Microbiol. 2002, 40, 2420–2424. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, H.Q.; Zong, S.C.; Gao, J.M.; Zhang, A.L. Chemical and bioactive diversities of the genus Chaetomium secondary metabolites. Mini-Rev. Med. Chem. 2012, 12, 127–148. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Ju, Z.; Wan, J.; Liao, S.; Lin, X.; Zhang, T.; Zhou, X.; Chen, H.; Tu, Z.; et al. Cytotoxic cytochalasins from marine-derived fungus Arthrinium arundinis. Planta Med. 2015, 81, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Xiao, J.; Sun, Q.Q.; Qin, J.C.; Pescitelli, G.; Gao, J.M. Characterization of cytochalasins from the endophytic Xylaria sp. and their biological functions. J. Agric. Food Chem. 2014, 62, 10962–10969. [Google Scholar] [CrossRef] [PubMed]
- Wagenaar, M.M.; Corwin, J.; Strobel, G.; Clardy, J. Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J. Nat. Prod. 2000, 63, 1692–1695. [Google Scholar] [CrossRef]
- Volkman, J.K. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 2003, 60, 495–506. [Google Scholar] [CrossRef]
- Oliveira, A.L.L.d.; Felício, R.d.; Debonsi, H.M. Marine natural products: Chemical and biological potential of seaweeds and their endophytic fungi. Rev. Bras. De Farmacogn. 2012, 22, 906–920. [Google Scholar] [CrossRef] [Green Version]
- Saikia, S.; Nicholson, M.J.; Young, C.; Parker, E.J.; Scott, B. The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol. Res. 2008, 112, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, Y.; Liu, P.; Fu, P.; Zhu, T.; Wang, W.; Zhu, W. Indole diterpenoids with anti-H1N1 activity from the aciduric fungus Penicillium camemberti OUCMDZ-1492. J. Nat. Prod. 2013, 76, 1328–1336. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Maier, A.; Fiebig, H.H.; Lin, W.H.; Hertweck, C. A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Org. Biomol. Chem. 2011, 9, 4029–4031. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.R.; Glienke, C.; Videira, S.I.R.; Lombard, L.; Groenewald, J.Z.; Crous, P.W. Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Pers.—Mol. Phylogeny Evol. Fungi 2013, 31, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, P.J.C.; Savi, D.C.; Gomes, R.R.; Goulin, E.H.; Da Costa Senkiv, C.; Tanaka, F.A.O.; Almeida, Á.M.R.; Galli-Terasawa, L.; Kava, V.; Glienke, C. Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiol. Res. 2016, 186, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A. Isocoumarins, miraculous natural products blessed with diverse pharmacological activities. Eur. J. Med. Chem. 2016, 116, 290–317. [Google Scholar] [CrossRef] [PubMed]
- Park, S.C.; Julianti, E.; Ahn, S.; Kim, D.; Lee, S.K.; Noh, M.; Oh, D.C.; Oh, K.B.; Shin, J. Phenalenones from a marine-derived fungus Penicillium sp. Mar. Drugs 2019, 17, 176. [Google Scholar] [CrossRef] [PubMed]
- Elsebai, M.F.; Saleem, M.; Tejesvi, M.V.; Kajula, M.; Mattila, S.; Mehiri, M.; Turpeinen, A.; Pirttilä, A.M. Fungal phenalenones: Chemistry, biology, biosynthesis and phylogeny. Nat. Prod. Rep. 2014, 31, 628–645. [Google Scholar] [CrossRef]
- Erythropel, H.C.; Maric, M.; Nicell, J.A.; Leask, R.L.; Yargeau, V. Leaching of the plasticizer Di(2-Ethylhexyl)Phthalate (DEHP) from plastic containers and the question of human exposure. Appl. Microbiol. Biotechnol. 2014, 98, 9967–9981. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Nguyen, D.T.M.; Kim, E.K. Effects of di-(2-Ethylhexyl) phthalate (DEHP) released from laboratory equipments. Korean J. Chem. Eng. 2008, 25, 1136–1139. [Google Scholar] [CrossRef]
- Gan, M.; Liu, Y.; Bai, Y.; Guan, Y.; Li, L.; Gao, R.; He, W.; You, X.; Li, Y.; Yu, L.; et al. Polyketides with new delhi metallo-β-lactamase 1 inhibitory activity from Penicillium sp. J. Nat. Prod. 2013, 76, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Bérdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.M.; Roberson, J.S.; Harris, T.M. Biosynthesis of griseofulvin. J. Am. Chem. Soc. 1976, 98, 5380–5386. [Google Scholar] [CrossRef]
- Brown, A.G.; Srnale, T.C.; King, T.J.; Hasenkamp, R.; Thompson, R.H. Crystal and molecular structure of compactin, a new antifungal metabolite frorn Penicillium brevicompactum. J. Chem. Soc. Perkin Trans. 1976, 1, 1165–1170. [Google Scholar] [CrossRef]
- Donot, F.; Fontana, A.; Baccou, J.C.; Schorr-Galindo, S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 2012, 87, 951–962. [Google Scholar] [CrossRef]
