Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time
Abstract
:1. Introduction
2. Structure of RND-Type Multidrug Efflux Pumps
3. Conservation among RND Efflux Pumps Highlights Important Domains
3.1. Conservation Heat Maps Show Distinct Areas of Importance and Adaptation Flexibility
3.2. Conservation in the Periplasmic Domain
3.3. Partly Conserved Residues in the Binding Pockets
- AcrD-Ec F610, F628, S180, E273, D276, G288, G290, K292 and Y327
- MexY-Pa F615, F628, S46, E130, S135, G288, K292, Y327, M573 and V612
- MexB-Pa Phe-pit, V139, Q176, S180, I277, A279, G288, K292, Y327, V571, V612 and R620
- MexD-Pa Phe-pit, E130, Q176, S180, E273, I277, G288 and Y327
- AdeB-Ab F136, F178, F617, F628, S46, E130, S134, Q176, Y327 and M573
- MtrD-Ng Phe-pit (except F610), S134, L177, E273, G288, Y327, M573 and V612
- AcrB-Hi F178, S46, S128, S135, Q176, E273, N274, A279 and Y327
- AcrD-Ec S79, T91, Q577, I671, L674, G675, D681, R717, N719 and E826
- MexY-Pa T91, Q569, M575, N667, L674, G675, D681 and S824
- MexB-Pa S79, T91, Q569, Q577, M662, F664, F666, E673, L694, G676, D681, R717, N719, E826 and L828
- MexD-Pa Q577, I671, L674, G675 and S824
- AdeB-Ab S79, T91, Q569, Q577, I671, E673, L674, G675, T676 and S824
- MtrD-Ng S79, Q569, Q577, I671, E673, L674, G675, R717 and S824
- AcrB-Hi S79, T91, F666, N667, I671, S824 and E826
4. Binding Pocket Differences Help Understand Drug Recognition Spectra
4.1. Differences in the Hydrophobic Trap of the Distal Binding Pocket
4.2. Differences between Distal Binding Pockets Explain Aminoglycoside Selectivity
4.3. Bulky Tryptophan in the Inhibitor Binding Pit Prevents Inhibition
4.4. Specific Amino Acids in the Proximal Binding Pocket Explain β-Lactam Selectivity
4.5. Adaptation through Amino Acids and Hydrophobicity Alterations May Increase Activity
4.6. Conserved Residues May Partly Explain Conserved Drug Specificities
5. Recent Mutations in RND Multidrug Efflux Pumps Cause Enhanced Drug Resistance
5.1. AcrB-Sa Mutants Cause Fluoroquinolone (G288) and Macrolide (R717) Resistance
5.2. MtrD-Ng Mutations (R714, K823) by Mosaic Patterns Causes Macrolide Resistance
5.3. AdeJ-Ab Mutations (G288, F136) Cause Increased Drug Resistance
5.4. Mutations in MexY-Pa (K79, G287) Increase Aminoglycoside Resistance
5.5. Experimentally Obtained Mutations in AcrB-Ec (V139, A279, G288)
6. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015; ISBN 9789241509763. Available online: https://www.who.int/publications/i/item/9789241509763 (accessed on 16 March 2021).
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 9789241564748. Available online: https://apps.who.int/iris/handle/10665/112642 (accessed on 16 March 2021).
- Blair, J.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Walsh, C.T. Where will new antibiotics come from? Nat. Rev. Genet. 2003, 1, 65–70. [Google Scholar] [CrossRef]
- Colque, C.A.; Orio, A.G.A.; Feliziani, S.; Marvig, R.L.; Tobares, A.R.; Johansen, H.K.; Molin, S.; Smania, A.M. Hypermutator Pseudomonas aeruginosa exploits multiple genetic pathways to develop multidrug resistance during long-term infections in the Airways of Cystic Fibrosis Patients. Antimicrob. Agents Chemother. 2020, 64, 119–146. [Google Scholar] [CrossRef]
- Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem. 2009, 78, 119–146. [Google Scholar] [CrossRef] [Green Version]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Genet. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.; Richmond, E.G.; Piddock, L.J.V. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014, 9, 1165–1177. [Google Scholar] [CrossRef]
- Nikaido, H. Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol. 1996, 178, 5853–5859. [Google Scholar] [CrossRef] [Green Version]
- Zwama, M.; Yamaguchi, A. Molecular mechanisms of AcrB-mediated multidrug export. Res. Microbiol. 2018, 169, 372–383. [Google Scholar] [CrossRef]
- Piddock, L.J.V. Multidrug-resistance efflux pumps? Not just for resistance. Nat. Rev. Genet. 2006, 4, 629–636. [Google Scholar] [CrossRef]
- Wang-Kan, X.; Rodríguez-Blanco, G.; Southam, A.D.; Winder, C.L.; Dunn, W.B.; Ivens, A.; Piddock, L.J.V. Metabolomics reveal potential natural substrates of AcrB in Escherichia coli and Salmonella enterica Serovar Typhimurium. mBio 2021, 12, 340. [Google Scholar] [CrossRef] [PubMed]
- Zwama, M.; Yamaguchi, A.; Nishino, K. Phylogenetic and functional characterisation of the Haemophilus influenzae multidrug efflux pump AcrB. Commun. Biol. 2019, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, D.; Wang, Z.; James, N.; Voss, J.E.; Klimont, E.; Ohene-Agyei, T.; Venter, H.; Chiu, W.; Luisi, B.F. Structure of the AcrAB–TolC multidrug efflux pump. Nat. Cell Biol. 2014, 509, 512–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishino, K.; Senda, Y.; Yamaguchi, A. The AraC-family regulator GadX enhances multidrug resistance in Escherichia coli by activating expression of mdtEF multidrug efflux genes. J. Infect. Chemother. 2008, 14, 23–29. [Google Scholar] [CrossRef]
