Efficiency of Antimicrobial Photodynamic Therapy with Photodithazine® on MSSA and MRSA Strains
Abstract
:1. Introduction
2. Results
2.1. Internalization of PDZ in the MSSA and MRSA Strains with Confocal Microscopy
2.2. Evaluation of Bacterial Growth by Counting the Number of Colony Forming Units (CFU).
2.3. Evaluation of Bacterial Metabolic Activity by Metabolizing Resazurin
2.4. Evaluation of the Production of ROS.
3. Discussion
4. Materials and Methods
4.1. Obtaining and Maintaining Bacterial Strains
4.2. Photosensitizer Preparation
4.3. Bacteria Preparation
4.4. Cytotoxicity analysis of Photodithazine®
4.5. Irradiation
4.6. Internalization of Photodithazine® in the MSSA and MRSA Strains with Confocal Microscopy
4.7. Colony Forming Units Count (CFU/mL)
4.8. Analysis of ROS
4.9. Assessment of Bacterial Metabolism Through Resazurin Metabolization
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreillon, P. New and emerging treatment of Staphylococcus aureus infections in the hospital setting. Clin. Microbiol. Infect. 2008, 14, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhawy, M.; Huc-Brandt, S.; Pätzold, L.; Gannoun-Zaki, L.; Abdrabou, A.; Bischoff, M.; Molle, V. The Phosphoarginine Phosphatase PtpB from Staphylococcus aureus Is Involved in Bacterial Stress Adaptation during Infection. Cells 2021, 10, 645. [Google Scholar] [CrossRef] [PubMed]
- ANVISA—Agência Nacional de Vigilância Sanitária Boletim de Segurança do Paciente e Qualidade em Serviços de Saúde no 16: Avaliação dos indicadores nacionais das Infecções Relacionadas à Assistência à Saúde (IRAS) e Resistência microbiana do ano de 2016. ANVISA 2017, 16, 83.
- Hamdan-Partida, A.; González-García, S.; García, E.D.L.R.; Bustos-Martínez, J. Community-acquired methicillin-resistant Staphylococcus aureus can persist in the throat. Int. J. Med. Microbiol. 2018, 308, 469–475. [Google Scholar] [CrossRef]
- Lima, M.F.P.; Borges, M.A.; Parente, R.S.; Júnior, R.C.V.; Oliveira, M.E. De Staphylococcus aureus E AS INFECÇÕES HOSPITALARES—REVISÃO DE LITERATURA. Uningá 2015, 21, 32–39. [Google Scholar]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations: The Review on Antmicrobial Resistance; Government of the United Kingdom: London, UK, 2016. [Google Scholar]
- Vaithinathan, A.G.; Vanitha, A. WHO global priority pathogens list on antibiotic resistance: An urgent need for action to integrate One Health data. Perspect. Public Health 2018, 138, 87–88. [Google Scholar] [CrossRef]
- Paulin, S.; Beyer, P. 2019 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; WHO: Geneva, Switzerland, 2019; ISBN 978-92-4-000019-3. [Google Scholar]
- Alves, F.; Alonso, G.C.; Carmello, J.C.; Mima, E.G.D.O.; Bagnato, V.S.; Pavarina, A.C. Antimicrobial Photodynamic Therapy mediated by Photodithazine® in the treatment of denture stomatitis: A case report. Photodiagn. Photodyn. Ther. 2018, 21, 168–171. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Huang, Y.-Y.; Hamblin, M.R. Photodynamic therapy for localized infections—State of the art. Photodiagn. Photodyn. Ther. 2009, 6, 170–188. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.H.C.; Pinto, J.G.; Freitas, M.A.A.; Fontana, L.C.; Soares, C.P.; Ferreira-Strixino, J. Methylene blue internalization and photodynamic action against clinical and ATCC Pseudomonas aeruginosa and Staphyloccocus aureus strains. Photodiagn. Photodyn. Ther. 2018, 22, 43–50. [Google Scholar] [CrossRef]
- Stájer, A.; Kajári, S.; Gajdács, M.; Musah-Eroje, A.; Baráth, Z. Utility of Photodynamic Therapy in Dentistry: Current Concepts. Dent. J. 2020, 8, 43. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Gomes, A.T.P.C.; Moura, N.M.M. Chlorins in Photodynamic Therapy—Synthesis and applications. Rev. Virtual Química 2009, 1, 92–103. [Google Scholar] [CrossRef]
