Role of dipA and pilD in Francisella tularensis Susceptibility to Resazurin
Abstract
:1. Introduction
2. Results
2.1. Isolation of Resazurin-Resistant F. tularensis LVS Mutants
2.2. Characterizing the Role of pilD and dipA in F. tularensis Susceptibility to Resazurin
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Selection of Resazurin-Resistant (RZR) LVS Mutants and Whole Genome Sequencing
4.3. Construction of dipA and pilD Complemented Strains and Mutants
4.4. Agar Dilution Susceptibility Testing
4.5. Time Kill Assays
4.6. Statistical Analyses
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019; Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- Ventola, C.L. The antibiotic resistance crisis: Causes and threats. Phys. Ther. J. 2015, 40, 277–283. [Google Scholar]
- Plackett, B. Why big pharma has abandoned antibiotics. Nature 2020, 586, S50–S52. [Google Scholar] [CrossRef]
- Hutchings, M.; Truman, A.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, B.T.; Girish, K.; Channu, B.C.; Thimmaiah, K.N.; Kumara, M.N. Antibacterial activity of phenoxazine derivatives. J. Chem. Pharm. Res. 2015, 7, 1074–1079. [Google Scholar]
- Onoabedje, E.A.; Ayogu, J.I.; Odoh, A.S. Recent Development in Applications of Synthetic Phenoxazines and Their Related Congeners: A Mini-Review. ChemistrySelect 2020, 5, 8540–8556. [Google Scholar] [CrossRef]
- Praveen, V.; Tripathi, C.K.M. Studies on the production of actinomycin-D by Streptomyces griseoruber—A novel source. Lett. Appl. Microbiol. 2009, 49, 450–455. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wang, M.; Tan, Y.; Hu, X.; He, H.; Xiao, C.; You, X.; Wang, Y.; Gan, M. Neo-actinomycins A and B, natural actinomycins bearing the 5H-oxazolo[4,5-b]phenoxazine chromophore, from the marine-derived Streptomyces sp. IMB094. Sci. Rep. 2017, 7, 3591. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, D.M.; O’Dee, D.M.; Cowan, B.N.; Birch, J.W.M.; Mazzella, L.K.; Nau, G.J.; Horzempa, J. The use of resazurin as a novel antimicrobial agent against Francisella tularensis. Front. Cell. Infect. Microbiol. 2013, 3, 93. [Google Scholar] [CrossRef]
- Schmitt, D.M.; Connolly, K.L.; Jerse, A.E.; Detrick, M.S.; Horzempa, J. Antibacterial activity of resazurin-based compounds against Neisseria gonorrhoeae in vitro and in vivo. Int. J. Antimicrob. Agents 2016, 48, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.M.; Kobe, B.N.; Schmitt, D.M.; Phair, B.; Gilson, T.; Jung, J.-Y.; Roberts, L.; Liao, J.; Camerlengo, C.; Chang, B.; et al. Genetic engineering of Francisella tularensis LVS for use as a novel live vaccine platform against Pseudomonas aeruginosa infections. Bioengineered 2015, 6, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Biot, F.V.; Bachert, B.A.; Mlynek, K.D.; Toothman, R.G.; Koroleva, G.I.; Lovett, S.P.; Klimko, C.P.; Palacios, G.F.; Cote, C.K.; Ladner, J.T.; et al. Evolution of Antibiotic Resistance in Surrogates of Francisella tularensis (LVS and Francisella novicida): Effects on Biofilm Formation and Fitness. Front. Microbiol. 2020, 11, 593542. [Google Scholar] [CrossRef] [PubMed]
- Kassinger, S.J.; Van Hoek, M.L. Genetic Determinants of Antibiotic Resistance in Francisella. Front. Microbiol. 2021, 12, 644855. [Google Scholar] [CrossRef]
- Chong, A.; Child, R.; Wehrly, T.D.; Rockx-Brouwer, D.; Qin, A.; Mann, B.J.; Celli, J. Structure-Function Analysis of DipA, a Francisella tularensis Virulence Factor Required for Intracellular Replication. PLoS ONE 2013, 8, e67965. [Google Scholar] [CrossRef] [Green Version]
- Mittl, P.R.E.; Schneider-Brachert, W. Sel1-like repeat proteins in signal transduction. Cell. Signal. 2007, 19, 20–31. [Google Scholar] [CrossRef]