- Liu, C.; Lu, J.; Lu, L.; Liu, Y.; Wang, F.; Xiao, M. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour. Technol. 2010, 101, 5528–5533. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, S.; Banerjee, D. Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbohydr. Polym. 2012, 90, 683–689. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Pu, H.; Liu, S.; Kan, J.; Jin, C. Recent advances in endophytic exopolysaccharides: Production, structural characterization, physiological role and biological activity. Carbohydr. Polym. 2017, 157, 1113–1124. [Google Scholar] [CrossRef]
- Orlandelli, R.C.; Vasconcelos, A.F.D.; Azevedo, J.L.; Corradi Da Silva, M.D.L.; Pamphile, J.A. Screening of endophytic sources of exopolysaccharides: Preliminary characterization of crude exopolysaccharide produced by submerged culture of Diaporthe sp. JF766998 under different cultivation time. Biochim. Open 2016, 2, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, T.O.; Perry, N.B.; Andersen, B. Infectopyrone, a potential mycotoxin from Alternaria infectoria. Tetrahedron Lett. 2003, 44, 4511–4513. [Google Scholar] [CrossRef]
- CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 0956-4624. [Google Scholar]
Endophyte Species (Source Plant/Tissue) | Chemical Class | Compound Name (All Name Were Kept as They Appear in the Original Article (m/z) | Structural Formula | Target Bacterium | Minimum Inhibitory Concentration (MIC) * | Reference |
---|---|---|---|---|---|---|
Diaporthe phaseolorum (8S) (seed) | Acids | (1) 3-hydroxypropionic acid (3-HPA)—C3H6O3/91.03897 [M + H]+ | Escherichia coli Multiresistant strain E. coli Susceptible strain Pseudomonas aeruginosa Multiresistant strain P. aeruginosa Susceptible strain | >30 µg/mL >30 µg/mL 0.23 µg/mL 0.23 µg/mL | [54] | |
Fusarium proliferatum AF-04 (onion) | Alkaloids | (2) Indol-3-acetic acid-C10H9NO2/176.070605 [M + H]+ | E. coli | >100 μg/mL | [55] | |
F. proliferatum AF-04 (onion) | Alkaloids | (3) Methyl indolyl-3- Acetate—C11H11NO2/190.086255 [M + H]+ | E. coli | >100 μg/mL | [55] | |
F. proliferatum AF-04 (onion) | Alkaloids | (4) Bassiatin—C15H19NO3/262.14377 [M + H]+ | E. coli | >100 μg/mL | [55] | |
Aspergillus sp. EJC08 | Alkaloids | (5) Pseurotin A—C23H26O8/432 [M + H]+ | E. coli ATCC 25922 P. aeruginosa ATCC 27853 | 31.25 μg/mL 31.25 μg/mL | [56] | |
Aspergillus sp. EJC08 | Alkaloids | (6) Fumigaclavine C—C23H30N2O2/367 [M + H]+ | E. coli ATCC 25922 P. aeruginosa ATCC 27853 | 62.50 μg/mL 31.25 μg/mL | [56] | |
Phomopsislongicolla HL-2232 (mangrove) | Anthraquinones | (7) Altersolanol B—C16H16O6/305.101965 [M + H]+ | Vibrio parahaemolyticus Vibrio anguillarum | 2.5 μg/mL 5 μg/mL | [57] | |
Coniothyrium sp. (internal strain No. zw86) | Anthraquinones | (8) 1,7-dihydroxy-3-methyl-9,10-anthraquinone—254 [M]+ | E. coli | 11 mm | [58] | |
Coniothyrium sp. (internal strain No. zw86) | Anthraquinones | (9) Phomarin—C15H10O4/254 [M]+ | E. coli | 11 mm | [58] | |
Coniothyrium sp. (internal strain No. zw86) | Anthraquinones | (10) 1-Hydroxy-3-hydroxymethyl-9,10-anthraquinone—C15H10O4/254 [M]+ | E. coli | 15 mm | [58] | |
Xylaria sp. JK50 | Anthraquinones derivatives | (11) Nalgiovensin—C18H16O6/329.101965 [M + H]+ | E. coli | 50 μg/mL | [59] | |
Coniothyrium sp. (internal strain No. zw86) | Anthraquinones derivatives | (12) Coniothyrinones A—C15H16O5/276.0998 [M]+ | E. coli | 7.5 mm | [58] | |
Coniothyrium sp. (internal strain No. zw86) | Anthraquinones derivatives | (13) Coniothyrinones B C15H18O4/261.1128 [M-H]− | E. coli | 6 mm | [58] | |
Coniothyrium sp. (internal strain No. zw86) | Anthraquinones derivatives | (14) Coniothyrinones C—C15H18O5/277.1078 [M-H]− | E. coli | 7.5 mm | [58] | |
Coniothyrium sp. (internal strain No. zw86) | Anthraquinones derivatives | (15) Coniothyrinones D—C15H18O5/278.1155 [M]+ | E. coli | 6 mm | [58] | |
Aspergillus sp. ZJ-68 (leaves) | Benzofuranoid | (16) 2-(hydroxymethyl)-3-propylphenol—C10H13O2/175 [M-H]− | E.coli P. aeruginosa | 8.3 µg/mL >100 μg/mL | [60] | |
Aspergillus sp. ZJ-68 (leaves) | Benzofuranoid | (17) (-)-brassicadiol—C15H22O3/246 [M-H]− | E. coli P. aeruginosa | 12.5 µg/mL >100 μg/mL | [60] | |
Nigrospora sp. MA75 (stem) | Benzophenone | (18) Griseophenone C—C16H16O6/305.101965 [M + H]+ | E. coli P. aeruginosa | 2 μg/mL 0.5μg/mL | [61] | |
Cytospora rhizophorae A761 | Benzophenone derivatives—meroterpenoide | (19) Cytosporins A—C20H22O7/373.1279 [M-H]− | E. coli | 250 µg/mL | [62] | |
C. rhizophorae A761 | Benzophenone derivatives—meroterpenoide | (20) Cytosporin B—C20H22O8/ 387.1068 [M-H]− | E. coli | 250 µg/mL | [62] | |
C. rhizophorae A761 | Benzophenone derivatives—meroterpenoide | (21) Cytosporin C—C20H24O7/ 377.1589 [M + H]+ | E. coli | 250 µg/mL | [62] | |