- Huang, L.; Zhiyentayev, T.; Xuan, Y.; Azhibek, D.; Kharkwal, G.B.; Hamblin, M.R. Photodynamic inactivation of bacteria using polyethylenimine-chlorin(e6) conjugates: Effect of polymer molecular weight, substitution ratio of chlorin(e6) and pH. Lasers Surg. Med. 2011, 43, 313–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, K.T.; De Souza, J.M.; Gobo, N.R.D.S.; De Assis, F.F.; Brocksom, T.J. Basic Concepts and Applications of Porphyrins, Chlorins and Phthalocyanines as Photosensitizers in Photonic Therapies. Rev. Virtual Química 2015, 7, 310–335. [Google Scholar] [CrossRef]
- Alves, F.; Carmello, J.C.; Mima, E.G.D.O.; Costa, C.A.D.S.; Bagnato, V.S.; Pavarina, A.C. Photodithazine-mediated antimicrobial photodynamic therapy against fluconazole-resistant Candida albicans in vivo. Med. Mycol. 2018, 57, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Carmello, J.C.; Juliana, C.C. Efetividade da Terapia Fotossensibilizador Photodithazine ® na Inativação de de Candida albicans In Vivo. Master’s Thesis, Faculdade de Odontologia de Araraquara, Universidade Estadual Paulista, São Paulo, Brazil, 2011. [Google Scholar]
- Garcia, M.T. Clorina como Fotossensibilizador para Terapia Fotodinâmica sobre Streptococcus mutans. Master’s Thesis, Universidade Estadual Paulista, São Paulo, Brazil, 2018. [Google Scholar]
- Quishida, C.C.C.; Carmello, J.C.; Mima, E.G.D.O.; Bagnato, V.S.; Machado, A.L.; Pavarina, A.C. Susceptibility of multispecies biofilm to photodynamic therapy using Photodithazine®. Lasers Med. Sci. 2015, 30, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Winkler, K.; Simon, C.; Finke, M.; Bleses, K.; Birke, M.; Szentmáry, N.; Hüttenberger, D.; Eppig, T.; Stachon, T.; Langenbucher, A.; et al. Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ = 670 nm). J. Photochem. Photobiol. B Biol. 2016, 162, 340–347. [Google Scholar] [CrossRef]
- Quishida, C.C.C.; Mima, E.G.D.O.; Dovigo, L.N.; Jorge, J.H.; Bagnato, V.S.; Pavarina, A.C. Photodynamic inactivation of a multispecies biofilm using Photodithazine® and LED light after one and three successive applications. Lasers Med. Sci. 2015, 30, 2303–2312. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.L. Medicinal Chemistry. Ind. Eng. Chem. 1951, 43, 577–588. [Google Scholar] [CrossRef]
- Da Silva, G.R.; Pereira, A.H.C.; Pinto, J.G.; Raniero, L.J.; Ferreira-Strixino, J. Internalization of the PDZ and its photodynamic effect on the growth of ATCC and clinical strains ofE. coliandS. aureus. Laser Phys. 2016, 26, 95603. [Google Scholar] [CrossRef]
- Kharkwal, G.B.; Sharma, S.K.; Huang, Y.-Y.; Dai, T.; Hamblin, M.R. Photodynamic therapy for infections: Clinical applications. Lasers Surg. Med. 2011, 43, 755–767. [Google Scholar] [CrossRef] [Green Version]
- Perussi, J.R. Inativação fotodinâmica de microrganismos. Química Nova 2007, 30, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Simplicio, F.I.; Maionchi, F.; Hioka, N. Terapia fotodinâmica: Aspectos farmacológicos, aplicações e avanços recentes no desenvolvimento de medicamentos. Química Nova 2002, 25, 801–807. [Google Scholar] [CrossRef]
- Correa, J.C.; Bagnato, V.S.; Imasato, H.; Perussi, J.R. Previous illumination of a water soluble chlorine photosensitizer increases its cytotoxicity. Laser Phys. 2012, 22, 1387–1394. [Google Scholar] [CrossRef]
- Freitas, M.A.; Pereira, A.H.; Pinto, J.G.; Casas, A.; Ferreira-Strixino, J. Bacterial viability after antimicrobial photodynamic therapy with curcumin on multiresistant Staphylococcus aureus. Future Microbiol. 2019, 14, 739–748. [Google Scholar] [CrossRef]
- Sabino, C.P.; Wainwright, M.; Ribeiro, M.S.; Sellera, F.P.; dos Anjos, C.; Baptista, M.D.S.; Lincopan, N. Global priority multidrug-resistant pathogens do not resist photodynamic therapy. J. Photochem. Photobiol. B Biol. 2020, 208, 111893. [Google Scholar] [CrossRef]