- Smani, Y.; Fàbrega, A.; Roca, I.; Sánchez-Encinales, V.; Vila, J.; Pachón, J. Role of OmpA in the Multidrug Resistance Phenotype of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2014, 58, 1806–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viveiros, M.; Dupont, M.; Rodrigues, L.; Couto, I.; Davin-Regli, A. Antibiotic Stress, Genetic Response and Altered Permeability of E. coli. PLoS ONE 2007, 2, e365. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, Å.; Guina, T. Type II Secretion and Type IV Pili of Francisella. Ann. N. Y. Acad. Sci. 2007, 1105, 187–201. [Google Scholar] [CrossRef]
- Nguyen, Y.; Harvey, H.; Sugiman-Marangos, S.; Bell, S.D.; Buensuceso, R.N.C.; Junop, M.S.; Burrows, L.L. Structural and Functional Studies of the Pseudomonas aeruginosa Minor Pilin, PilE. J. Biol. Chem. 2015, 290, 26856. [Google Scholar] [CrossRef] [Green Version]
- Strom, M.S.; Nunn, D.; Lory, S. Multiple roles of the pilus biogenesis protein PilD: Involvement of PilD in excretion of enzymes from Pseudomonas aeruginosa. J. Bacteriol. 1991, 173, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Willcocks, S.; Huse, K.K.; Stabler, R.; Oyston, P.C.; Scott, A.; Atkins, H.S.; Wren, B.W. Genome-wide assessment of antimicrobial tolerance in Yersinia pseudotuberculosis under ciprofloxacin stress. Microb. Genom. 2019, 5, e000304. [Google Scholar] [CrossRef]
- Gallagher, L.A.; Shendure, J.; Manoil, C. Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. MBio 2011, 2, e00315-10. [Google Scholar] [CrossRef] [Green Version]
- Vitale, A.; Pessi, G.; Urfer, M.; Locher, H.H.; Zerbe, K.; Obrecht, D.; Robinson, J.A.; Eberl, L. Identification of Genes Required for Resistance to Peptidomimetic Antibiotics by Transposon Sequencing. Front. Microbiol. 2020, 11, 1681. [Google Scholar] [CrossRef]
- Schmitt, D.M.; O’Dee, D.M.; Horzempa, J.; Carlson, P.E., Jr.; Russo, B.C.; Bales, J.M.; Brown, M.J.; Nau, G.J. A Francisella tularensis live vaccine strain that improves stimulation of antigen-presenting cells does not enhance vaccine efficacy. PLoS ONE 2012, 7, e31172. [Google Scholar] [CrossRef] [Green Version]
- Horzempa, J.; Shanks, R.M.Q.; Brown, M.J.; Russo, B.C.; O’Dee, D.M.; Nau, G.J. Utilization of an unstable plasmid and the I-SceI endonuclease to generate routine markerless deletion mutants in Francisella tularensis. J. Microbiol. Methods 2010, 80, 106–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Genome analysis Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The GenomeAnalysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horzempa, J.; Carlson, P.E., Jr.; O’Dee, D.M.; Shanks, R.M.Q.; Nau, G.J. Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis. BMC Microbiol. 2008, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Shanks, R.M.Q.; Caiazza, N.C.; Hinsa, S.M.; Toutain, C.M.; O’Toole, G.A. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl. Environ. Microbiol. 2006, 72, 5027–5036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 12th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
F. tularensis Gene Name | Number of Resazurin-Resistant Isolates Containing Gene Mutation |
---|---|
FTL_1306 (dipA) | 24 |
FTL_0959 (pilD) | 22 |
FTL_1666 | 5 |
FTL_0073 | 4 |
FTL_0358 | 2 |
FTL_0610 | 2 |
FTL_0132 | 1 |
FTL_0315 | 1 |
FTL_1634 | 1 |
FTL_1654 | 1 |
Mutation Type | Nucleotide Change | Protein Change |
---|---|---|
DipA | ||
Frameshift and start lost | 1_19delATGAAAGCTAAATTTATAA | Start lost |
Frameshift and start lost | 2delT | Start lost |
Stop gained | 169G > T | Glu57 * |
Stop gained | 211G > T | Glu71 * |
Stop gained | 268G > T | Glu89 * |
Stop gained | 310G > T | Glu104 * |
Frameshift and stop gained | 342_346delGGTAG | Lys114Xfs6 * |
Frameshift and stop gained | 349_350delCA | Gln117Lysfs6 * |
Frameshift and stop gained | 350_353delAAAA | Lys119Valfs2 * |
Frameshift and stop gained | 387_396delTTTGGGCTAT | Asn129Lysfs8 * |
