Continuous Piperacillin-Tazobactam Infusion Improves Clinical Outcomes in Critically Ill Patients with Sepsis: A Retrospective, Single-Centre Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Baseline Demographics and Clinical Characteristics
2.2. Microbiological Data
2.3. Primary Outcome
2.4. Secondary Outcomes
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Selection of Patients
4.3. Infusion Protocol of Piperacillin-Tazobactam
4.4. Outcomes and Measurements
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef]
- Dulhunty, J.M.; Paterson, D.; Webb, S.A.; Lipman, J. Antimicrobial utilisation in 37 Australian and New Zealand intensive care units. Anaesth. Intensive Care 2011, 39, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit. Care 2019, 23, 104. [Google Scholar] [PubMed] [Green Version]
- Roberts, J.A.; Paratz, J.; Paratz, E.; Krueger, W.A.; Lipman, J. Continuous infusion of beta-lactam antibiotics in severe infections: A review of its role. Int. J. Antimicrob. Agents 2007, 30, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.A. Pharmacokinetic/pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin. Infect. Dis. 1998, 26, 1–10, quiz 1–2. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Roberts, M.S.; Robertson, T.A.; Dalley, A.J.; Lipman, J. Piperacillin penetration into tissue of critically ill patients with sepsis--bolus versus continuous administration? Crit. Care Med. 2009, 37, 926–933. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.A.; Kirkpatrick, C.M.; Roberts, M.S.; Robertson, T.A.; Dalley, A.J.; Lipman, J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: Intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother. 2009, 64, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Chytra, I.; Stepan, M.; Benes, J.; Pelnar, P.; Zidkova, A.; Bergerova, T.; Pradl, R.; Kasal, E. Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: A randomized open-label controlled trial. Crit. Care 2012, 16, R113. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Lv, Y.; Wang, D.; Xue, J.; Yan, Z. Clinical outcomes of extended versus intermittent administration of piperacillin/tazobactam for the treatment of hospital-acquired pneumonia: A randomized controlled trial. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Lips, M.; Siller, M.; Strojil, J.; Urbanek, K.; Balik, M.; Suchankova, H. Pharmacokinetics of imipenem in critically ill patients during empirical treatment of nosocomial pneumonia: A comparison of 0.5-h and 3-h infusions. Int. J. Antimicrob. Agents 2014, 44, 358–362. [Google Scholar] [CrossRef]
- Cotrina-Luque, J.; Gil-Navarro, M.V.; Acosta-García, H.; Alfaro-Lara, E.R.; Luque-Márquez, R.; Beltrán-García, M.; Bautista-Paloma, F.J. Continuous versus intermittent piperacillin/tazobactam infusion in infection due to or suspected pseudomonas aeruginosa. Int. J. Clin. Pharm. 2016, 38, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Thabet, P.; Joshi, A.; MacDonald, E.; Hutton, B.; Cheng, W.; Stevens, A.; Kanji, S. Clinical and pharmacokinetic/dynamic outcomes of prolonged infusions of beta-lactam antimicrobials: An overview of systematic reviews. PLoS ONE 2021, 16, e0244966. [Google Scholar] [CrossRef] [PubMed]