- Nishino, K.; Nikaido, E.; Yamaguchi, A. Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2009, 1794, 834–843. [Google Scholar] [CrossRef]
- Oethinger, M.; Podglajen, I.; Kern, W.V.; Levy, S.B. Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob. Agents Chemother. 1998, 42, 2089–2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, M.A.; Miller, M.C.; Grkovic, S.; Brown, M.H.; Skurray, R.A.; Brennan, R.G. Structural mechanisms of QacR induction and multidrug recognition. Science 2001, 294, 2158–2163. [Google Scholar] [CrossRef]
- Poole, K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect. 2004, 10, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Jalal, S.; Wretlind, B. Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 2004, 10, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Webber, M.A.; Talukder, A.; Piddock, L.J.V. Contribution of mutation at amino acid 45 of AcrR to acrB expression and ciprofloxacin resistance in clinical and veterinary Escherichia coli isolates. Antimicrob. Agents Chemother. 2005, 49, 4390–4392. [Google Scholar] [CrossRef] [Green Version]
- Rouquette-Loughlin, C.E.; Reimche, J.L.; Balthazar, J.T.; Dhulipala, V.; Gernert, K.M.; Kersh, E.N.; Pham, C.D.; Pettus, K.; Abrams, A.J.; Trees, D.L.; et al. Mechanistic basis for decreased antimicrobial susceptibility in a clinical isolate of Neisseria gonorrhoeae possessing a mosaic-like mtr efflux pump locus. mBio 2018, 9, e02281-18. [Google Scholar] [CrossRef] [Green Version]
- Du, D.; Wang-Kan, X.; Neuberger, A.; Van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug efflux pumps: Structure, function and regulation. Nat. Rev. Genet. 2018, 16, 523–539. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, Y.; Xu, W.; Zhang, X.; Xu, Y.; Sun, Y.; Zhou, T.; Cao, J. Hyper-expression of the efflux pump gene adeB was found in Acinetobacter baumannii with decreased triclosan susceptibility. J. Glob. Antimicrob. Resist. 2020, 22, 367–373. [Google Scholar] [CrossRef]
- Salehi, B.; Ghalavand, Z.; Yadegar, A.; Eslami, G. Characteristics and diversity of mutations in regulatory genes of resistance-nodulation-cell division efflux pumps in association with drug-resistant clinical isolates of Acinetobacter baumannii. Antimicrob. Resist. Infect. Control. 2021, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, A.; Nakashima, R.; Sakurai, K. Structural basis of RND-type multidrug exporters. Front. Microbiol. 2015, 6, 327. [Google Scholar] [CrossRef] [Green Version]
- Kobylka, J.; Kuth, M.S.; Müller, R.T.; Geertsma, E.R.; Pos, K.M. AcrB: A mean, keen, drug efflux machine. Ann. N. Y. Acad. Sci. 2020, 1459, 38–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klenotic, P.A.; Moseng, M.A.; Morgan, C.E.; Yu, E.W. Structural and functional diversity of resistance–nodulation–cell division transporters. Chem. Rev. 2021, 121, 5378–5416. [Google Scholar] [CrossRef] [PubMed]
- Alav, I.; Kobylka, J.; Kuth, M.S.; Pos, K.M.; Picard, M.; Blair, J.M.A.; Bavro, V.N. Structure, assembly, and function of tripartite efflux and type 1 secretion systems in Gram-negative bacteria. Chem. Rev. 2021, 121, 5479–5596. [Google Scholar] [CrossRef] [PubMed]
- Zgurskaya, H.I.; Malloci, G.; Chandar, B.; Vargiu, A.V.; Ruggerone, P. Bacterial efflux transporters’ polyspecificity—A gift and a curse? Curr. Opin. Microbiol. 2021, 61, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Nakashima, R.; Yamashita, E.; Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002, 419, 587–593. [Google Scholar] [CrossRef]
- Guan, L.; Nakae, T. Identification of essential charged residues in transmembrane segments of the multidrug transporter MexB of Pseudomonas aeruginosa. J. Bacteriol. 2001, 183, 1734–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkins, C.A.; Nikaido, H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. J. Bacteriol. 2002, 184, 6490–6498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakashima, R.; Sakurai, K.; Yamasaki, S.; Hayashi, K.; Nagata, C.; Hoshino, K.; Onodera, Y.; Nishino, K.; Yamaguchi, A. Structural basis for the inhibition of bacterial multidrug exporters. Nat. Cell Biol. 2013, 500, 102–106. [Google Scholar] [CrossRef]