C. rhizophorae A761 | Benzophenone derivatives—meroterpenoide | (22) Cytosporin D—C20H24O7/ 377.1600 [M + H]+ | E. coli | 250 µg/mL | [62] | |
Alternaria tenuissima SP-07 | Benzopyrones | (23) Alternariol—C14H10O5/259.0601 [M + H]+ | E. coli | 100 μg/mL | [63] | |
A. tenuissima SP-07 | Benzopyrones | (24) Alternariol methyl ether—C15H12O5/273.07575 [M + H]+ | E. coli | >100 μg/mL | [63] | |
A. tenuissima SP-07 | Benzopyrones | (25) Altenuene—C15H16O6/293.101965 [M + H]+ | E. coli | 100 μg/mL | [63] | |
Phomopsis longicolla HL-2232 (mangrove) | Biphenyl derivative | (26) 5,5′-dimethoxybiphenyl-2,2′-diol—C14H14O4/245.0808 [M−H]− | Vibrio parahaemolyticus | 10 μg/mL | [57] | |
Aspergillus flavipes Y-62 (stems) | Butyrolactone derivative | (27) 2-O-methylbutyrolactone 1—C25H28O7/441.19078 [M + H]+ | Escherichia coli CMCC(B) 44102 | 32 μg/mL | [64] | |
Diaporthe vochysiae LGMF1583 (leaves) | Carboxamidas | (28) Vochysiamide A—C8H13NO4/186 [M-H]- | Klebsiella pneumoniae carbapenemase-producing (KPC) | 1.0 mg/mL | [65] | |
D. vochysiae LGMF1583 (leaves) | Carboxamidas | (29) Vochysiamide B—C15H21O3/226 [M-H]− | Klebsiella pneumoniae carbapenemase-producing (KPC) | 0.08 mg/mL | [65] | |
Nigrospora sp. MA75 (stem) | Cochlioquinone derivative | (30) 2,3-didehydro-19ahydroxy-14-epicochlioquinone B—C28H40O7/509.2512 [M+Na]+ | E. coli P. aeruginosa P. fluorescens | 4 μg/mL 4 µg/mL 0.5 µg/mL | [61] | |
Aspergillus tamarii FR02 (roots) | Cyclic pentapeptide | (31) Malformin E—C23H39N5O5S2/552.2291 [M+Na]+ | Candida albicans E. coli P. aeruginosa | 7.24 µM 0.91 µM 1.82 µM | [66] | |
Leptosphaeria sp. XL026 (leaves) | Cyclopiane-type diterpene | (32) Leptosphin C—C20H28O2/299.2018 [M−H]− | E. coli P. aeruginosa Salmonella typhimurium | >100 µg/mL >100 µg/mL 100 µg/mL | [67] | |
Leptosphaeria sp. XL026 (leaves) | Cyclopiane-type diterpene | (33) Conidiogenone F—C20H30O2/303.231857 [M + H]+ | E. coli P. aeruginosa Salmonella typhimurium | 50 µg/mL 50 µg/mL >100 µg/mL | [67] | |
Leptosphaeria sp. XL026 (leaves) | Cyclopiane-type diterpene | (34) Conidiogenone C—C24H22N4O3S2/479.120607 [M + H]+ | E. coli P. aeruginosa Salmonella typhimurium | 50 µg/mL 25 µg/mL >100 µg/mL | [67] | |
Leptosphaeria sp. XL026 (leaves) | Cyclopiane-type diterpene | (35) Conidiogenone D—C21H34O2/303.231857 [M + H]+ | E. coli P. aeruginosa Salmonella typhimurium | 25 µg/mL 12.5 µg/mL 100 µg/mL | [67] | |
Leptosphaeria sp. XL026 (leaves) | Cyclopiane-type diterpene | (36) Conidiogenone G—C20H30O2/303.231857 [M + H]+ | E. coli P. aeruginosa Salmonella typhimurium | 50 µg/mL 25 µg/mL >100 µg/mL | [67] | |
Chaetomium globosum NM0066 (leaves) | Cytochalasan alkaloids | (37) Chaetoglobosin Vb—C32H36N2O5/529.2709 [M + H]+ | E. coli P. aeruginosa | >100 μg/mL >100 µg/mL | [68] | |
C. globosum NM0066 (leaves) | Cytochalasan alkaloids | (38) Chaetoglobosin V—C32H36N2O5/447.2507 [M]+ | E. coli P. aeruginosa | >100 µg/mL 50 µg/mL | [68] | |
C. globosum NM0066 (leaves) | Cytochalasan alkaloids | (39) Chaetoglobosin G—C32H38N2O5/531.285349 [M + H]+ | E. coli P. aeruginosa | > 100 μg/mL 50 µg/mL | [68] | |
Daldinia eschscholtzii HJ001 (mangrove) | Cytochalasin | (40) [11]-cytochalasa5(6), 13-diene-1,21-dione-7,18-dihydroxy 16,18-dimethyl-10-phenyl -(7S*,13E,16S*,18R*)—C29H41NO4/452.2791 [M + H]+ | E. coli ATCC 25922 Vibrio parahaemolyticus ATCC 17802 Vibrio alginolyticus ATCC 17749 | 50 µg/mL 50 µg/mL 50 µg/mL | [69] | |
Phomopsis sp. CAM240 (seed) | Cytochalasins | (41) 18-metoxycytochalasin J—C29H39NO4/466.29587 [M + H]+ | Vibrio cholerae NB2 Vibrio cholerae PC2 Shigella flexneri SDINT | 512 μg/mL >512 μg/mL 128 μg/mL | [70] | |
Phomopsis sp. CAM240 (seed) | Cytochalasins | (42) Cytochalasins H—C30H39NO5/494.28949 [M + H]+ | Vibrio cholerae NB2 Vibrio cholerae PC2 Shigella flexneri SDINT | 512 μg/mL 256 μg/mL 128 μg/mL | [70] | |
Phomopsis sp. CAM240 (seed) | Cytochalasins | (43) Cytochalasins J—C28H37NO4/452.28052 [M + H]+ | Vibrio cholerae NB2 Vibrio cholerae PC2 Shigella flexneri SDINT | 512 μg/mL >512 μg/mL 128 μg/mL | [70] | |
Aspergillus flavipes Y-62 (stems) | Cytochalasin derivatives | (44) Cytochalasin Z16—C28H31NO5/462.2275 [M + H]+ | E. coli CMCC(B) 44102 K.pneumoniae CMCC(B) 46117 P. aeruginosa CMCC(B) 10104 | 32 μg/mL 32–64 μg/mL 32 μg/mL | [64] | |
A. flavipes Y-62 (stems) | Cytochalasin derivatives | (45) Cytochalasin Z7—C28H33NO5/464.24315 [M + H]+ | E. coli CMCC(B) 44102 K. pneumoniae CMCC(B) 46117 P. aeruginosa CMCC(B) 10104 | 128 μg/mL 64 μg/mL 64 μg/mL | [64] | |
