PhytoAFP: In Silico Approaches for Designing Plant-Derived Antifungal Peptides
Abstract
:1. Introduction
2. Results
2.1. Frequency of Occurrence of All Twenty Natural Amino Acids
2.2. Analysis of PhytoAFP Based on Residue Preference Using Two Sample Logos
2.3. Motif Analysis Using MERCI
2.4. Analysis of PhytoAFP Using Composition-Based Models
2.5. Analysis of PhytoAFP Using the Binary Pattern-Based Method
2.6. Performance on the Independent Dataset
2.7. ROC Plot
3. Discussion
3.1. PhytoAFP Web Server
3.1.1. Peptide Design
3.1.2. Multiple Peptides
3.1.3. Protein Scan
3.2. Sequence Download Webpage
4. Materials and Methods
4.1. Cross-Validation Technique
4.2. Measuring Parameters
4.3. Threshold-Dependent Measures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Name | Expansion |
Acc | Accuracy |
FN | False Negative |
FP | False Positive |
MCC | Matthew’s Correlation Coefficient |
NPV | Negative Prediction Value |
PPV | Positive Prediction Value |
ROC | Receiver Operative Characteristics |
References
- Badiee, P.; Hashemizadeh, Z. Opportunistic invasive fungal infections: Diagnosis & clinical management. Indian J. Med. Res. 2014, 139, 195–204. [Google Scholar] [PubMed]
- Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2017, 36, 22–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madden, L.V.; Hughes, G.; Bosch, F.V.D. The Study of Plant Disease Epidemics; APS Press: St. Paul, MN, USA, 2017. [Google Scholar]
- McManus, P.S.; Stockwell, V.O. Antibiotic use for plant disease management in the United States. Plant Health Prog. 2001, 2, 14. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- Li, W.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev. 2021, 50, 4932–4973. [Google Scholar] [CrossRef] [PubMed]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef]
- Haney, E.F.; Hancock, R. Peptide design for antimicrobial and immunomodulatory applications. Pept. Sci. 2013, 100, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Matejuk, A.; Leng, Q.; Begum, M.; Woodle, M.; Scaria, P.; Chou, S.-T.; Mixson, A. Peptide-based antifungal therapies against emerging infections. Drugs Futur. 2010, 35, 197. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, A.; Pankaj, V.; Singh, S.; Roy, S.; Semwal, M.; Shasany, A.K.; Sharma, A. PlantAFP: A curated database of plant-origin antifungal peptides. Amino Acids 2019, 51, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Sathoff, A.E.; Velivelli, S.; Shah, D.M.; Samac, D.A. Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology 2019, 109, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Fernández, D.U.M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P. Antifungal Peptides as Therapeutic Agents. Front. Cell. Infect. Microbiol. 2020, 10, 105. [Google Scholar] [CrossRef]
- Montesinos, E. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 2007, 270, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stotz, H.U.; Waller, F.; Wang, K. Innate immunity in plants: The role of antimicrobial peptides. In Antimicrobial Peptides and Innate Immunity; Springer: Basel, Switzerland, 2013; pp. 29–51. [Google Scholar]
- Broekaert, W.F.; Cammue, B.P.; De Bolle, M.F.; Thevissen, K.; De Samblanx, G.W.; Osborn, R.W.; Nielson, K. Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 1997, 16, 297–323. [Google Scholar] [CrossRef]
- Maróti, G.; Kereszt, A.; Kondorosi, É.; Mergaert, P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res. Microbiol. 2011, 162, 363–374. [Google Scholar] [CrossRef]
- De Lucca, A.J.; Walsh, T.J. Antifungal peptides: Novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother. 1999, 43, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [Green Version]