- Sakurai, K.; Yamasaki, S.; Nakao, K.; Nishino, K.; Yamaguchi, A.; Nakashima, R. Crystal structures of multidrug efflux pump MexB bound with high-molecular-mass compounds. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsutsumi, K.; Yonehara, R.; Ishizaka-Ikeda, E.; Miyazaki, N.; Maeda, S.; Iwasaki, K.; Nakagawa, A.; Yamashita, E. Structures of the wild-type MexAB–OprM tripartite pump reveal its complex formation and drug efflux mechanism. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Glavier, M.; Puvanendran, D.; Salvador, D.; Decossas, M.; Phan, G.; Garnier, C.; Frezza, E.; Cece, Q.; Schoehn, G.; Picard, M.; et al. Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA-OprM chaperone-like complex. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Su, C.-C.; Morgan, C.E.; Kambakam, S.; Rajavel, M.; Scott, H.; Huang, W.; Emerson, C.C.; Taylor, D.J.; Stewart, P.L.; Bonomo, R.A.; et al. Cryo-electron microscopy structure of an Acinetobacter baumannii multidrug efflux pump. mBio 2019, 10, e01295-19. [Google Scholar] [CrossRef] [Green Version]
- Morgan, C.E.; Glaza, P.; Leus, I.V.; Trinh, A.; Su, C.-C.; Cui, M.; Zgurskaya, H.I.; Yu, E.W. Cryoelectron microscopy structures of AdeB illuminate mechanisms of simultaneous binding and exporting of substrates. mBio 2021, 12, e03690-20. [Google Scholar] [CrossRef]
- Bolla, J.R.; Su, C.-C.; Do, S.V.; Radhakrishnan, A.; Kumar, N.; Long, F.; Chou, T.-H.; Delmar, J.A.; Lei, H.-T.; Rajashankar, K.R.; et al. Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump. PLoS ONE 2014, 9, e97903. [Google Scholar] [CrossRef]
- Lyu, M.; Moseng, M.A.; Reimche, J.L.; Holley, C.L.; Dhulipala, V.; Su, C.-C.; Shafer, W.M.; Yu, E.W. Cryo-EM structures of a gonococcal multidrug efflux pump illuminate a mechanism of drug recognition and resistance. mBio 2020, 11, 697–706. [Google Scholar] [CrossRef]
- Touzé, T.; Eswaran, J.; Bokma, E.; Koronakis, E.; Hughes, C.; Koronakis, V. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol. Microbiol. 2004, 53, 697–706. [Google Scholar] [CrossRef]
- Symmons, M.F.; Bokma, E.; Koronakis, E.; Hughes, C.; Koronakis, V. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc. Natl. Acad. Sci. USA 2009, 106, 7173–7178. [Google Scholar] [CrossRef] [Green Version]
- Akama, H.; Matsuura, T.; Kashiwagi, S.; Yoneyama, H.; Narita, S.-I.; Tsukihara, T.; Nakagawa, A.; Nakae, T. Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J. Biol. Chem. 2004, 279, 25939–25942. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Nakashima, R.; Sakurai, K.; Kitagawa, K.; Yamasaki, S.; Nishino, K.; Yamaguchi, A. AcrB-AcrA fusion proteins that act as multidrug efflux transporters. J. Bacteriol. 2016, 198, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fan, G.; Hryc, C.F.; Blaza, J.N.; Serysheva, I.I.; Schmid, M.F.; Chiu, W.; Luisi, B.F.; Du, D. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. eLife 2017, 6, e24905. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Jeong, H.; Song, S.; Kim, H.-Y.; Lee, K.; Hyun, J.; Ha, A.N.-C. Structure of the tripartite multidrug efflux pump AcrAB-TolC suggests an alternative assembly mode. Mol. Cells 2015, 38, 180–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daury, L.; Orange, F.; Taveau, J.-C.; Verchère, A.; Monlezun, L.; Gounou, C.; Marreddy, R.; Picard, M.; Broutin, I.; Pos, K.M.; et al. Tripartite assembly of RND multidrug efflux pumps. Nat. Commun. 2016, 7, 10731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakashima, R.; Sakurai, K.; Yamasaki, S.; Nishino, K.; Yamaguchi, A. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature 2011, 480, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Nakashima, R.; Yamashita, E.; Matsumoto, T.; Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nat. Cell Biol. 2006, 443, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Seeger, M.A.; Schiefner, A.; Eicher, T.; Verrey, F.; Diederichs, K.; Pos, K.M. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 2006, 313, 1295–1298. [Google Scholar] [CrossRef] [Green Version]
- Eicher, T.; Cha, H.-J.; Seeger, M.A.; Brandstatter, L.; El-Delik, J.; Bohnert, J.A.; Kern, W.V.; Verrey, F.; Grutter, M.G.; Diederichs, K.; et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc. Natl. Acad. Sci. USA 2012, 109, 5687–5692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargiu, A.V.; Nikaido, H. Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 2012, 109, 20637–20642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, C.H.-F.; Hughes, D.; Poole, K. MexY-promoted aminoglycoside resistance in Pseudomonas aeruginosa: Involvement of a putative proximal binding pocket in aminoglycoside recognition. mBio 2014, 5, e01068-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwama, M.; Hayashi, K.; Sakurai, K.; Nakashima, R.; Kitagawa, K.; Nishino, K.; Yamaguchi, A. Hoisting-loop in bacterial multidrug exporter AcrB is a highly flexible hinge that enables the large motion of the subdomains. Front. Microbiol. 2017, 8, 2095. [Google Scholar] [CrossRef] [PubMed]
- Sjuts, H.; Vargiu, A.V.; Kwasny, S.M.; Nguyen, S.T.; Kim, H.-S.; Ding, X.; Ornik-Cha, A.; Ruggerone, P.; Bowlin, T.L.; Nikaido, H.; et al. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc. Natl. Acad. Sci. USA 2016, 113, 3509–3514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saier, M.H. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 2000, 64, 354–411. [Google Scholar] [CrossRef] [Green Version]