A. flavipes Y-62 (stems) | Cytochalasin derivatives | (46) Cytochalasin Z17—C28H33NO5/464.24315 [M + H]+ | E. coli CMCC(B) 44102 K.pneumoniae CMCC(B) 46117 P. aeruginosa CMCC(B) 10104 | 16 μg/mL 32 μg/mL 32 μg/mL | [64] | |
A. flavipes Y-62 (stems) | Cytochalasin derivatives | (47) Rosellichalasin—C28H31NO5/462.2275 [M + H]+ | E. coli CMCC(B) 44102 K. pneumoniae CMCC(B) 46117 P. aeruginosa CMCC(B) 10104 | 32 μg/mL 32 µg/mL 32 µg/mL | [64] | |
A. flavipes Y-62 (stems) | Cytochalasin derivatives | (48) Cytochalasin Z13—C25H33NO5/428.24315 [M + H]+ | E. coli CMCC(B) 44102 | 64 µg/mL | [64] | |
A. flavipes Y-62 (stems) | Cytochalasin derivatives | (49) Dipeptide aspergillazine A—C20H22N2O8S/451.116962 [M + H]+ | P. aeruginosa CMCC(B) 10104 | 64 µg/mL | [64] | |
A. flavipes Y-62 (stems) | Cytochalasin derivatives | (50) Flavipin—C9H8O5/197.04445 [M + H]+ | E. coli CMCC(B) 44102 | 64 µg/mL | [64] | |
A. flavipes Y-62 (stems) | Cytochalasin derivatives | (51) N-benzoyl-L-phenyalaninol—C16H17NO2/256.133205 [M + H]+ | E.coli CMCC(B) 44102 K. pneumoniae CMCC(B) 46117 P. aeruginosa CMCC(B) 10104 | 64 µg/mL 64 µg/mL 64 µg/mL | [64] | |
Eupenicillium sp. LG41 (roots) | Decalin polyketides | (52) Eupenicinicol A—C19H30O4/323.2219 [M + H]+ | Acinetobacter sp. BD4 DSM 586 E. coli DSM 1116 | 10 µg/mL 5.0 µg/mL | [71] | |
Eupenicillium sp. LG41 (roots) | Decalin polyketides | (53) Eupenicinicol B—C20H32O4/337.2373 [M + H]+ | Acinetobacter sp. BD4 DSM 586 E. coli DSM 1116 | >10 μg/mL 5.0 µg/mL | [71] | |
F. proliferatum AF-04 (onion) | Depsipeptide | (54) Beauvericin—C45H59N3O9/786.432407 [M + H]+ | E. coli | >100 μg/mL | [55] | |
Fusarium solani JK10 (roots) | 7–desmethyl fusarin C derivatives | (55) NG-391—C21H27NO6/ 390.1911 [M + H]+ | Acinetobacter sp. DSM 586 E. coli DSM 1116 | >10.0 µg/mL 10.0 µg/mL | [72] | |
F. solani JK10 (roots) | 7–desmethyl fusarin C derivatives | (56) NG-393—C21H27NO6/390.1911 [M + H]+ | Acinetobacter sp. DSM 586 E. coli DSM 1116 | >10.0 µg/mL 10.0 µg/mL | [72] | |
F. solani JK10 (roots) | 7–desmethyl fusarin C derivatives | (57) 406.1860 [M + H]+ C21H27NO7 | Acinetobacter sp. DSM 586 E. coli DSM 1116 | 10.0 µg/mL 10.0 µg/mL | [72] | |
F. solani JK10 (roots) | 7–desmethyl fusarin C derivatives | (58) 406.1860 [M + H]+ C21H27NO7 | Acinetobacter sp. DSM 586 E. coli DSM 1116 | 10.0 µg/mL 10.0 µg/mL | [72] | |
F. solani JK10 (roots) | 7–desmethyl fusarin C derivatives | (59) 420.1656 [M + H]+ C21H25NO8 | Acinetobacter sp. DSM 586 E. coli DSM 1116 | >10.0 µg/mL 5 µg/mL | [72] | |
F. solani JK10 (roots) | 7–desmethyl fusarin C derivatives | (60) 13α–hydroxylucilactaene—C22H29NO7/420.2017 [M + H]+ | Acinetobacter sp. DSM 586 E. coli DSM 1116 | 10.0 µg/mL 10.0 µg/mL | [72] | |
F. solani JK10 (roots) | 7–desmethyl fusarin C derivatives | (61) 388.2118 [M + H]+ C22H29NO5 | Acinetobacter sp. DSM 586 E. coli DSM 1116 | >10.0 µg/mL 5 µg/mL | [72] | |
Bionectria sp. Y1085 | Diketopiperazine | (62) Bionectin D—C16H19N3O3S—333 [M]+ | E. coli Salmonella typhimurium ATCC 6539 | 25 µg/mL 25 µg/mL | [73] | |
Bionectria sp. Y1085 | Diketopiperazine | (63) Bionectin E—C24H22N4O3S2/501 [M+Na]+ | E. coli S. typhimurium ATCC 6539 | >200 µg/mL >200 µg/mL | [73] | |
Bionectria sp. Y1085 | Diketopiperazine | (64) Verticillin A—C30H28N6O6S4/697.102589 [M + H]+ | E. coli S. typhimurium ATCC 6539 | 12.5 µg/mL 12.5 µg/mL | [73] | |
Bionectria sp. Y1085 | Diketopiperazine | (65) sch 52901—C31H30N6O6S4/711.118239 [M + H]+ | E. coli S. typhimurium ATCC 6539 | 6.25 µg/mL 6.25 µg/mL | [73] | |
Bionectria sp. Y1085 | Diketopiperazine | (66) Gliocladicillin C—C32H32N6O7S4/741.128804 [M + H]+ | E. coli S. typhimurium ATCC 6539 | 6.25 µg/mL 6.25 µg/mL | [73] | |
Chaetomium sp. M336 | Epipolythiodioxopiperazine | (67) 6-formamide-chetomin—C32H30N6O7S4/761.0993 [M+Na]+ | E. coli S. typhimurium ATCC 6539 | 0.78 µg/mL 0.78 µg/mL | [74] | |
Diaporthe sp. LG23 (leaves) | Ergosterol derivatives | (68) 3β,5α,9α-trihydroxy-(22E,24R)—ergosta-7,22-dien-6-one—C28H44O4/445.331236 [M + H]+ | Escherichia coli DSM 682 Pseudomonas aeruginosa DSM 22644 | >10 µg/mL >10 µg/mL | [75] | |
Diaporthe sp. LG23 (leaves) | Ergosterol derivatives | (69) 3β,5α,9α,14α-tetrahydroxy-(22E,24R)-ergosta-7,22-dien-6-one—C28H44O5/461.326151 [M + H]+ | E. coli DSM 682 P. aeruginosa DSM 22644 | >10 µg/mL >10 µg/mL | [75] | |
Diaporthe sp. LG23 (leaves) | Ergosterol derivatives | (70) (22E,24R)-ergosta-7,9(11),22-triene-3β,5α,6α-triol—C28H44O3/429.336322 [M + H]+ | E. coli DSM 682 P. aeruginosa DSM 22644 | >10 µg/mL >10 µg/mL | [75] | |