- Fuda, C.C.S.; Fisher, J.F.; Mobashery, S. β-Lactam resistance in Staphylococcus aureus: The adaptive resistance of a plastic genome. Cell. Mol. Life Sci. 2005, 62, 2617–2633. [Google Scholar] [CrossRef]
- Tomasz, A.; Nachman, S.; Leaf, H. Stable classes of phenotypic expression in methicillin-resistant clinical isolates of staphylococci. Antimicrob. Agents Chemother. 1991, 35, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Watkins, R.R.; Holubar, M.; David, M.Z. Antimicrobial Resistance in Methicillin-ResistantStaphylococcus aureusto Newer Antimicrobial Agents. Antimicrob. Agents Chemother. 2019, 63, 1–48. [Google Scholar] [CrossRef]
- Germ, J.; Poirel, L.; Kisek, T.C.; Spik, V.C.; Seme, K.; Premru, M.M.; Zupanc, T.L.; Nordmann, P.; Pirs, M. Evaluation of resazurin-based rapid test to detect colistin resistance in Acinetobacter baumannii isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2159–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, H.; Fang, R.; Lin, J.; Tian, X.; Zhao, Y.; Chen, L.; Cao, J.; Zhou, T. Evaluation of resazurin-based assay for rapid detection of polymyxin-resistant gram-negative bacteria. BMC Microbiol. 2020, 20, 7–11. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, D.; Mishra, K.; Kaur, G.; Dhull, N.; Tomar, M.; Gupta, V.; Kumar, B.; Ganju, L. Rapid antibiotic susceptibility testing by resazurin using thin film platinum as a bio-electrode. J. Microbiol. Methods 2019, 162, 69–76. [Google Scholar] [CrossRef]
- Ravi, N.S.; Aslam, R.F.; Veeraraghavan, B. A New Method for Determination of Minimum Biofilm Eradication Concentration for Accurate Antimicrobial Therapy Nithin; Methods in Molecular Biology; Biswas, I., Rather, P.N., Eds.; Springer: New York, NY, USA, 2019; Volume 1946, ISBN 978-1-4939-9117-4. [Google Scholar]
- Jiang, Y.; Leung, A.W.; Hua, H.; Rao, X.; Xu, C. Photodynamic Action of LED-Activated Curcumin againstStaphylococcus aureusInvolving Intracellular ROS Increase and Membrane Damage. Int. J. Photoenergy 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mao, C.; Xiang, Y.; Liu, X.; Zheng, Y.; Yeung, K.W.K.; Cui, Z.; Yang, X.; Li, Z.; Liang, Y.; Zhu, S.; et al. Local Photothermal/Photodynamic Synergistic Therapy by Disrupting Bacterial Membrane to Accelerate Reactive Oxygen Species Permeation and Protein Leakage. ACS Appl. Mater. Interfaces 2019, 11, 17902–17914. [Google Scholar] [CrossRef] [PubMed]
- Magacho, C.C.; Pinto, J.G.; Souza, B.M.N.; Pereira, A.H.C.; Strixino, J.F. Comparison of photodynamic therapy with methylene blue associated with ceftriaxone in gram-negative bacteria; an in vitro study. Photodiagn. Photodyn. Ther. 2020, 30, 101691. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, B.M.N.; Pinto, J.G.; Pereira, A.H.C.; Miñán, A.G.; Ferreira-Strixino, J. Efficiency of Antimicrobial Photodynamic Therapy with Photodithazine® on MSSA and MRSA Strains. Antibiotics 2021, 10, 869. https://doi.org/10.3390/antibiotics10070869
Souza BMN, Pinto JG, Pereira AHC, Miñán AG, Ferreira-Strixino J. Efficiency of Antimicrobial Photodynamic Therapy with Photodithazine® on MSSA and MRSA Strains. Antibiotics. 2021; 10(7):869. https://doi.org/10.3390/antibiotics10070869
Chicago/Turabian StyleSouza, Beatriz Müller Nunes, Juliana Guerra Pinto, André Henrique Correia Pereira, Alejandro Guillermo Miñán, and Juliana Ferreira-Strixino. 2021. "Efficiency of Antimicrobial Photodynamic Therapy with Photodithazine® on MSSA and MRSA Strains" Antibiotics 10, no. 7: 869. https://doi.org/10.3390/antibiotics10070869
APA StyleSouza, B. M. N., Pinto, J. G., Pereira, A. H. C., Miñán, A. G., & Ferreira-Strixino, J. (2021). Efficiency of Antimicrobial Photodynamic Therapy with Photodithazine® on MSSA and MRSA Strains. Antibiotics, 10(7), 869. https://doi.org/10.3390/antibiotics10070869