- Nikaido, H. RND transporters in the living world. Res. Microbiol. 2018, 169, 363–371. [Google Scholar] [CrossRef]
- Kim, H.-S.; Nagore, D.; Nikaido, H. Multidrug efflux pump MdtBC of Escherichia coli is active only as a B2C heterotrimer. J. Bacteriol. 2009, 192, 1377–1386. [Google Scholar] [CrossRef] [Green Version]
- Górecki, K.; McEvoy, M.M. Phylogenetic analysis reveals an ancient gene duplication as the origin of the MdtABC efflux pump. PLoS ONE 2020, 15, e0228877. [Google Scholar] [CrossRef] [Green Version]
- Mima, T.; Joshi, S.; Gomez-Escalada, M.; Schweizer, H.P. Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J. Bacteriol. 2007, 189, 7600–7609. [Google Scholar] [CrossRef] [Green Version]
- Fabre, L.; Ntreh, A.T.; Yazidi, A.; Leus, I.V.; Weeks, J.W.; Bhattacharyya, S.; Ruickoldt, J.; Rouiller, I.; Zgurskaya, H.I.; Sygusch, J. A “drug sweepings State of the TriABC triclosan efflux pump from Pseudomonas aeruginosa. Structure 2021, 29, 261–274. [Google Scholar] [CrossRef] [PubMed]
- McWilliam, H.; Li, W.; Uludag, M.; Squizzato, S.; Park, Y.M.; Buso, N.; Cowley, A.; Lopez, R. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013, 41, W597–W600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddy, S.R. Accelerated profile HMM searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berezin, C.; Glaser, F.; Rosenberg, J.; Paz, I.; Pupko, T.; Fariselli, P.; Casadio, R.; Ben-Tal, N. ConSeq: The identification of functionally and structurally important residues in protein sequences. Bioinformatics 2004, 20, 1322–1324. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef] [Green Version]
- Su, C.-C.; Li, M.; Gu, R.; Takatsuka, Y.; McDermott, G.; Nikaido, H.; Yu, E.W. Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. J. Bacteriol. 2006, 188, 7290–7296. [Google Scholar] [CrossRef] [Green Version]
- Seeger, M.A.; von Ballmoos, C.; Verrey, F.; Pos, K.M. Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: Evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry 2009, 48, 5801–5812. [Google Scholar] [CrossRef] [PubMed]
- Eicher, T.; Seeger, M.A.; Anselmi, C.; Zhou, W.; Brandstätter, L.; Verrey, F.; Diederichs, K.; Faraldo-Gómez, J.D.; Pos, K.M. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. eLife 2014, 3, e03145. [Google Scholar] [CrossRef] [Green Version]
- Zwama, M.; Yamasaki, S.; Nakashima, R.; Sakurai, K.; Nishino, K.; Yamaguchi, A. Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Tam, H.-K.; Malviya, V.N.; Foong, W.-E.; Herrmann, A.; Malloci, G.; Ruggerone, P.; Vargiu, A.V.; Pos, K.M. Binding and transport of carboxylated drugs by the multidrug transporter AcrB. J. Mol. Biol. 2020, 432, 861–877. [Google Scholar] [CrossRef]
- Oswald, C.; Tam, H.-K.; Pos, K.M. Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB. Nat. Commun. 2016, 7, 13819. [Google Scholar] [CrossRef]
- Schuster, S.; Vavra, M.; Kern, W.V. Evidence of a substrate-discriminating entrance channel in the lower porter domain of the multidrug resistance efflux pump AcrB. Antimicrob. Agents Chemother. 2016, 60, 4315–4323. [Google Scholar] [CrossRef] [Green Version]
- Ababou, A.; Koronakis, V. Structures of gate loop variants of the AcrB drug efflux pump bound by erythromycin substrate. PLoS ONE 2016, 11, e0159154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkey, J.; Ascher, D.; Judd, L.M.; Wick, R.R.; Kostoulias, X.; Cleland, H.; Spelman, D.W.; Padiglione, A.; Peleg, A.Y.; Holt, K.E. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb. Genom. 2018, 4, e000165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Lopez, A.; Marshall, C.W.; Welp, A.L.; Turner, C.; Rasero, J.; Cooper, V.S. The roles of history, chance, and natural selection in the evolution of antibiotic resistance. bioRxiv 2020. pre-print. [Google Scholar] [CrossRef]
- Soparkar, K.; Kinana, A.D.; Weeks, J.W.; Morrison, K.D.; Nikaido, H.; Misra, R. Reversal of the drug binding pocket defects of the AcrB multidrug efflux pump protein of Escherichia coli. J. Bacteriol. 2015, 197, 3255–3264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, J.; Bavro, V.N.; Ricci, V.; Modi, N.; Cacciotto, P.; Kleinekathöfer, U.; Ruggerone, P.; Vargiu, A.V.; Baylay, A.J.; Smith, H.E.; et al. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc. Natl. Acad. Sci. USA 2015, 112, 3511–3516. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.M.; Fais, C.; Parmar, M.; Cheruvara, H.; Marshall, R.; Hesketh, S.J.; Feasey, M.C.; Ruggerone, P.; Vargiu, A.V.; Postis, V.L.G.; et al. Cryo-EM structure and molecular dynamics analysis of the fluoroquinolone resistant mutant of the AcrB transporter from Salmonella. Microorganisms 2020, 8, 943. [Google Scholar] [CrossRef]
