Clindamycin as an Alternative Option in Optimizing Periodontal Therapy
Abstract
:1. Introduction
2. Clindamycin and Its Mechanisms of Action
3. Resistance to Clindamycin
4. Clindamycin’s Adverse Effects
Advantages | Disadvantages |
---|---|
Can be administered in a multitude of formulations, both locally and systemically | Primary adverse effects of clindamycin with systemic administration are allergic reactions, pseudomembranous colitis, nausea, vomiting, and diarrhea |
Efficiency is not affected by diet | Cannot be administered to patients with a history of pseudomembranous colitis or ulcerative colitis or to pregnant persons |
Active against most aerobic Gram-positive, anaerobic Gram-positive and Gram-negative bacteria | Aerobic Gram-negative bacilli are usually resistant due to poor permeability of the cellular outer envelope |
Active against most periodontopathogenic bacteria (Actinomyces, Eubacterium, Bacteroides, Prevotella, Porphyromonas, Fusobacterium, Veillonella spp.) | Involved in antibiotic-associated diarrhea due to Clostridium difficile overgrowth |
Reduces adherence of bacteria to host cells, increases intracellular killing of susceptible organisms | Can cause taste disorders, oesophagitis and changes in hematological parameters |
Good penetration inside supporting periodontium | Mechanisms of antibiotic resistance: bacterial cell impermeability, target site alteration, enzymatic alteration or destruction of the antibiotic, increased efflux |
Does not block the proangiogenic activity, thus having positive effect in the overall regenerative outcome | Insufficiently researched in clinical trials regarding periodontal disease activity in comparison to other more popular antibiotic regimens |
5. Antibiotics in Periodontal Disease Therapy
5.1. Systemic Administration of Antibiotics in Periodontal Therapy
5.2. Local Antibiotic Delivery in Periodontal Disease Treatment
5.3. The Role of Antibiotics in Periodontal Therapy of Diabetic Patients
6. Antibiotics vs. Other Antimicrobial Periodontal Therapies
6.1. Antibiotics vs. Antimicrobial Photodynamic Therapy (aPDT)
6.2. Antibiotics vs. Laser Therapy
7. Clindamycin and Implant Therapy
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dajani, A.S.; Taubert, K.A.; Wilson, W.; Bolger, A.F.; Bayer, A.; Ferrieri, P.; Gewitz, M.H.; Shulman, S.T.; Nouri, S.; Newburger, J.W.; et al. Prevention of bacterial endocarditis: Recommendations by the American Heart Association. Circulation 1997, 96, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfeld, M. Clindamycin in the treatment of dental infections. In Clindamycin in the Treatment of Human Infections, 2nd ed.; Zambrano, D., Ed.; Pharmacia & Upjohn: Kalamazoo, MI, USA, 1997. [Google Scholar]
- Brook, I.; Lewis, M.A.O.; Sándor, G.K.B.; Jeffcoat, M.; Samaranayake, L.P.; Vera, R.J. Clindamycin for the treatment of dental infections. Rev. ADM 2007, 64, 230–237. [Google Scholar]
- Patil, V.; Mali, R.; Mali, A. Systemic anti-microbial agents used in periodontal therapy. J. Ind. Soc. Periodontol. 2013, 17, 162. [Google Scholar] [CrossRef]
- Adhikari, R.P.; Shrestha, S.; Barakoti, A.; Amatya, R. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. BMC Infect. Dis. 2017, 17, 483. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.F.; Morais, M.I.; Melo, I.S.; Augusto, P.S.; Dutra, M.M.; Costa, S.O.; Costa, F.C.; Goulart, F.A.; Braga, A.V.; Coelho, M.M.; et al. Clindamycin inhibits nociceptive response by reducing tumor necrosis factor-α and CXCL-1 production and activating opioidergic mechanisms. Inflammopharmacology 2020, 28, 551–561. [Google Scholar] [CrossRef]