- Sachs, M.C. plotROC: A tool for plotting ROC curves. J. Stat. Softw. 2017, 79, 2. [Google Scholar] [CrossRef] [PubMed]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, A.; Kapoor, P.; Kumar, R.; Chaudhary, K.; Gautam, A.; Raghava, G.P.S. In silico models for designing and discovering novel anticancer peptides. Sci. Rep. 2013, 3, srep02984. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S.; Open Source Drug Discovery Consortium. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kapoor, P.; Gautam, A.; Chaudhary, K.; Kumar, R.; Chauhan, J.S.; Tyagi, A.; Raghava, G.P.S. Computational approach for designing tumor homing peptides. Sci. Rep. 2013, 3, srep01607. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Qureshi, A.; Kumar, M. AVPpred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Res. 2012, 40, W199–W204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, A.; Chaudhary, K.; Kumar, R.; Sharma, A.; Kapoor, P.; Tyagi, A.; Raghava, G.P.S.; Open Source Drug Discovery Consortium. In silico approaches for designing highly effective cell penetrating peptides. J. Transl. Med. 2013, 11, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Main Dataset | ||||||
---|---|---|---|---|---|---|
Input Vector | SVM Parameters | Sensitivity | Specificity | Accuracy | MCC | ROC |
Monopeptide | g:0.005 c:9 j:1 | 93.03 | 95.52 | 94.28 | 0.89 | 0.97947 |
Dipeptide | g:0.0005 c:7 j:2 | 91.54 | 97.01 | 94.28 | 0.89 | 0.97868 |
Tripeptide | g:0.0005 c:7 j:2 | 90.05 | 98.76 | 94.4 | 0.89 | 0.98361 |
Main Dataset | ||||||
---|---|---|---|---|---|---|
Input Vector | SVM Parameters | Sensitivity | Specificity | Accuracy | MCC | ROC |
NT5 | g:0.0005 c:3 j:2 | 85.75 | 85.82 | 85.79 | 0.72 | 0.90951 |
CT5 | g:0.0001 c:9 j:1 | 74.14 | 92.54 | 84.37 | 0.69 | 0.88318 |
NT10 | g:0.005 c:1 j:2 | 82.23 | 93.42 | 87.95 | 0.76 | 0.93393 |
CT10 | g:0.0005 c:4 j:1 | 94.43 | 88.34 | 0.77 | 0.92903 | 94.43 |
NTCT5 | g:0.0005 c:1 j:3 | 88.25 | 92.29 | 90.27 | 0.81 | 0.95398 |
NTCT10 | g:0.001 c:2 j:1 | 86.21 | 96.96 | 91.71 | 0.84 | 0.96315 |
Main Dataset | ||||||
---|---|---|---|---|---|---|
Input Vector | SVM Parameters | Sensitivity | Specificity | Accuracy | MCC | ROC |
NT5-BIN | g:0.5 c:1 j:1 | 78.2 | 98.01 | 88.14 | 0.78 | 0.93761 |
CT5-BIN | g:0.05 c:3 j:3 | 95.87 | 80.85 | 87.45 | 0.76 | 0.96817 |
NT10-BIN | g:0.1 c:2 j:1 | 98.67 | 60 | 90.89 | 0.7 | 0.92579 |
CT10-BIN | g:0.05 c:6 j:1 | 80.33 | 93.42 | 87.12 | 0.75 | 0.91071 |
NT15-BIN | g:0.1 c:1 j:2 | 83.95 | 95.74 | 90.29 | 0.81 | 0.9383 |
CT15-BIN | g:0.1 c:1 j:2 | 76.43 | 98.4 | 88.41 | 0.78 | 0.90965 |
NTCT5-BIN | g:0.1 c:5 j:1 | 87.22 | 83.58 | 85.39 | 0.71 | 0.92252 |
NTCT10-BIN | g:0.05 c:3 j:1 | 99.47 | 47.37 | 88.98 | 0.63 | 0.89465 |
NTCT15-BIN | g:0.05 c:2 j:1 | 86.11 | 98.4 | 92.71 | 0.86 | 0.97171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyagi, A.; Roy, S.; Singh, S.; Semwal, M.; Shasany, A.K.; Sharma, A.; Provazník, I. PhytoAFP: In Silico Approaches for Designing Plant-Derived Antifungal Peptides. Antibiotics 2021, 10, 815. https://doi.org/10.3390/antibiotics10070815
Tyagi A, Roy S, Singh S, Semwal M, Shasany AK, Sharma A, Provazník I. PhytoAFP: In Silico Approaches for Designing Plant-Derived Antifungal Peptides. Antibiotics. 2021; 10(7):815. https://doi.org/10.3390/antibiotics10070815
Chicago/Turabian StyleTyagi, Atul, Sudeep Roy, Sanjay Singh, Manoj Semwal, Ajit K. Shasany, Ashok Sharma, and Ivo Provazník. 2021. "PhytoAFP: In Silico Approaches for Designing Plant-Derived Antifungal Peptides" Antibiotics 10, no. 7: 815. https://doi.org/10.3390/antibiotics10070815
APA StyleTyagi, A., Roy, S., Singh, S., Semwal, M., Shasany, A. K., Sharma, A., & Provazník, I. (2021). PhytoAFP: In Silico Approaches for Designing Plant-Derived Antifungal Peptides. Antibiotics, 10(7), 815. https://doi.org/10.3390/antibiotics10070815