- López-Causapé, C.; Sommer, L.M.; Cabot, G.; Rubio, R.; Ocampo-Sosa, A.A.; Johansen, H.K.; Figuerola, J.; Cantón, R.; Kidd, T.J.; Molin, S.; et al. Evolution of the Pseudomonas aeruginosa mutational resistome in an international cystic fibrosis clone. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wardell, S.J.T.; Rehman, A.; Martin, L.W.; Winstanley, C.; Patrick, W.M.; Lamont, I.L. A large-scale whole-genome comparison shows that experimental evolution in response to antibiotics predicts changes in naturally evolved clinical Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, 6726–6734. [Google Scholar] [CrossRef] [PubMed]
- Greipel, L.; Fischer, S.; Klockgether, J.; Dorda, M.; Mielke, S.; Wiehlmann, L.; Cramer, N.; Tümmler, B. Molecular epidemiology of mutations in antimicrobial resistance loci of Pseudomonas aeruginosa isolates from airways of cystic fibrosis patients. Antimicrob. Agents Chemother. 2016, 60, 6726–6734. [Google Scholar] [CrossRef] [Green Version]
- Hooda, Y.; Sajib, M.S.I.; Rahman, H.; Luby, S.P.; Bondy-Denomy, J.; Santosham, M.; Andrews, J.R.; Saha, S.K.; Saha, S. Molec-ular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS Negl. Trop. Dis. 2019, 13, e0007868. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Dehraj, I.F.; Carey, M.E.; Dyson, Z.A.; Garrett, D.; Seidman, J.C.; Kabir, F.; Saha, S.; Baker, S.; Qamar, F.N. A race against time: Reduced azithromycin susceptibility in Salmonella enterica serovar Typhi in Pakistan. mSphere 2020, 5, 8299. [Google Scholar] [CrossRef]
- Katiyar, A.; Sharma, P.; Dahiya, S.; Singh, H.; Kapil, A.; Kaur, P. Genomic profiling of antimicrobial resistance genes in clinical isolates of Salmonella Typhi from patients infected with Typhoid fever in India. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Sajib, M.S.I.; Tanmoy, A.M.; Hooda, Y.; Rahman, H.; Andrews, J.R.; Garrett, D.O.; Endtz, H.P.; Saha, S.K.; Saha, S. Tracking the emergence of azithromycin resistance in multiple genotypes of typhoidal Salmonella. mBio 2021, 12, 109. [Google Scholar] [CrossRef]
- Ma, K.C.; Mortimer, T.D.; Grad, Y.H. Efflux pump antibiotic binding site mutations are associated with azithromycin non-susceptibility in clinical Neisseria gonorrhoeae isolates. mBio 2020, 11, 01419-18. [Google Scholar] [CrossRef]
- Jia, X.; Ren, H.; Nie, X.; Li, Y.; Li, J.; Qin, T. Antibiotic resistance and azithromycin resistance mechanism of Legionella pneumophila serogroup 1 in China. Antimicrob. Agents Chemother. 2019, 63, 01747-18. [Google Scholar] [CrossRef] [PubMed]
- Poole, K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 2005, 56, 20–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikaido, H.; Pagès, J.-M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol. Rev. 2012, 36, 340–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hessa, T.; Kim, H.; Bihlmaier, K.; Lundin, C.; Boekel, J.; Andersson, H.; Nilsson, I.; White, S.H.; Von Heijne, G. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nat. Cell Biol. 2005, 433, 377–381. [Google Scholar] [CrossRef]
- Bohnert, J.A.; Schuster, S.; Seeger, M.A.; Fähnrich, E.; Pos, K.M.; Kern, W.V. Site-directed mutagenesis reveals putative substrate binding residues in the Escherichia coli RND efflux pump AcrB. J. Bacteriol. 2008, 190, 8225–8229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargiu, A.V.; Collu, F.; Schulz, R.; Pos, K.M.; Zacharias, M.; Kleinekathöfer, U.; Ruggerone, P. Effect of the F610A mutation on substrate extrusion in the AcrB transporter: Explanation and rationale by molecular dynamics simulations. J. Am. Chem. Soc. 2011, 133, 10704–10707. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.K.; Vargiu, A.V.; Malloci, G.; Dreier, J.; Ruggerone, P. Molecular rationale behind the differential substrate specificity of bacterial RND multidrug transporters. Sci. Rep. 2017, 7, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, E.Y.; Ma, D.; Nikaido, H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J. Bacteriol. 2000, 182, 1754–1756. [Google Scholar] [CrossRef] [Green Version]
- Aires, J.R.; Nikaido, H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J. Bacteriol. 2005, 187, 1923–1929. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, N.; Tamura, N.; Van Veen, H.W.; Yamaguchi, A.; Murakami, S. β-Lactam selectivity of multidrug transporters AcrB and AcrD resides in the proximal binding pocket. J. Biol. Chem. 2014, 289, 10680–10690. [Google Scholar] [CrossRef] [Green Version]
- Morita, Y.; Tomida, J.; Kawamura, Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front. Microbiol. 2012, 3, e408. [Google Scholar] [CrossRef] [Green Version]
- Dey, D.; Kavanaugh, L.G.; Conn, G.L. Antibiotic substrate selectivity of Pseudomonas aeruginosa MexY and MexB efflux systems is determined by a Goldilocks affinity. Antimicrob. Agents Chemother. 2020, 64, 1144. [Google Scholar] [CrossRef]