- Corona, A.; Bertolini, G.; Lipman, J.; Wilson, A.P.; Singer, M. Antibiotic use and impact on outcome from bacteraemic critical illness: The BActeraemia Study in Intensive Care (BASIC). J. Antimicrob. Chemother. 2010, 65, 1276–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.A.; Abdul-Aziz, M.H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Voulgaris, G.L.; Maliaros, A.; Samonis, G.; Falagas, M.E. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: A systematic review and meta-analysis of randomised trials. Lancet Infect. Dis. 2018, 18, 108–120. [Google Scholar] [CrossRef]
- Kondo, Y.; Ota, K.; Imura, H.; Hara, N.; Shime, N. Prolonged versus intermittent beta-lactam antibiotics intravenous infusion strategy in sepsis or septic shock patients: A systematic review with meta-analysis and trial sequential analysis of randomized trials. J. Intensive Care 2020, 8, 77. [Google Scholar] [CrossRef]
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too much of a good thing: A retrospective study of β-lactam concentration-toxicity relationships. J. Antimicrob. Chemother. 2017, 72, 2891–2897. [Google Scholar] [CrossRef] [Green Version]
- De Waele, J.J.; Lipman, J.; Carlier, M.; Roberts, J.A. Subtleties in practical application of prolonged infusion of β-lactam antibiotics. Int. J. Antimicrob. Agents 2015, 45, 461–463. [Google Scholar] [CrossRef]
- Dhaese, S.A.M.; De Kezel, M.; Callant, M.; Boelens, J.; De Bus, L.; Depuydt, P.; De Waele, J.J. Emergence of antimicrobial resistance to piperacillin/tazobactam or meropenem in the ICU: Intermittent versus continuous infusion. A retrospective cohort study. J. Crit. Care 2018, 47, 164–168. [Google Scholar] [CrossRef]
- Roberts, J.A.; Webb, S.; Paterson, D.; Ho, K.M.; Lipman, J. A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit. Care Med. 2009, 37, 2071–2078. [Google Scholar] [CrossRef]
- Dulhunty, J.M.; Roberts, J.A.; Davis, J.S.; Webb, S.A.; Bellomo, R.; Gomersall, C.; Shirwadkar, C.; Eastwood, G.M.; Myburgh, J.; Paterson, D.L.; et al. A Multicenter Randomized Trial of Continuous versus Intermittent beta-Lactam Infusion in Severe Sepsis. Am. J. Respir. Crit. Care Med. 2015, 192, 1298–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Aziz, M.H.; Sulaiman, H.; Mat-Nor, M.B.; Rai, V.; Wong, K.K.; Hasan, M.S.; Abd Rahman, A.N.; Jamal, J.A.; Wallis, S.C.; Lipman, J.; et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): A prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016, 42, 1535–1545. [Google Scholar] [CrossRef]
- Zembles, T.N.; Schortemeyer, R.; Kuhn, E.M.; Bushee, G.; Thompson, N.E.; Mitchell, M.L. Extended Infusion of Beta-Lactams Is Associated With Improved Outcomes in Pediatric Patients. J. Pediatric Pharmacol. Ther. 2021, 26, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Udy, A.A.; Varghese, J.M.; Altukroni, M.; Briscoe, S.; McWhinney, B.C.; Ungerer, J.P. Subtherapeutic initial β-lactam concentrations in select critically ill patients: Association between augmented renal clearance and low trough drug concentrations. Chest 2012, 142, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.A.; Yang, J.H.; Lee, D.; Park, C.M.; Suh, G.Y.; Jeon, K. Clinical Usefulness of Procalcitonin and C-Reactive Protein as Outcome Predictors in Critically Ill Patients with Severe Sepsis and Septic Shock. PLoS ONE 2015, 10, e0138150. [Google Scholar] [CrossRef] [Green Version]