Stop gained | 578 C > A | Ser193 * |
Stop gained | 655C > T | Gln219 * |
Stop gained | 676G > T | Glu226 * |
Stop gained | 723T > A | Tyr240 * |
Frameshift and stop gained | 751_752insA | Tyr251 * |
PilD | ||
Stop gained | 532G > T | Gly178X |
Strain | MIC (μg/mL) 1 |
---|---|
LVS | 5.5 |
Rzr 46/pABST | 11 |
Rzr 47/pABST | 11 |
Rzr 46/pDipA | 5.5 |
Rzr 47/pPilD | 11 |
Strain | MIC (μg/mL) 1 |
---|---|
LVS | 5.5 |
ΔdipA | 11 |
FTL_0959d | 11 |
Plasmid, Primer, or Strain | Description or Sequence | Source or Reference |
---|---|---|
F. tularensis strains | ||
LVS | F. tularensis subsp. holarctica live vaccine strain | Karen Elkins |
RZR46 | Spontaneous resazurin-resistant LVS mutant containing deletion of single thymine residue at position 2 in dipA | This study |
RZR47 | Spontaneous resazurin-resistant LVS mutant containing 532G > T substitution in pilD | This study |
ΔdipA | LVS dipA deletion mutant | This study |
FTL_0959d | LVS pilD disruption mutant | This study |
E. coli strains | ||
DH5α | fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 | NEB 1 |
Plasmids | ||
pABST | pFNLTP8 with F. tularensis LVS groE promoter | [11] |
pDipA | pABST containing dipA under control of groE promoter | This study |
pPilD | pABST containing dipA under control of groE promoter | This study |
pJH1 | pMQ225 with the I-SceI restriction site | [26] |
pGUTS | pGRP with I-SceI under the control of FGRp | [26] |
pJH1ΔdipA | pJH1 with the left and right 500-bp flanking regions of dipA cloned into the PstI-SphI site of pJH1 | This study |
pJH1-0959d | pJH1 with the central 470 base pair region of FTL_0959 | This study |
Primers | ||
1F_dipA | 5′-CATGCTGCAGGTAGTGTTTGGATCTTTTGTATTAGCAG -3′ | IDT 2 This study |
2R_dipA | 5′-ATAATAAGTCGACGGTACCACCGGTAATTATAAATTTAGCTTTCATCTATTTCTCCTG-3′ | IDT This study |
3F_dipA | 5′-ACCGGTGGTACCGTCGACTTATTATTACTACCAAAGAGCAGCAAAG-3′ | IDT This study |
4R_dipA | 5′-CATGGCATGCCATCACCACATTTAGAACTATTGGC-3′ | IDT This study |
F_0959d | 5′-CATGGGATCCGGGATTGATAAGCAACAATCTCCAC-3′ | IDT This study |
R_0959d | 5′-CATTGCATGCCCAAAGCCTTCTTTACCTGTAAGG-3′ | IDT This study |
dipA_F | 5′-CATGGAATTC GTGACGCTTGATGTTTTTGTATTGCAGG-3′ | IDT This study |
dipA_R | 5′-CATGGCTAGCGCGCTATTTAGAAGTCACCGCATTTTG-3′ | IDT This study |
pilD_F | 5′-ATCGGAATTCATGTTGTTATATATCGAGTGCCAAATAAAC-3′ | IDT This study |
pilD_R | 5′-ATCACATATGTTATACATAGATATTATCTTTAGTCAGTAG ATAAAAAAATGTTG-3′ | IDT This study |
pJH1_conf | 5′-CTGATTTAATCTGTATCAGGCTGAAAATC-3′ | IDT This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souder, K.; Beatty, E.J.; McGovern, S.C.; Whaby, M.; Young, E.; Pancake, J.; Weekley, D.; Rice, J.; Primerano, D.A.; Denvir, J.; et al. Role of dipA and pilD in Francisella tularensis Susceptibility to Resazurin. Antibiotics 2021, 10, 992. https://doi.org/10.3390/antibiotics10080992
Souder K, Beatty EJ, McGovern SC, Whaby M, Young E, Pancake J, Weekley D, Rice J, Primerano DA, Denvir J, et al. Role of dipA and pilD in Francisella tularensis Susceptibility to Resazurin. Antibiotics. 2021; 10(8):992. https://doi.org/10.3390/antibiotics10080992
Chicago/Turabian StyleSouder, Kendall, Emma J. Beatty, Siena C. McGovern, Michael Whaby, Emily Young, Jacob Pancake, Daron Weekley, Justin Rice, Donald A. Primerano, James Denvir, and et al. 2021. "Role of dipA and pilD in Francisella tularensis Susceptibility to Resazurin" Antibiotics 10, no. 8: 992. https://doi.org/10.3390/antibiotics10080992
APA StyleSouder, K., Beatty, E. J., McGovern, S. C., Whaby, M., Young, E., Pancake, J., Weekley, D., Rice, J., Primerano, D. A., Denvir, J., Horzempa, J., & Schmitt, D. M. (2021). Role of dipA and pilD in Francisella tularensis Susceptibility to Resazurin. Antibiotics, 10(8), 992. https://doi.org/10.3390/antibiotics10080992