- Nemec, A.; Pavlica, Z.; Nemec-Svete, A.; Eržen, D.; Milutinović, A.; Petelin, M. Aerosolized clindamycin is superior to aerosolized dexamethasone or clindamycin-dexamethasone combination in the treatment of severe Porphyromonas gingivalis aspiration pneumonia in an experimental murine model. Exp. Lung Res. 2012, 38, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Brook, I.; Lewis, M.A.; Sándor, G.K.; Jeffcoat, M.; Samaranayake, L.P.; Rojas, J.V. Clindamycin in dentistry: More than just effective prophylaxis for endocarditis? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2005, 100, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Spížek, J.; Řezanka, T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem. Pharmacol. 2017, 133, 20–28. [Google Scholar] [CrossRef]
- Bongers, S.; Hellebrekers, P.; Leenen, L.P.H.; Koenderman, L.; Hietbrink, F. Intracellular Penetration and Effects of Antibiotics on Staphylococcus aureus Inside Human Neutrophils: A Comprehensive Review. Antibiotics 2019, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Rosales, C.; Uribe-Querol, E. Neutrophil role in periodontal disease. In Role of Neutrophils in Disease Pathogenesis; InTech: Rijeka, Croatia, 2017; Volume 7, p. 67. [Google Scholar]
- Magán-Fernández, A.; Rasheed Al-Bakri, S.M.; O’Valle, F.; Benavides-Reyes, C.; Abadía-Molina, F.; Mesa, F. Neutrophil Extracellular Traps in Periodontitis. Cells 2020, 9, 1494. [Google Scholar] [CrossRef]
- Murphy, P.B.; Bistas, K.G.; Le, J.K. Clindamycin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519574 (accessed on 29 May 2021).
- Timsina, R.; Shrestha, U.; Singh, A.; Timalsina, B. Inducible clindamycin resistance and erm genes in Staphylococcus aureus in school children in Kathmandu, Nepal. Future Sci. OA 2020, 7, FSO361. [Google Scholar] [CrossRef]
- Rams, T.E.; Degener, J.E.; Van Winkelhoff, A.J. Antibiotic resistance in human chronic periodontitis microbiota. J. Periodontol. 2014, 85, 160–169. [Google Scholar] [CrossRef]
- Nasiri, M.J.; Goudarzi, M.; Hajikhani, B.; Ghazi, M.; Goudarzi, H.; Pouriran, R. Clostridioides (Clostridium) difficile infection in hospitalized patients with antibiotic-associated diarrhea: A systematic review and meta-analysis. Anaerobe 2018, 50, 32–37. [Google Scholar] [CrossRef]
- Sharon, S. Castle. Clindamycin. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–4. [Google Scholar]
- Thornhill, M.H.; Dayer, M.J.; Durkin, M.J.; Lockhart, P.B.; Baddour, L.M. Risk of adverse reactions to oral antibiotics prescribed by dentists. J. Dent. Res. 2019, 98, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Mark Donaldson, B.S.; Jason, H.G. Is clindamycin dangerous? Gen. Dent. 2017, 65, 12–15. [Google Scholar]
- Dubey, N.; Xu, J.; Zhang, Z.; Nör, J.E.; Bottino, M.C. Comparative evaluation of the cytotoxic and angiogenic effects of minocycline and clindamycin: An in vitro study. J. Endod. 2019, 45, 882–889. [Google Scholar] [CrossRef]
- Cutler, C.W.; Kalmar, J.R.; Genco, C.A. Pathogenic strategies of the oral anaerobe, Porphyromonas gingivalis. Trends Microbiol. 1995, 3, 45–51. [Google Scholar] [CrossRef]
- Ashkenazi, M.; White, R.R.; Dennison, D.K. Neutrophil modulation by Actinobacillus actinomycetemcomitans II. Phagocytosis and development of respiratory burst. J. Periodontal. Res. 1992, 27, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.; Pfister, W.; Fiedler, D.; Straube, E. Clindamycin promotes phagocytosis and intracellular killing of periodontopathogenic bacteria by crevicular granulocytes: An in vitro study. J. Antimicrob. Chemoter. 2000, 46, 583–588. [Google Scholar] [CrossRef]