- Ramaswamy, V.K.; Vargiu, A.V.; Malloci, G.; Dreier, J.; Ruggerone, P. Molecular determinants of the promiscuity of MexB and MexY multidrug transporters of Pseudomonas aeruginosa. Front. Microbiol. 2018, 9, 1144. [Google Scholar] [CrossRef]
- Massip, C.; Descours, G.; Ginevra, C.; Doublet, P.; Jarraud, S.; Gilbert, C. Macrolide resistance in Legionella pneumophila: The role of LpeAB efflux pump. J. Antimicrob. Chemother. 2017, 72, 1327–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandewalle-Capo, M.; Massip, C.; Descours, G.; Charavit, J.; Chastang, J.; Billy, P.A.; Boisset, S.; Lina, G.; Gilbert, C.; Maurin, M.; et al. Minimum inhibitory concentration (MIC) distribution among wild-type strains of Legionella pneumophila identifies a subpopulation with reduced susceptibility to macrolides owing to efflux pump genes. Int. J. Antimicrob. Agents 2017, 50, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Sakagawa, E.; Ohya, S.; Gotoh, N.; Tsujimoto, H.; Nishino, T. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2000, 44, 3322–3327. [Google Scholar] [CrossRef] [Green Version]
- Dreier, J.; Ruggerone, P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front. Microbiol. 2015, 6, 660. [Google Scholar] [CrossRef] [Green Version]
- Horiyama, T.; Nishino, K. AcrB, AcrD, and MdtABC multidrug efflux systems are involved in enterobactin export in Esche-richia coli. PLoS ONE 2014, 9, e108642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargiu, A.V.; Ramaswamy, V.K.; Malvacio, I.; Malloci, G.; Kleinekathöfer, U.; Ruggerone, P. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump. Biochim. Biophys. Acta (BBA) Gen. Subj. 2018, 1862, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Atzori, A.; Malviya, V.N.; Malloci, G.; Dreier, J.; Pos, K.M.; Vargiu, A.V.; Ruggerone, P. Identification and characterization of carbapenem binding sites within the RND-transporter AcrB. Biochim. Biophys. Acta (BBA) Biomembr. 2019, 1861, 62–74. [Google Scholar] [CrossRef]
- Husain, F.; Bikhchandani, M.; Nikaido, H. Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli. J. Bacteriol. 2011, 193, 5847–5849. [Google Scholar] [CrossRef] [Green Version]
- Duy, P.T.; Dongol, S.; Giri, A.; To, N.T.N.; Thanh, H.N.D.; Quynh, N.P.N.; Trung, P.D.; Thwaites, G.E.; Basnyat, B.; Baker, S.; et al. The emergence of azithromycin-resistant Salmonella Typhi in Nepal. JAC-Antimicrob. Resist 2020, 2, 01509–01520. [Google Scholar] [CrossRef]
- Yang, L.; Shi, H.; Zhang, L.; Lin, X.; Wei, Y.; Jiang, H.; Zeng, Z. Emergence of two AcrB substitutions conferring multidrug resistance to Salmonella spp. Antimicrob. Agents Chemother. 2021, 65, e01589-20. [Google Scholar] [CrossRef]
- Wadsworth, C.B.; Arnold, B.J.; Sater, M.R.A.; Grad, Y.H. Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. mBio 2018, 9, 5555. [Google Scholar] [CrossRef] [Green Version]
- Cudkowicz, N.A.; Schuldiner, S. Deletion of the major Escherichia coli multidrug transporter AcrB reveals transporter plasticity and redundancy in bacterial cells. PLoS ONE 2019, 14, e0218828. [Google Scholar] [CrossRef] [PubMed]
- Langevin, A.M.; El Meouche, I.; Dunlop, M.J. Mapping the role of AcrAB-TolC efflux pumps in the evolution of antibiotic resistance reveals near-MIC treatments facilitate resistance acquisition. mSphere 2020, 5, 284. [Google Scholar] [CrossRef]
- Hoeksema, M.; Jonker, M.J.; Brul, S.; Ter Kuile, B.H. Effects of a previously selected antibiotic resistance on mutations acquired during development of a second resistance in Escherichia coli. BMC Genom. 2019, 20, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinana, A.D.; Vargiu, A.V.; Nikaido, H. Some ligands enhance the efflux of other ligands by the Escherichia coli multidrug pump AcrB. Biochemistry 2013, 52, 8342–8351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, S.; Kohler, S.; Buck, A.; Dambacher, C.; König, A.; Bohnert, J.A.; Kern, W.V. Random mutagenesis of the multidrug transporter AcrB from Escherichia coli for identification of putative target residues of efflux pump inhibitors. Antimicrob. Agents Chemother. 2014, 58, 6870–6878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingardon, F.; Clement, C.; Hirano, K.; Nhan, M.; Luning, E.G.; Chanal, A.; Mukhopadhyay, A. Improving olefin tolerance and production in E. coli using native and evolved AcrB. Biotechnol. Bioeng. 2015, 112, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Shafer, W.M. Mosaic drug efflux gene sequences from commensal Neisseria can lead to low-level azithromycin resistance expressed by Neisseria gonorrhoeae clinical isolates. mBio 2018, 9, e01747-18. [Google Scholar] [CrossRef] [Green Version]
- Grad, Y.H.; Harris, S.R.; Kirkcaldy, R.D.; Green, A.G.; Marks, D.S.; Bentley, S.D.; Trees, D.; Lipsitch, M. Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000–2013. J. Infect. Dis. 2016, 214, 1579–1587. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Spratt, B.G. Regulation of the permeability of the gonococcal cell envelope by the mtr system. Mol. Microbiol. 1994, 11, 769–775. [Google Scholar] [CrossRef]