- Cui, N.; Zhang, H. Prognostic significance of PCT and CRP evaluation for adult ICU patients with sepsis and septic shock: Retrospective analysis of 59 cases. J. Int. Med. Res. 2019, 47, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Ryoo, S.M.; Lee, J.; Lee, Y.S.; Lee, J.H.; Lim, K.S.; Huh, J.W.; Hong, S.B.; Lim, C.M.; Koh, Y.; Kim, W.Y. Lactate Level Versus Lactate Clearance for Predicting Mortality in Patients With Septic Shock Defined by Sepsis-3. Crit. Care Med. 2018, 46, e489–e495. [Google Scholar] [CrossRef]
- Hoeboer, S.H.; Groeneveld, A.B. Changes in circulating procalcitonin versus C-reactive protein in predicting evolution of infectious disease in febrile, critically ill patients. PLoS ONE 2013, 8, e65564. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Sakhuja, A.; Kumar, G.; McGrath, E.; Nanchal, R.S.; Kashani, K.B. Culture-Negative Severe Sepsis: Nationwide Trends and Outcomes. Chest 2016, 150, 1251–1259. [Google Scholar] [CrossRef]
- Phua, J.; Ngerng, W.J.; See, K.C.; Tay, C.K.; Kiong, T.; Lim, H.F.; Chew, M.Y.; Yip, H.S.; Tan, A.; Khalizah, H.J.; et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Crit. Care 2013, 17, R202. [Google Scholar] [CrossRef]
- Jones, A.E.; Trzeciak, S.; Kline, J.A. The Sequential Organ Failure Assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit Care Med. 2009, 37, 1649–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef] [PubMed]
Variable | Continuous (n = 47) | Intermittent (n = 110) | p-Value |
---|---|---|---|
Age, yr | 68.0 (62.0–78.0) | 69.0 (60.0–75.3) | 0.539 |
Sex, male | 30 (63.8) | 79 (71.8) | 0.320 |
BMI, kg/m2 | 22.5 ± 4.2 | 22.7 ± 4.0 | 0.831 |
Co-existing condition | |||
Congestive heart failure | 2 (4.3) | 10 (9.1) | 0.512 |
Respiratory failure | 12 (25.5) | 15 (13.6) | 0.070 |
Chronic liver disease | 1 (2.1) | 8 (7.3) | 0.281 |
End-stage renal disease | 3 (6.4) | 15 (13.6) | 0.191 |
Immunocompromised | 7 (14.9) | 15 (13.6) | 0.835 |
Organ dysfunction | |||
Cardiovascular | 30 (63.8) | 68 (61.8) | 0.812 |
Respiratory | 45 (95.7) | 106(96.4) | 1.000 |
Renal | 16 (34.0) | 41 (37.3) | 0.700 |
Haematological | 15 (31.9) | 53 (48.2) | 0.060 |
Severity of illness | |||
SOFA score | 9.0 (6.0–10.0) | 9.0 (6.8–12.0) | 0.337 |
APACHE II score | 17.2 ± 5.4 | 18.4 ± 6.5 | 0.290 |
Septic shock | 15 (31.9) | 37 (33.6) | 0.834 |
Primary site of infection * | |||
Pulmonary | 43 (91.5) | 97 (88.2) | 0.541 |
Abdominal | 1 (2.1) | 2 (1.8) | 1.000 |
Urinary | 1 (2.1) | 1 (0.9) | 0.510 |
Skin or soft tissue | 1 (2.1) | 0 (0.0) | 0.299 |
Blood | 1 (2.1) | 5 (4.5) | 0.670 |
Central nervous system | 0 (0.0) | 1 (0.9) | 1.000 |
Others ** | 0 (0.0) | 3 (2.7) | 0.555 |
Unknown | 2 (4.3) | 8 (7.3) | 0.724 |
Parameters of piperacillin-tazobactam | |||
Duration of antibiotic, days | 7.3 (4.0–10.0) | 8.0 (5.5–11.4) | 0.137 |
Cause of termination, n (%) | 0.106 | ||
Change into other antibiotics | 20 (42.6) | 56 (50.9) | |
Cessation of antibiotic use | 26 (55.3) | 44 (40.0) | |
Death | 1 (2.10) | 10 (9.1) | |
Concomitant antibiotic | |||
Teicoplanin | 14 (29.8) | 27 (24.5) | 0.493 |
Levofloxacin | 34 (72.3) | 76 (69.1) | 0.684 |
TMP-SMX | 8 (17.0) | 14 (12.7) | 0.478 |
Other antibiotics *** | 6 (12.8) | 13 (11.8) | 0.868 |
Laboratory variables | |||
Lactate level, mmol/L | 1.6 (1.2–2.8) | 1.9 (1.3–2.5) | 0.965 |
C-reactive protein, mg/dL | 9.5 (3.8–17.5) | 10.4 (3.8–19.8) | 0.697 |
White blood cell count, × 103/L | 11.9 (8.8–17.3) | 11.2 (5.7–15.6) | 0.125 |
Pre-enrolment status | |||