- Martínez-Aguilar, G.; Hammerman, W.A.; Mason, E.O., Jr.; Kaplan, S.L. Clindamycin treatment of invasive infections caused by community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus in children. Pediatr. Infect. Dis. J. 2003, 22, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Pretzl, B.; Sälzer, S.; Ehmke, B.; Schlagenhauf, U.; Dannewitz, B.; Dommisch, H.; Eickholz, P.; Jockel-Schneider, Y. Administration of systemic antibiotics during non-surgical periodontal therapy—A consensus report. Clin. Oral Investig. 2019, 23, 3073–3085. [Google Scholar] [CrossRef]
- Nibali, L.; Koidou, V.P.; Hamborg, T.; Donos, N. Empirical or microbiologically guided systemic antimicrobials as adjuncts to non-surgical periodontal therapy? A systematic review. J. Clin. Periodontol. 2019, 46, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Teughels, W.; Feres, M.; Oud, V.; Martín, C.; Matesanz, P.; Herrera, D. Adjunctive effect of systemic antimicrobials in periodontitis therapy: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47, 257–281. [Google Scholar] [CrossRef] [PubMed]
- Keestra, J.A.; Grosjean, I.; Coucke, W.; Quirynen, M.; Teughels, W. Non-surgical periodontal therapy with systemic antibiotics in patients with untreated chronic periodontitis: A systematic review and meta-analysis. J. Periodontal. Res. 2015, 50, 294–314. [Google Scholar] [CrossRef]
- Rabelo, C.C.; Feres, M.; Gonçalves, C.; Figueiredo, L.C.; Faveri, M.; Tu, Y.K.; Chambrone, L. Systemic antibiotics in the treatment of aggressive periodontitis. A systematic review and a Bayesian Network meta-analysis. J. Clin. Periodontol. 2015, 42, 647–657. [Google Scholar] [CrossRef]
- Bogacz, M.; Morawiec, T.; Śmieszek-Wilczewska, J.; Janowska-Bogacz, K.; Bubiłek-Bogacz, A.; Rój, R.; Pinocy, K.; Mertas, A. Evaluation of drug susceptibility of microorganisms in odontogenic inflammations and dental surgery procedures performed on an outpatient basis. BioMed Res. Int. 2019, 7, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krismariono, A. Immunoglobulin-G level on aggressive periodontitis patients treated with clindamycin. Dent. J. (Maj. Kedokt. Gigi) 2009, 42, 118–122. [Google Scholar] [CrossRef]
- Bystrzycka, W.; Moskalik, A.; Sieczkowska, S.; Manda-Handzlik, A.; Demkow, U.; Ciepiela, O. The effect of clindamycin and amoxicillin on neutrophil extracellular trap (NET) release. Cent. Eur. J. Immunol. 2016, 41, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bystrzycka, W.; Manda-Handzlikm, A.; Sieczkowska, S.; Moskalik, A.; Demkow, U.; Ciepiela, O. Azithromycin and chloramphenicol diminish neutrophil extracellular traps (NETs) release. Int. J. Mol. Sci. 2017, 18, 2666. [Google Scholar] [CrossRef] [Green Version]
- Joshi, D.; Garg, T.; Goyal, A.K.; Rath, G. Advanced drug delivery approaches against periodontitis. Drug Deliv. 2016, 23, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, D.; Friedman, M. Sustained-release delivery of antimicrobial drugs for the treatment of periodontal diseases: Fantasy or already reality? Periodontology 2000 2020, 84, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Rajeshwari, H.R.; Dhamecha, D.; Jagwani, S.; Rao, M.; Jadhav, K.; Shaikh, S.; Puzhankara, L.; Jalalpure, S. Local drug delivery systems in the management of periodontitis: A scientific review. J. Control. Release 2019, 307, 393–409. [Google Scholar]
- Schmid, J.-L.; Kirchberg, M.; Sarembe, S.; Kiesow, A.; Sculean, A.; Mäder, K.; Buchholz, M.; Eick, S. In Vitro Evaluation of Antimicrobial Activity of Minocycline Formulations for Topical Application in Periodontal Therapy. Pharmaceutics 2020, 12, 352. [Google Scholar] [CrossRef]