Diaporthe sp. LG23 (leaves) | Ergosterol derivatives | (71) Chaxine C—C28H40O4/441.299936 [M + H]+ | E. coli DSM 682 P. aeruginosa DSM 22644 | >10 µg/mL >10 µg/mL | [75] | |
Diaporthe sp. LG23 (leaves) | Ergosterol derivatives | (72) Demethylincisterol A3—C21H32O3/333.242421 [M + H]+ | E. coli DSM 682 P. aeruginosa DSM 22644 | >10 μg/mL >10 μg/mL | [75] | |
Diaporthe sp. LG23 (leaves) | Ergosterol derivatives | (73) Volemolide—C22H34O3/347.258071 [M + H]+ | E. coli DSM 682 P. aeruginosa DSM 22644 | >10 μg/mL >10 μg/mL | [75] | |
Fusarium solani HDN15-410 (root) | Fusaric acid | (74) Fusaric acid—C10H13NO2/180.101905 [M + H]+ | P. aeruginosa Vibrio parahaemolyticus | 35.8 μg/mL >200 μg/mL | [76] | |
F. solani HDN15-410 (root) | Fusaric acid derivatives | (75) Fusaricates H—C14H21NO3/252.15942 [M + H]+ | P. aeruginosa V. parahaemolyticus | >200 µg/mL >200 µg/mL | [76] | |
F. solani HDN15-410 (root) | Fusaric acid derivatives | (76) Fusaricates I—C14H21NO3/252.15942 [M + H]+ | P. aeruginosa V. parahaemolyticus | >200 µg/mL >200 µg/mL | [76] | |
Fusarium sp. FL10 (leaves) | Helvolic acid derivative | (77) Helvolic acid methyl ester—C34H46O8 /583.3284 [M + H]+ | E. coli P. aeruginosa | 6.25 µg/mL 3.13 µg/mL | [77] | |
Fusarium sp. FL10 (leaves) | Helvolic acid derivative | (78) Helvolic acid—C33H44O8/569.310895 [M + H]+ | E. coli P. aeruginosa | 6.25 µg/mL 3.13 μg/mL | [77] | |
Fusarium sp. FL10 (leaves) | Helvolic acid derivative | (79) Hydrohelvolic acid—C33H46O9/587.321459 [M + H]+ | E. coli P. aeruginosa | 6.25 µg/mL 3.13 µg/mL | [77] | |
Aspergillus flavipes Y-62 (stems) | Indene derivative | (80) methyl 2-(4-hydroxybenzyl)-1,7-dihydroxy-6-(3-methylbut-2-enyl)-1H-indene-1-carboxylate—C23H24O5/379.1554 [M-H]− | Klebsiella pneumoniae CMCC(B) 46117 P. aeruginosa CMCC(B) 10104 | 32 µg/mL 32 µg/mL | [64] | |
Eurotium cristatum EN-220 (marine alga) | Indole alkaloids | (81) Cristatumin A—C19H21N3O3/340.165568 [M + H]+ | E. coli | 64 μg/mL | [78] | |
E. cristatum EN-220 (marine alga) | Indole alkaloids | (82) Cristatumin B—C31H41N3O3/ 504.322069 [M + H]+ | E. coli | 64 μg/mL | [78] | |
E. cristatum EN-220 (marine alga) | Indole alkaloids | (83) Cristatumin C—C30H32N6O4/541.25578 [M + H]+ | E. coli | 64 μg/mL | [78] | |
E. cristatum EN-220 (marine alga) | Indole alkaloids | (84) Cristatumin D—C19H21N3O4/356.160483 [M + H]+ | E. coli | 64 μg/mL | [78] | |
E. cristatum EN-220 (marine alga) | Indole alkaloids | (85) Neoechinulin A—C19H21N3O2/324.170653 [M + H]+ | E. coli | 64 μg/mL | [78] | |
E. cristatum EN-220 (marine alga) | Indole alkaloids | (86) Isoechinulin A—C25H31N3O2/406.248904 [M + H]+ | E. coli | 64 μg/mL | [78] | |
E. cristatum EN-220 (marine alga) | Indole alkaloids | (87) Variecolorin G—C25H31N3O2/406.248904 [M + H]+ | E. coli | 64 μg/mL | [78] | |
E. cristatum EN-220 (marine alga) | Indole alkaloids | (88) Preechinulin—C19H23N3O2/326.186303 [M + H]+ | E. coli | 64 µg/mL | [78] | |
E. cristatum EN-220 (marine alga) | Indole alkaloids | (89) Tardioxopiperazine A—C25H33N3O2/408.264554 [M + H]+ | E. coli | 64 µg/mL | [78] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (90) Drechmerin A—C28H39NO3/438.2998 [M + H]+ | P. aeruginosa K. pneumoniae | >200 µg/mL >200 µg/mL | [79] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (91) Drechmerin B—C28H37NO5/490.2561 [M+Na]+ | P. aeruginosa K. pneumoniae | >200 µg/mL >200 µg/mL | [79] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (92) Drechmerin C—C28H37NO5/558.3196 [M+Na]+ | P. aeruginosa K. pneumoniae | >200 µg/mL >200 µg/mL | [79] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (93) Drechmerin D—C33H45NO7/554.3115 [M + H]+ | P. aeruginosa K. pneumoniae | >200 µg/mL >200 µg/mL | [79] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (94) Drechmerin E—C33H45NO7/554.3105 [M + H]+ | P. aeruginosa K. pneumoniae | >200µg/mL >200 µg/mL | [79] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (95) Drechmerin F—C33H47NO7/556.3276 [M + H]+ | P. aeruginosa K. pneumoniae | >200 µg/mL >200µg/mL | [79] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (96) Drechmerin G—C27H33NO5/474.2250 [M+Na]+ | P. aeruginosa K. pneumoniae | >200 µg/mL >200 µg/mL | [79] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (97) terpendoles A—C33H43NO6/550.316315 [M + H]+ | P. aeruginosa K. pneumoniae | >200 µg/mL >200 µg/mL | [79] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (98) terpendoles C—C32H41NO5/520.30575 [M + H]+ | P. aeruginosa K. pneumoniae | >200 μg/mL >200 μg/mL | [79] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (99) terpendoles I—C27H35NO5/454.2588 [M + H]+ | P. aeruginosa K. pneumoniae | >200 μg/mL >200 μg/mL | [79] | |