- Shafer, W.M.; Balthazar, J.T.; Hagman, K.E.; Morse, S.A. Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology 1995, 141, 907–911. [Google Scholar] [CrossRef] [Green Version]
- Ohneck, E.A.; Zaluck, A.Y.M.; Johnson, P.J.T.; Dhulipala, V.; Golparian, D.; Unemo, M.; Jerse, A.E.; Shafer, W.M. A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae. mBio 2011, 2, 1652–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galarza, P.G.; Abad, R.; Canigia, L.F.; Buscemi, L.; Pagano, I.; Oviedo, C.; Vázquez, J.A. New mutation in 23S rRNA gene associated with high level of azithromycin resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2010, 54, 1652–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.; Xia, T.; Li, Y.; Xu, Z.; Bougouffa, S.; Lo, Y.K.; Bajic, V.B.; Luo, H.; Woo, P.C.Y.; Yan, A. Uncoupled quorum sensing modulates the interplay of virulence and resistance in a multidrug-resistant clinical Pseudomonas aeruginosa isolate belonging to the MLST550 clonal complex. Antimicrob. Agents Chemother. 2019, 63, e01944-18. [Google Scholar] [CrossRef] [Green Version]
Domain/Subdomain/Loop | Sequence (Based on AcrB-Ec) | Residue Count | Conserved or Highly (%) | |
---|---|---|---|---|
Transmembrane Domain | TM1 | FIDRPIFAWVIAIIIMLAGGLAILKL | 26 | 6/26 (23.1%) |
TM2 | TPFVKISIHEVVKTLVEAIILVFLVMYLFL | 30 | 8/30 (26.7%) | |
TM3 | RATLIPTIAVPVVLLGTFAVLAA | 23 | 7/23 (30.4%) | |
TM4 | NTLTMFGMVLAIGLLVDDAIVVVENVERVMAEE | 33 | 21/33 (63.6%) | |
TM5 | PKEATRKSMGQIQGALVGIAMVLSAVFVPMAFF | 33 | 9/33 (27.3%) | |
TM6 | GAIYRQFSITIVSAMALSVLVALILTPALCATML | 34 | 11/34 (32.4%) | |
TM7 | GRYLVLYLIIVVGMAYLFVRL | 21 | 0/21 (0%) | |
TM8 | QAPSLYAISLIVVFLCLAALY | 21 | 4/21 (19.0%) | |
TM9 | IPFSVMLVVPLGVIGALLAATFR | 23 | 3/23 (13.0%) | |
TM10 | DVYFQVGLLTTIGLSAKNAILIVEFAKDLMDK | 32 | 10/32 (31.3%) | |
TM11 | GLIEATLDAVRMRLRPILMTSLAFILGVMPLVI | 33 | 13/33 (39.4%) | |
TM12 | SGAQNAVGTGVMGGMVTATVLAIFFVPVFFVVVRRR | 36 | 5/36 (13.9%) | |
lα | GFFGWFNRMFEKSTHHYTDSVGGILRS | 27 | 1/27 (3.7%) | |
Periplasmic Domain | PN1 | PPAVTISASYPGADAKTVQDTVTQVIEQNMNGIDNLMYMSSNSDSTGTVQI TLTFESGTDADIAQVQVQNKLQLAMPLLPQEVQQQGVSVEK/PRLERYNG | 100 | 7/100 (7%) |
PN2 | VVGVINTDGTMTQEDISDYVAANMKDAISRTSGVGDVQLFGSQ/GENYDII AEFNGQPASGLGIKLATGANALDTAAAIRAELAKMEPFFPSGLKIVYPYDT | 101 | 4/101 (4.0%) | |
PC1 | GVFMTMVQLPAGATQERTQKVLNEVTHYYLTKEKNNVESVFAVNGFGFAG RGQNTGIAFVSLKDWADRPGEENKVEAITMRATRAFSQIKDAMVFAF | 97 | 2/97 (2.1%) | |
PC2 | GFDFELIDQAGLGHEKLTQARNQLLAEAAKHPDMLTSVRPNGLED/SPRLE RYNGLPSMEILGQAAPGKSTGEAMELMEQLASKLPTGVGYDWTGMSYQ | 98 | 5/98 (5.1%) | |
DN | YAMRIWMNPNELNKFQLTPVDVITAIKAQNAQVAAGQLGGTPPVKGQQLN ASIIAQTRLTSTEEFGKILLKVNQDGSRVLLRDVAKIELG | 90 | 8/90 (8.9%) | |
DC | TPQFKIDIDQEKAQALGVSINDINTTLGAAWGGSYVNDFIDRGRVKKVYVMS EAKYRMLPDDIGDWYVRAADGQMVPFSAFSSSRWEYG | 89 | 3/89 (3.4%) | |
Loops | Switch-loop | GFGFAGR | 7 | 1/7 (14.3%) |
Distal-loop | EKSSSSFLM | 9 | 0/9 (0%) | |
F + Bottom-loop | PAIVELGTAT | 10 | 0/10 (0%) | |
Hoisting-loop | ERLSGNQ | 7 | 0/7 (0%) | |
Interface-loop | PSSFLPDEDQG | 11 | 3/11 (27.3%) |
Domain | 135 Conserved | 19 Conserved + 135 Highly | 19 Conserved | 135 Highly Conserved | |
---|---|---|---|---|---|
Transmembrane | P9, G23, P373, N391, L400, V406, D407, I410, E414, V452, P455, F470, S481, P490, L888, I943, L944, R971, R973, M977, T978, P988, G1010, P1023 | A347, V351, I367, S389, D408 *, A409, V412, A430, L449, L937, K940 **, A963, A981 | F5, Y327 ***, E346, P368, G378, I402, G403, N415, R418, P427, G461, G464, L497, Y527, P898, P906, G936, E947, A949, P974, G985, A995, G1004, T1015, P1023 | R8, A12, L30, T330, S336, I337, V354, L359, V374, L376, L383, L393, M395, V399, L404, L405, V411, V413, M420, I438, L442, V443, A451, Y467, I474, A477, A485, L486, L488, F885, L886, Y892, V901, V925, V929, I945, L972, I975, S979, L989, V1007 | |
Periplasmic | Porter | P36, A52, G171, N298, P318, D568, R637 | - | P119, P565, G619, G679, S836, A840 | I45, V61, I65, S80, V127, M162, E567, S824, Q865 |
Head | G217 | - | G740, G796 | M184, W187 ****, V203, I207, L251, L262, V265, V771 |
>90% | 80 ≤ 90% | 70 ≤ 80% | 50 ≤ 80% |
---|---|---|---|
G51(NS), Y77(FST), G86(NS), L118(MP), P119(G), G179(AS), R185(N), N211(RS) P223(G), F246(LVY), D264(HNQS), A266(G), V340(GIT), T343(ASV), P358(CL), R363(KN), P368(ATN), G387(DN), E602(Q), Q774(IMRS), R780(DL), A890(GISTV), E893(GN), F948(VY), G994(DS) | I6(TV), F94(AILM), S144(ADFN), V172(AIMT), A279(GST), T394(NS), A401(CSV), V416(ACIM), A457(GSV), T473(ASV), N820(ADLMQS), A889(CSV), V905(AIL), G911(AS), N941(HST), V946(ACFIT), G996(AS) | N109(ADS), V122(AIST), D156(EHNS), R168(AG KQST), Q210(EHNSY), A299(ELPST), L350(ACIV), Q360(AGHR), F396(ALV), M435(ACLSTV), V448(AIT), F453(LY), L492(IMQ), Q469(ES), Q928(DEKLMV), T933(ALMV), A942(G), F982(LMT) | A16(NST), M355(ITV), T365(AIMSV), V372(AI), T431(ASV), S434(AGST), I445(MSTY), I446(FLM(V)), S471(AT(CG)), S375(ACSV(T)), M478(IMTV(A)), T489(S(K)), V884(AI), L891(Q(M)), D924(N(S)), R1000(Q(KL)) |