- Chambrone, L.; Vargas, M.; Arboleda, S.; Serna, M.; Guerrero, M.; de Sousa, J.; Lafaurie, G.I. Efficacy of local and systemic antimicrobials in the non-surgical treatment of smokers with chronic periodontitis: A systematic review. J. Periodontol. 2016, 87, 1320–1332. [Google Scholar] [CrossRef]
- Jepsen, K.; Jepsen, S. Antibiotics/antimicrobials: Systemic and local administration in the therapy of mild to moderately advanced periodontitis. Periodontology 2000 2016, 71, 82–112. [Google Scholar] [CrossRef]
- Herrera, D.; Matesanz, P.; Martín, C.; Oud, V.; Feres, M.; Teughels, W. Adjunctive effect of locally delivered antimicrobials in periodontitis therapy: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47, 239–256. [Google Scholar] [CrossRef]
- Kilicarslan, M.; Ilhan, M.; Inal, O.; Orhan, K. Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy. Eur. J. Pharm. Sci. 2018, 123, 441–451. [Google Scholar] [CrossRef]
- Zupančič, Š.; Casula, L.; Rijavec, T.; Lapanje, A.; Luštrik, M.; Fadda, A.M.; Kocbek, P.; Kristl, J. Sustained release of antimicrobials from double-layer nanofiber mats for local treatment of periodontal disease, evaluated using a new micro flow-through apparatus. J. Control. Release 2019, 316, 223–235. [Google Scholar] [CrossRef]
- Bansal, M.; Mittal, N.; Yadav, S.K.; Khan, G.; Gupta, P.; Mishra, B.; Nath, G. Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: Preparation, in-vitro characterization and antimicrobial study. J. Oral Biol. Craniofac. Res. 2018, 8, 126–133. [Google Scholar] [CrossRef]
- Weldrick, P.J.; San, S.; Paunov, V.N. Advanced Alcalase-Coated Clindamycin-Loaded Carbopol Nanogels for Removal of Persistent Bacterial Biofilms. ACS Appl. Nano Mater. 2021, 4, 1187–1201. [Google Scholar] [CrossRef]
- Hasan, N.; Cao, J.; Lee, J.; Hlaing, S.P.; Oshi, M.A.; Naeem, M.; Ki, M.H.; Lee, B.L.; Jung, Y.; Yoo, J.W. Bacteria-targeted clindamycin loaded polymeric nanoparticles: Effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics 2019, 11, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.J.; Preshaw, P.M.; Lalla, E. A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J. Clin. Periodontol. 2013, 40, S113–S134. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.; Hayes, C.; Taylor, G.W. Glycemic control of type 2 diabetes and severe periodontal disease in the US adult population. Community Dent. Oral Epidemiol. 2002, 30, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Mestnik, M.J.; Feres, M.; Figueiredo, L.C.; Duarte, P.M.; Lira, E.A.G.; Faveri, M. Short-Term benefits of the adjunctive use of metronidazole plus amoxicillin in the microbial profile and in the clinical parameters of subjects with generalized aggressive periodontitis. J. Clin. Periodontol. 2010, 37, 353–365. [Google Scholar] [CrossRef]
- Silva, M.P.; Feres, M.; Oliveira Sirotto, T.A.; Silva Soares, G.M.; Velloso Mendes, J.A.; Faveri MFigueiredo, L.C. Clinical and microbiological benefits of metronidazole alone or with amoxicillin as adjuncts in the treatment of chronic periodontitis: A randomized placebo-controlled clinical trial. J. Clin. Periodontol. 2011, 38, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Miranda, T.S.; Feres, M.; Perez-Chaparro, P.J.; Figueiredo, L.C.; Tamashiro, N.S.; Bastos MFDuarte, P.M. Metronidazole and amoxicillin as adjuncts to scaling and root planing for the treatment of type 2 diabetic subjects with periodontitis: 1-year outcomes of a randomized placebo-controlled clinical trial. J. Clin. Periodontol. 2014, 41, 890–899. [Google Scholar] [CrossRef]