ICU LOS, days | 0.0 (0.0–1.0) | 0.0 (0.0–0.0) | 0.002 |
Hospital LOS, days | 1.0 (0.0–1.0) | 0.0 (0.0–1.0) | 0.018 |
Number of antibiotics | 1.0 (0.0–2.0) | 0.0 (0.0–1.0) | <0.001 |
Organ support at baseline | |||
Mechanical ventilation | 37 (78.7) | 81 (73.6) | 0.499 |
RRT | 5 (10.6) | 20 (18.2) | 0.237 |
ECMO | 3 (6.4) | 3 (2.7) | 0.365 |
Microbiological Profile * | Continuous (n = 47) | Intermittent (n = 110) | p-Value |
---|---|---|---|
Positive blood culture (n = 15) | 5 (10.6) | 10 (9.1) | 0.771 |
Gram-positive | 5 (100.0) | 7 (70.0) | 0.505 |
Gram-negative | 1 (20.0) | 4 (40.0) | 0.600 |
MRSA | 0 (0.0) | 3 (30.0) | 0.505 |
Susceptible to piperacillin-tazobactam | 1 (20.0) | 4 (40.0) | 0.600 |
Positive sputum culture (n = 59) | 15 (31.9) | 44 (40.0) | 0.338 |
Gram-positive | 3 (20.0) | 9 (20.5) | 1.000 |
Gram-negative | 7 (46.7) | 19 (43.2) | 0.814 |
MRSA | 0 (0.0) | 2 (4.5) | 1.000 |
Multidrug-resistant GNB | 2 (13.3) | 4 (9.1) | 0.638 |
Pneumocystis jirovecii | 3 (20.0) | 7 (15.9) | 0.704 |
Others ** | 3 (20.0) | 17 (38.6) | 0.188 |
Susceptible to piperacillin-tazobactam | 5 (33.3) | 14 (31.8) | 1.000 |
Other culture (n = 6) | 2 (4.3) | 4 (3.6) | 1.000 |
Gram-positive | 0 (0.0) | 2 (50.0) | 0.467 |
Gram-negative | 2 (100.0) | 2 (50.0) | 0.467 |
Multidrug-resistant GNB | 1 (50.0) | 0 (0.0) | 0.333 |
Susceptible to piperacillin-tazobactam | 1 (50.0) | 3 (75.0) | 1.000 |
Outcome Measure | Continuous (n = 47) | Intermittent (n = 110) | p-Value |
---|---|---|---|
Microbiological response | 13 (27.7) | 24 (21.8) | 0.538 |
Clinical improvement, n (%) | |||
Normalisation of WBC on day 7 (n = 97) | 9 (28.1) | 26 (40.0) | 0.272 |
Normalisation of CRP on day 7 (n = 151) | 4 (9.3) | 2 (1.9) | 0.030 |
Normalisation of procalcitonin on day 7 (n = 81) | 4 (19.0) | 6 (10.0) | 0.072 |
Lactate clearance (≥50%) on day 7 (n = 72) | 17 (81.0) | 26 (51.0) | 0.009 |
LOS, median (IQR) * | |||
Hospital days | 21.0 (13.0–44.0) | 19.0 (11.0–34.5) | 0.476 |
ICU days | 7.0 (4.0–10.0) | 8.0 (5.0–15.3) | 0.116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyun, D.-g.; Seo, J.; Lee, S.Y.; Ahn, J.H.; Hong, S.-B.; Lim, C.-M.; Koh, Y.; Huh, J.W. Continuous Piperacillin-Tazobactam Infusion Improves Clinical Outcomes in Critically Ill Patients with Sepsis: A Retrospective, Single-Centre Study. Antibiotics 2022, 11, 1508. https://doi.org/10.3390/antibiotics11111508
Hyun D-g, Seo J, Lee SY, Ahn JH, Hong S-B, Lim C-M, Koh Y, Huh JW. Continuous Piperacillin-Tazobactam Infusion Improves Clinical Outcomes in Critically Ill Patients with Sepsis: A Retrospective, Single-Centre Study. Antibiotics. 2022; 11(11):1508. https://doi.org/10.3390/antibiotics11111508
Chicago/Turabian StyleHyun, Dong-gon, Jarim Seo, Su Yeon Lee, Jee Hwan Ahn, Sang-Bum Hong, Chae-Man Lim, Younsuck Koh, and Jin Won Huh. 2022. "Continuous Piperacillin-Tazobactam Infusion Improves Clinical Outcomes in Critically Ill Patients with Sepsis: A Retrospective, Single-Centre Study" Antibiotics 11, no. 11: 1508. https://doi.org/10.3390/antibiotics11111508
APA StyleHyun, D.-g., Seo, J., Lee, S. Y., Ahn, J. H., Hong, S.-B., Lim, C.-M., Koh, Y., & Huh, J. W. (2022). Continuous Piperacillin-Tazobactam Infusion Improves Clinical Outcomes in Critically Ill Patients with Sepsis: A Retrospective, Single-Centre Study. Antibiotics, 11(11), 1508. https://doi.org/10.3390/antibiotics11111508