Drechmeria sp. SYPF 8335 (roots) | Indole diterpenoids | (100) dehydroxypaxilline—C27H33NO3/420.25332 [M + H]+ | P. aeruginosa K. pneumoniae | >200 μg/mL >200 μg/mL | [79] | |
Diaporthe terebinthifolii LGMF907 (leaves) | Isocoumarin | (101) Diaporthin—C13H14O5/251.0914 [M + H]+ | E. coli NRRL B-3708 | 1.73 mm (100 μg/dis) | [80] | |
Diaporthe terebinthifolii LGMF907 (leaves) | Isocoumarin | (102) Orthosporin—C12H12O5/237.07575 [M + H]+ | E. coli NRRL B-3708 | 1.03 mm (100 μg/dis) | [80] | |
Xylaria sp. GDG-102 (leaves) | Isocoumarin | (103) (-)-5-carboxylmellein—C11H10O5/223.0601 [M + H]+ | E. coli | 25 μg/mL | [81] | |
Xylaria sp. GDG-102 (leaves) | Isocoumarin | (104) (-)-5-methylmellein—C11H12O3/193.085921 [M + H]+ | E. coli | 12.5 μg/mL | [81] | |
Exserohilum rostratum ER1.1 | Isocoumarin derivative | (105) monocerin—C14H18O8/ 309 [M + H]+ | E.coli ATCC 25922 P. aeruginosa ATCC 27853 S. typhimurium ATCC 14028 | 15.62 μg/mL 15.62 μg/mL 31.25 μg/mL | [82] | |
F. proliferatum AF-04 (onion) | 1,4—naphthoquinones | (106) 5-O-methylsolaniol—C16H18O6/307.117615 [M + H]+ | E. coli | 25 μg/mL | [55] | |
F. proliferatum AF-04 (onion) | 1,4—naphthoquinones | (107) 5-O-methyljavanicin—C16H16O6/305.101965 [M + H]+ | E. coli | 25 μg/mL | [55] | |
F. proliferatum AF-04 (onion) | 1,4—naphthoquinones | (108) methyl ether fusarubin—C17H18O7/335.112529 [M + H]+ | E. coli | 50 μg/mL | [55] | |
F. proliferatum AF-04 (onion) | 1,4—naphthoquinones | (109) anhydrojavanicin—C15H14O5/275.0914 [M + H]+ | E. coli | 25 μg/mL | [55] | |
Aspergillus sp. A-WG-1 | Phenalenone derivatives | (110) Aspergillussanone C—C35H44O10/647.2826 [M+Na]+ | E. coli ATCC 25922 P. aeruginosa ATCC 9027 | > 50.0 µg/mL > 50.0 µg/mL | [83] | |
Aspergillus sp. A-WG-1 | Phenalenone derivatives | (111) Aspergillussanone D—615.2925 [M+Na]+ | E. coli ATCC 25922 P. aeruginosa ATCC 9027 | > 50.0 µg/mL 38.47 µg/mL | [83] | |
Aspergillus sp. A-WG-1 | Phenalenone derivatives | (112) Aspergillussanone E—615.2926 [M+Na]+ | E. coli ATCC 25922 P. aeruginosa ATCC 9027 | 7.83 µg/mL > 50.0 µg/mL | [83] | |
Aspergillus sp. A-WG-1 | Phenalenone derivatives | (113) Aspergillussanone F—C35H46O8/617.3079 [M+Na]+ | E. coli ATCC 25922 P. aeruginosa ATCC 9027 | 3.93 µg/mL 26.56 µg/mL | [83] | |
Aspergillus sp. A-WG-1 | Phenalenone derivatives | (114) Aspergillussanone G—633.3031 [M+Na]+ | E. coli ATCC 25922 P. aeruginosa ATCC 9027 | >50.0 µg/mL 24.46 µg/mL | [83] | |
Aspergillus sp. A-WG-1 | Phenalenone derivatives | (115) Aspergillussanone H—C35H42O9/629.2720 [M+Na]+ | E. coli ATCC 25922 P. aeruginosa ATCC 9027 | 5.87 µg/mL 8.59 µg/mL | [83] | |
Aspergillus sp. A-WG-1 | Phenalenone derivatives | (116) Aspergillussanone I—C38H50O8/657.3395 [M+Na]+ | E. coli ATCC 25922 P. aeruginosa ATCC 9027 | >50.0 µg/mL 12.0 µg/mL | [83] | |
Aspergillus sp. A-WG-1 | phenalenone derivatives | (117) Aspergillussanones J—689.3295 [M+Na]+ | E. coli ATCC 25922 P. aeruginosa ATCC 9027 | 5.34 µg/mL 28.50 µg/mL | [83] | |
Aspergillus sp. A-WG-1 | Phenalenone derivatives | (118) Aspergillussanones K—675.3139 [M+Na]+ | E. coli ATCC 25922 P. aeruginosa ATCC 9027 | >50.0 µg/mL 6.55 µg/mL | [83] | |
Aspergillus sp. A-WG-1 | Phenalenone derivatives | (119) Aspergillussanones L—617.3083 [M+Na]+ | E. coli ATCC25922 P. aeruginosa ATCC 9027 | >50.0 µg/mL 1.87 µg/mL | [83] | |
Aspergillus sp. A-WG-1 | Phenalenone derivatives | (120) 11—593.727 [M+Na]+ | E. coli ATCC 25922 P. aeruginosa ATCC 9027 | 1.88 µg/mL 19.07 µg/mL | [83] | |
Pestalotiopsis mangiferae (leaves) | Phenolic compound | (121) 4-(2,4,7-trioxa-bicyclo [4.1.0]heptan-3-yl) phenol—C10H10O4/195.0654 [M + H]+ | Escherichia coli MTCC 443 Klebsiella pneumoniae MTCC 109 Pseudomonas aeruginosa MTCC 424 | 1.25 μg/mL 0.039 μg/mL 5.0 μg/mL | [84] | |
Stemphylium sp. 33231 (leaves) | Phenolic sulfate derivatives | (122) Stemphol A—C15H23NaO5S/361.1066 [M+Na]+ | Escherichia coli ATCC 25922 | 5.0 μg/mL | [85] | |
Stemphylium sp. 33231 (leaves) | Phenolic sulfate derivatives | (123) Stemphol B—C17H25NaO5S/403.1165 [M+Na]+ | E. coli ATCC 25922 | 0.6 μg/mL | [85] | |
Stemphylium sp. 33231 (leaves) | Phenolic sulfate derivatives | (124) Sstemphol—C15H24O2/237.184906 [M + H]+ | E. coli ATCC 25922 | 0.6 μg/mL | [85] | |