- Tamashiro, N.S.; Duarte, P.M.; Miranda, T.S.; Maciel, S.S.; Figueiredo, L.C.; Faveri, M.; Feres, M. Amoxicillin plus metronidazole therapy for patients with periodontitis and type 2 diabetes: A 2-year randomized controlled trial. J. Dent. Res. 2016, 95, 829–836. [Google Scholar] [CrossRef]
- Gomez-Sandoval, J.R.; Robles-Cervantes, J.A.; Hernandez-Gonzales, S.O.; Espinel-Bermudez, M.C.; Mariaud-Schimidt, R.; Martinez-Rodriguez, V.; Morgado-Castillo, K.C.; Mercado-Sesma, A.R. Efficacy of clindamycin compared with amoxicillin-metronidazole after a 7-day regimen in the treatment of periodontitis in patients with diabetes: A randomized clinical trial. BMJ Open Diabetes Res. Care 2020, 8, e000665. [Google Scholar] [CrossRef] [Green Version]
- Rovai, E.S.; Souto, M.L.; Ganhito, J.A.; Holzhausen, M.; Chambrone, L.; Pannuti, C.M. Efficacy of local antimicrobials in the non-surgical treatment of patients with periodontitis and diabetes: A systematic review. J. Periodontol. 2016, 87, 1406–1417. [Google Scholar] [CrossRef]
- Mocanu, R.C.; Martu, M.A.; Luchian, I.; Sufaru, I.G.; Maftei, G.A.; Ioanid, N.; Martu, S.; Tatarciuc, M. Microbiologic Profiles of Patients with Dental Prosthetic Treatment and Periodontitis before and after Photoactivation Therapy—Randomized Clinical Trial. Microorganisms 2021, 9, 713. [Google Scholar] [CrossRef] [PubMed]
- Biel, M.A. Antimicrobial photodynamic therapy for treatment of biofilm-based infections. Biofilm Based Healthc. Assoc. Infect. 2015, 119–136. [Google Scholar]
- Akram, Z.; Hyder, T.; Al-Hamoudi, N.; Binshabaib, M.S.; Alharthi, S.S.; Hanif, A. Efficacy of photodynamic therapy versus antibiotics as an adjunct to scaling and root planing in the treatment of periodontitis: A systematic review and meta-analysis. Photodiagnosis Photodyn. Ther. 2017, 19, 86–92. [Google Scholar] [CrossRef]
- Souza, E.Q.; da Rocha, T.E.; Toro, L.F.; Guiati, I.Z.; Ervolino, E.; Garcia, V.G.; Wainwright, M.; Theodoro, L.H. Antimicrobial photodynamic therapy compared to systemic antibiotic therapy in non-surgical treatment of periodontitis: Systematic review and meta-analysis. Photodiagnosis Photodyn. Ther. 2020, 13, 101808. [Google Scholar] [CrossRef]
- Pal, A.; Paul, S.; Perry, R.; Puryer, J. Is the Use of Antimicrobial Photodynamic Therapy or Systemic Antibiotics More Effective in Improving Periodontal Health When Used in Conjunction with Localised Non-Surgical Periodontal Therapy? A Systematic Review. Dent. J. 2019, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Ai, R.; Nie, M.; Yang, J.; Deng, D. Effects of Antibiotics Versus Repeated Applications of Photodynamic Therapy as an Adjunctive Treatment for Periodontitis: A Systematic Review and Meta-Analysis. Photobiomodul. Photomed. Laser Surg. 2021, 39, 211–220. [Google Scholar] [CrossRef]
- Cosgarea, R.; Eick, S.; Batori-Andronescu, I.; Jepsen, S.; Arweiler, N.B.; Rößler, R.; Conrad, T.; Ramseier, C.A.; Sculean, A. Clinical and Microbiological Evaluation of Local Doxycycline and Antimicrobial Photodynamic Therapy during Supportive Periodontal Therapy: A Randomized Clinical Trial. Antibiotics 2021, 10, 277. [Google Scholar] [CrossRef]
- Tabenski, L.; Moder, D.; Cieplik, F.; Schenke, F.; Hiller, K.A.; Buchalla, W.; Schmalz, G.; Christgau, M. Antimicrobial photodynamic therapy vs. local minocycline in addition to non-surgical therapy of deep periodontal pockets: A controlled randomized clinical trial. Clin. Oral Investig. 2017, 21, 2253–2264. [Google Scholar] [CrossRef] [PubMed]