Diaporthe sp. F2934 (leaves) | Phomosine derivatives | (125) Phomosine A—C18H20O7/349.128179 [M + H]+ | Enterococcus cloacae ATCC 13047 | 11 mm | [86] | |
Diaporthe sp. F2934 (leaves) | Phomosine derivatives | (126) Phomosine C—C17H18O7/335.112529 [M + H]+ | E. cloacae ATCC 13047 | 8 mm | [86] | |
Diaporthe phaseolorum (8S) (seed) | Phthalate | (127) Di-(2-ethylhexyl) phthalate (DEHP)—C24H38O4/391.284286 [M + H]+ | E. coli Multiresistant Strain E. coli Susceptible strain P. aeruginosa Multiresistant strain P. aeruginosa Susceptible strain | >30 µg/mL >30 µg/mL 0.23 µg/mL 0.23 µg/mL | [54] | |
Xylaria sp. GDG102 (leaves) | Phthalide derivative | (128) Xylarphthalide A—C11H10O6/237.0401[M−H]− | E. coli | 12.5 μg/mL | [81] | |
Epicoccum nigrum SCNU-F0002 (fruit) | Polyketide—benzofuranone derivatives | (129) 1-(4-hydroxy-2-methoxybenzofuran-5-yl) butan-1-one—C13H14O4/233 [M-H]− | Escherichia. coli ATCC 8739 P. aeruginosa ATCC 9027 | 50 µg/mL >100 μg/mL | [87] | |
Colletotrichum sp. BS4 | Polyketides | (130) Colletotrichone A—C18H20O7/349.1280, [M + H]+ | Escherichia coli DSM 1116 Pseudomonas aeruginosa DSM 22644 | 1.0 μg/mL >10 μg/mL | [88] | |
Colletotrichum sp. BS4 | Polyketides | (131) Colletotrichone B—C18H20O5/317.1385, [M + H]+ | E. coli DSM 1116 P. aeruginosa DSM 22644 | >10 μg/mL >10 μg/mL | [88] | |
Colletotrichum sp. BS4 | Polyketides | (132) Colletotrichone C—C18H22O5/319.1542, [M + H]+ | E. coli DSM 1116 P. aeruginosa DSM 22644 | 5.0 μg/mL >10 μg/mL | [88] | |
Colletotrichum sp. BS4 | Polyketides | (133) chermesinone B—C18H20O5/317.13835 [M + H]+ | E. coli DSM 1116 P. aeruginosa DSM 22644 | >10 μg/mL >10 μg/mL | [88] | |
Penicillium sp. CAMMC64 (leaves) | Polyketides | (134) Penialidin A—C14H12O8/309.06064 [M + H]+ | Acinetobacter sp. BD4 DSM 586 E. coli DSM 1116 Escherichia coli DSM 682 | >10 μg/mL >10 μg/mL >10 μg/mL | [89] | |
Penicillium sp. CAMMC64 (leaves) | Polyketides | (135) Penialidin B—C15H14O8/323.07635 [M + H]+ | Acinetobacter sp. BD4 DSM 586 Escherichia coli DSM 1116 E. coli DSM 682 | >10 μg/mL 10 μg/mL 10 μg/mL | [89] | |
Penicillium sp. CAMMC64 (leaves) | Polyketides | (136) Penialidin C—C14H10O7/291.04996 [M + H]+ | Acinetobacter sp. BD4 DSM 586 Escherichia coli DSM 1116 E. coli DSM 682 | >10 μg/mL 10 μg/mL 10 μg/mL | [89] | |
Fusarium solani DO7 | polysaccharides | (137) DY1 | (1 →)-α-D-Glcp, (1 → 3)-β-L-Rhaf, (1 → 4)-β-D-Xylp, (1 → 6)-α-D-Glcp, (1 → 2,6)-α-D-Glcp and (1 → 2)-β-D-Galp | E. coli Salmonella | 20 μg/mL 25 μg/mL | [90] |
F. solani DO7 | Polysaccharides | (138) DY2 | (1 →)-β-D-Glcp, (1 → 2)-α-L-Rhaf, (1 → 3)-α-L-Araf, (1 → 4)-β-D-Glcp, (1 → 4,6)-β-D-Glcp and (1 → 3)-α-D-Galp | E. coli Salmonella | 15 μg/mL 20 μg/mL | [90] |
Epicoccum nigrum SCNU-F0002 (fruit) | Pyrones | (139) radicinol derivative—C12H16O5/241.10705 [M + H]+ | E. coli P. aeruginosa | >100 µg/mL >100 µg/mL | [87] | |
Alternaria tenuissima SP-07 | Pyrones | (140) Solanapyrone P—C16H22O3/263.1635 [M + H]+ | E. coli | 100 μg/mL | [63] | |
A. tenuissima SP-07 | Pyrones | (141) Solanapyrone Q—C16H20O2/245.1539 [M + H]+ | E. coli | 100 μg/mL | [63] | |
A. tenuissima SP-07 | Pyrones | (142) Solanapyrone R—C19H26O4/317.1742 [M + H]+ | E. coli | >100 μg/mL | [63] | |
A. tenuissima SP-07 | Pyrones | (143) solanapyrones A—C18H24O4/305.174736 [M + H]+ | E. coli | 100 μg/mL | [63] | |
A. tenuissima SP-07 | Pyrones | (144) solanapyrones B—C18H24O4/305.174736 [M + H]+ | E. coli | >100 μg/mL | [63] | |
A. tenuissima SP-07 | Pyrones | (145) solanapyrones C—C19H27NO4/334.201285 [M + H]+ | E. coli | 100 μg/mL | [63] | |
Leptosphaeria sp. XL026 (leaves) | Sesquiterpenoids | (146) Leptosphin A—C15H16O2S/261.0943 [M + H]+ | E. coli P. aeruginosa S. typhimurium | 50 μg/mL 100 μg/mL 100 μg/mL | [67] | |
Leptosphaeria sp. XL026 (leaves) | Sesquiterpenoids | (147) Leptosphin B—C15H20O4/263.1277 [M−H]− | E. coli P. aeruginosaSalmonella typhimurium | 50 μg/mL >100 μg/mL >100 μg/mL | [67] | |
Fusarium avenaceum SF-1502 (root) and F. proliferatum AF-04 (onion) | Sesquiterpenoids | (148) Epicyclonerodiol oxide—C15H28O3/257.211121 [M + H]+ | E. coli | >50 μg/mL | [55] | |
F. avenaceum SF-1502 (root) and F. proliferatum AF-04 (onion) | Sesquiterpenoids | (149) Cyclonerodiol lactone—C12H20O3/213.148521 [M + H]+ | E. coli | >100 μg/mL | [55] | |
F. proliferatum AF-04 (onion) | Sesquiterpenoids | (150) 3β- hydroxy-β-acorenol—C15H26O2/261.1828 [M+Na]+ | E. coli | >100 μg/mL | [55] | |
F. proliferatum AF-04 (onion) | Sesterterpene | (151) Fusaproliferin—C27H40O5/445.294851 [M + H]+ | E. coli | >100 μg/mL | [55] | |