- Hokari, T.; Morozumi, T.; Komatsu, Y.; Shimizu, T.; Yoshino, T.; Tanaka, M.; Tanaka, Y.; Nohno, K.; Kubota, T.; Yoshie, H. Effects of antimicrobial photodynamic therapy and local administration of minocycline on clinical, microbiological, and inflammatory markers of periodontal pockets: A pilot study. Int. J. Dent. 2018, 2018, 1748584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, L.; Jia, J.; Xie, M.; Zhang, X.; Li, T.; Shi, L.; Shi, H.; Zhang, X. Clinical attachment level gain of lasers in scaling and root planing of chronic periodontitis: A network meta-analysis of randomized controlled clinical trials. Lasers Med. Sci. 2020, 35, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.; Sanaoka, A.; Fukuda, M.; Suzuki, S.; Aoki, T. Combined effects of Nd: YAG laser irradiation with local antibiotic application into periodontal pockets. J. Int. Acad. Periodontol. 2005, 7, 8–15. [Google Scholar] [PubMed]
- Freire, A.E.; Carrera, T.M.; de Oliveira, G.J.; Pigossi, S.C.; Júnior, N.V. Comparison between Antimicrobial Photodynamic Therapy and Low-level laser therapy on non-surgical periodontal treatment: A Clinical Study. Photodiagnosis Photodyn. Ther. 2020, 31, 101756. [Google Scholar] [CrossRef] [PubMed]
- Grzech-Leśniak, K.; Matys, J.; Dominiak, M. Comparison of the clinical and microbiological effects of antibiotic therapy in periodontal pockets following laser treatment: An in vivo study. Adv. Clin. Exp. Med. 2018, 27, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Dehdashtizadeh, A.; Esnaashari, N.; Farhad, S.Z.; Ejeian, F.; Amini, S. The effect of laser irradiation and doxycycline application on the production of matrix metalloproteinase-8 and collagen I from cultured human periodontal ligament cells. Dent. Res. J. 2020, 17, 213. [Google Scholar]
- Smiley, C.J.; Tracy, S.L.; Abt, E.; Michalowicz, B.S.; John, M.T.; Gunsolley, J.; Cobb, C.M.; Rossmann, J.; Harrel, S.K.; Forrest, J.L.; et al. Systematic review and meta-analysis on the nonsurgical treatment of chronic periodontitis by means of scaling and root planing with or without adjuncts. J. Am. Dent. Assoc. 2015, 146, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Peralvo, A.O.; Kewalramani, N.; Peña-Cardelles, J.F.; Mateos-Moreno, M.V.; Monsalve-Guil, L.; Jiménez-Guerra, Á.; Ortiz-García, I.; Velasco-Ortega, E. Preventive Antibiotic Prescribing Habits among Professionals Dedicated to Oral Implantology: An Observational Study. Antibiotics 2021, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Maver, T.; Mastnak, T.; Mihelič, M.; Maver, U.; Finšgar, M. Clindamycin-Based 3D-Printed and Electrospun Coatings for Treatment of Implant-Related Infections. Materials 2021, 14, 1464. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luchian, I.; Goriuc, A.; Martu, M.A.; Covasa, M. Clindamycin as an Alternative Option in Optimizing Periodontal Therapy. Antibiotics 2021, 10, 814. https://doi.org/10.3390/antibiotics10070814
Luchian I, Goriuc A, Martu MA, Covasa M. Clindamycin as an Alternative Option in Optimizing Periodontal Therapy. Antibiotics. 2021; 10(7):814. https://doi.org/10.3390/antibiotics10070814
Chicago/Turabian StyleLuchian, Ionut, Ancuta Goriuc, Maria Alexandra Martu, and Mihai Covasa. 2021. "Clindamycin as an Alternative Option in Optimizing Periodontal Therapy" Antibiotics 10, no. 7: 814. https://doi.org/10.3390/antibiotics10070814
APA StyleLuchian, I., Goriuc, A., Martu, M. A., & Covasa, M. (2021). Clindamycin as an Alternative Option in Optimizing Periodontal Therapy. Antibiotics, 10(7), 814. https://doi.org/10.3390/antibiotics10070814