Eupenicillium sp. LG41 (roots) | Sirenin derivatives | (152) Eupenicisirenin A—C15H22O3/251.1638, [M + H]+ | Acinetobacter sp. BD4 DSM 586 Escherichia coli DSM 1116 | >10 μg/mL 10 μg/mL | [71] | |
Eupenicillium sp. LG41 (roots) | Sirenin derivatives | (153) Eupenicisirenin B—C10H12O4/195.06 [M−H]− | Acinetobacter sp. BD4 DSM 586 E. coli DSM 1116 | 5.0 μg/mL 10 μg/mL | [71] | |
Diaporthe sp. LG23 (leaves) | Triterpenoid | (154) 19-norlanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-tetraol—C29H44O4/439.3207, [2M + H]+ | E. coli DSM 682 P. aeruginosa DSM 22644 | 5.0 μg/mL 2.0 μg/mL | [75] | |
Nigrospora sp. MA75 (stem) | Xanthones | (155) 3,6,8-trihydroxy-1-methylxanthone—C14H12O5/261.07575 [M + H]+ | E.coli | 32 μg/mL | [61] | |
Phomopsis sp. HNY29-2B | α-pyrone | (156) Phomopyrone A—C11H14O4/210.0890 [M]+ | P. aeruginosa ATCC 9027 | >100 μg/mL | [91] | |
Phomopsis sp. HNY29-2B | α-pyrone | (157) Acropyrone—C11H12O5/225.07575 [M + H]+ | P. aeruginosa ATCC 9027 | 50 μg/mL | [91] | |
Phomopsis sp. HNY29-2B | α-pyrone | (158) Ampelanol—C16H20O8/341.123094 [M + H]+ | P. aeruginosa ATCC 9027 | >100 μg/mL | [91] | |
Penicillium ochrochloronthe MPT-163 (roots) | α-pyrone derivatives | (159) 6-(2′Rhydroxy-3′E,5′E-diene -1′-heptyl)-4-hydroxy-3-methyl -2H-pyran-2-one—C13H16O4/ 259.0941 [M+Na]+ | Enterobacter aerogenes E. coli P. aeruginosa Salmonella enterica Salmonella typhi | 50 µg/mL 50 µg/mL 50 µg/mL 50 µg/mL 50 µg/mL | [92] | |
Penicillium ochrochloronthe MPT-163 (roots) | α-pyrone derivatives | (160) 6-(2′S-hydroxy-5′E-ene-1′-heptyl)-4-hydroxy-3-methyl-2H-pyran-2-one—C13H18O4/261.1098 [M+Na]+ | E. aerogenes E. coli P. aeruginosa S. enterica S. typhi | 100 μg/mL 50 μg/mL 50 μg/mL 50 μg/mL 25 μg/mL | [92] | |
Penicillium ochrochloronthe MPT-163 (roots) | α-pyrone derivatives | (161) 6-(2′S-hydroxy-1′-heptyl)-4—hydroxy-3-methyl-2Hpyran-2-one—C13H20O4/263.1255 [M+Na]+ | E. aerogenes E. coli P. aeruginosa S. enterica S. typhi | 50 μg/mL 50 μg/mL 50 μg/mL 50 μg/mL 50 μg/mL | [92] | |
Penicillium ochrochloronthe MPT-163 (roots) | α-pyrone derivatives | (162) trichodermic acid—C19H28O3/305.211121 [M + H]+ | E. aerogenes E. coli P. aeruginosa S. enterica S. typhi | 50 μg/mL 50 μg/mL 50 μg/mL 25 μg/mL 25 μg/mL | [92] | |
Stemphylium sp. 33231 (leaves) | α-pyrone derivatives | (163) Infectopyrone A—C14H16O6/303.0840 [M+Na]+ | E. coli ATCC 25922 | 2.5 μg/mL | [93] | |
Stemphylium sp. 33231 (leaves) | α-pyrone derivatives | (164) Infectopyrone B—C15H18O6/317.0992 [M+Na]+ | E. coli ATCC 25922 | 2.5 μg/mL | [93] | |
Fusarium solani HDN15-410 (root) | γ-pyrones derivatives | (165) Fusolanones A—C16H24O3/265.179821 [M + H]+ | P. aeruginosa V. parahaemolyticus | 26.4 µg/mL >200 µg/mL | [76] | |
Fusarium solani HDN15-410 (root) | γ-pyrones derivatives | (166) 6 fusolanones B—C15H22O3/251.164171 [M + H]+ | P. aeruginosa V. parahaemolyticus | 12.5 µg/mL 6.25 µg/mL | [76] |
Antibiotics | MICs (µg/mL) | |||
---|---|---|---|---|
Enterobacteriaceae Except Salmonella spp. | Salmonella spp. | Pseudomonas aeruginosa ATCC 27853 | Acinetobacter spp. | |
Ampicillin | ≤8 | |||
Amoxicillin-clavulanate | ≤8/4 | |||
Ceftazidime | ≤8/4 | ≤8 | ≤8 | |
Imipenem | ≤1 | ≤2 | ≤2 | |
Meropenem | ≤1 | ≤2 | ≤2 | |
Doripenem | ≤2 | ≤2 | ||
Gentamicin | ≤4 | ≤4 | ≤4 | |
Azithromycin | ≤16 | |||
Tetracycline | ≤4 | ≤4 | ||
Ciprofloxacin | ≤1 | ≤0.06 | ≤1 | |
Levofloxacin | ≤2 | ≤0.12 | ≤2 | |
Norfloxacin | ≤4 | |||
Nalidixic acid | ≤16 | |||
Chloramphenicol | ≤8 | |||
Piperacycline | ≤16 | ≤16 | ||
Ceftazidime-avibactam | ≤8/4 | |||
Aztreonam | ≤8 | |||
Polymyxin B | ≤2 | ≤2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, D.P.D.; Cardoso, M.S.; Macedo, A.J. Endophytic Fungi as a Source of Antibacterial Compounds—A Focus on Gram-Negative Bacteria. Antibiotics 2022, 11, 1509. https://doi.org/10.3390/antibiotics11111509
Silva DPD, Cardoso MS, Macedo AJ. Endophytic Fungi as a Source of Antibacterial Compounds—A Focus on Gram-Negative Bacteria. Antibiotics. 2022; 11(11):1509. https://doi.org/10.3390/antibiotics11111509
Chicago/Turabian StyleSilva, Dayse Pereira Dias, Macley Silva Cardoso, and Alexandre José Macedo. 2022. "Endophytic Fungi as a Source of Antibacterial Compounds—A Focus on Gram-Negative Bacteria" Antibiotics 11, no. 11: 1509. https://doi.org/10.3390/antibiotics11111509
APA StyleSilva, D. P. D., Cardoso, M. S., & Macedo, A. J. (2022). Endophytic Fungi as a Source of Antibacterial Compounds—A Focus on Gram-Negative Bacteria. Antibiotics, 11(11), 1509. https://doi.org/10.3390/antibiotics11111509