Transporters | Flexible-Loop | Distal-Loop | Interface-Loop | Switch-Loop |
---|---|---|---|---|
AcrB-Ec | PAIVELGT | EKSSSSFLM | PSSFLPDEDQG | GFGFAGR |
AcrB-Sa | PAIVELGT | EKSSSSFLM | PSSFLPDEDQG | GFGFAGR |
AcrF-Sa | PAIVELGT | EKSSSSFLM | PSSFLPDEDQG | GFSFSGQ |
AcrF-Ec | PAIVELGT | EKSSSSYLM | PSSFLPEEDQG | GFSFSGQ |
MexB-Pa | PSVLELGN | TKAVKNFLM | PEAFVPAEDLG | GFNFAGR |
AcrD-Ec | PAISGLGS | RKTGDTNIL | PTSFLPLEDRG | GSGPGGN |
AcrD-Sa | PAISGLGS | RKTGDTNIL | PTSFLPQEDRG | GSGPGGN |
MexY-Pa | PPLPDLGS | EKAADSIQL | PQAFLPEEDQG | GFSLYGD |
MexD-Pa | PPINGLGN | EQTSAGFLL | PEAFVPAEDLG | GFSFSGQ |
AdeB-Ab | PAIDELGT | EASSSGFLM | PTAFMPEEDQG | GWGFSGA |
AdeJ-Ab | PAMPELGV | TKSGASFLQ | PSSFLPEEDQG | GFSFTGV |
MtrD-Ng | PPILELGN | SKARSNFLM | PTSFLPTEDQG | GFSFSGS |
MexQ-Pa | PPVPGLGT | QKTSPDILM | PPGFVPMQDKY | GLSVNGF |
MexF-Pa | PPVPGLGT | DKASPDLTM | PTGFVPQQDKQ | GLSINGF |
AdeG-Ab | PPVMGLGT | LKSSPTLTM | PGGFVPAQDKQ | GLSINGF |
MexI-Pa | AALPGST– | SSGETTAVA | KRELAPTEDQA | TWIINGT |
LpeB-Lp | PGVDDAG– | QRK–SNGLP | SHETAPKEDRG | RLTFIGD |
AcrB-Hi | PEIDTGE– | SSG–GSGIM | SSELTPNEDKG | GMSIAGA |
MexW-Pa | PSLPGTG– | EAADASALM | KKELAPEEDQG | AFQINGY |
Position | 136 | 178 | 610 | 615 | 617 | 628 | 46 | 89 | 128 | 130 | 134 | 135 | 139 | 151 | 176 | 177 | 180 | 273 | 274 | 276 | 277 | 279 | 288 | 290 | 292 | 327 | 571 | 573 | 612 | 620 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pump | |||||||||||||||||||||||||||||||
AcrB-Ec | F | F | F | F | F | F | S | Q | S | E | S | S | V | Q | Q | L | S | E | N | D | I | A | G ** | G | K | Y | V | M | V | R | |
Conservation (%) | 49 | 70 | 50 | 60 | 52 | 74 | 38 | 38 | 18 | 27 | 40 | 32 | 50 | 22 | 59 | 44 | 34 | 55 | 31 | 29 | 10 | 40 | 49 | 43 | 33 | 81 | 29 | 24 | 44 | 19 | |
AcrB-Sa | F | F | F | F | F | F | S | Q | S | E | S | S | V | Q | Q | L | S | E | N | D | V | A | G *** | G | K | Y | V | M | V | R | |
AcrF-Sa | F | F | F | F | F | F | S | T | S | E | S | S | V | Q | Q | L | A | E | N | N | V | A | G | G | K | Y | V | L | V | Q | |
AcrF-Ec | Y | F | F | F | F | F | S | T | S | E | S | S | V | Q | Q | L | A | E | N | N | V | A | G | G | K | Y | V | L | V | Q | |
MexB-Pa | F | F | F | F | F | F | Q | T | R | T | K | N | V | K | Q | V | S | Q | D | S | I | A | G | A | K | Y | V | F | V | R | |
AcrD-Ec | N | Y | F | S | P | F | T | S | T | R | D | T | T | K | D | A | S | E | K | D | Y | S | G | G | K | Y | M | T | T | N | |
AcrD-Sa | N | Y | F | S | P | F | T | T | T | R | D | T | T | K | D | A | S | E | K | D | Y | S | G | G | K | Y | M | T | T | N | |
MexY-Pa | I | W | Y | F | L | F | S | S | Y | E | D | S | I | A | E | T | A | S | E | G | F | S | G **** | A | K | Y | D | M | V | D | |
MexD-Pa | F | F | F | F | F | F | T | E | Q | E | A | G | I | T | Q | F | S | E | S | N | I | S | G | A | Q | Y | Y | V | I | Q | |
AdeB-Ab | F | F | T | W | F | F | S | E | Q | E | S | G | L | E | Q | S | A | Q | A | N | F | I | A | A | Q | Y | W | M | I | A | |
AdeJ-Ab | F * | F | F | F | F | F | A | S | T | T | A | S | V | D | Q | V | G | D | N | Q | F | S | G * | A | K | Y | V | M | V | V | |
MtrD-Ng | F | F | I | F | F | F | H | S | T | S | S | N | I | T | R | L | A | E | D | S | S | T | G | A | M | Y | F | M | V | S | |
MexQ-Pa | I | W | V | L | V | F | T | I | V | Q | P | D | V | P | V | V | A | D | A | A | L | S | A | Q | I | Y | Y | V | F | F | |
MexF-Pa | L | F | V | L | I | F | R | T | T | D | P | D | V | M | Q | L | L | N | Q | A | L | S | A | P | F | Y | Y | V | F | F | |
AdeG-Ab | L | F | V | L | I | F | R | T | T | L | P | T | V | M | G | L | S | S | Q | G | L | S | A | P | F | Y | Y | I | F | F | |
MexI-Pa | A | F | – | W | I | G | T | V | E | S | T | T | Y | I | Q | T | G | A | A | E | T | A | H | G | F | Y | A | L | – | T | |
LpeB-Lp | G | W | – | L | F | V | S | Q | E | Q | S | N | F | F | E | V | – | D | N | Q | M | V | V | S | N | I | L | G | – | D | |
AcrB-Hi | G | F | – | M | I | I | S | T | S | S | G | S | Y | S | Q | V | A | E | N | N | S | A | V | A | N | Y | A | I | – | A | |
MexW-Pa | A | L | – | F | I | G | T | T | Q | E | A | S | Y | N | E | I | N | A | S | D | A | S | Y | G | K | Y | I | F | – | Y |
Position | 79 | 91 | 569 | 575 | 577 | 624 | 626 | 662 | 664 | 666 | 667 | 668 | 671 | 673 | 674 | 675 | 676 | 681 | 717 | 719 | 824 | 826 | 828 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pump | ||||||||||||||||||||||||
AcrB-Ec | S | T | Q | M | Q | T | I | M | F | F | N | L | I | E | L | G | T | D | R *** | N | S | E | L | |
Conservation (%) | 55 | 70 | 69 | 26 | 61 | 29 | 25 | 16 | 49 | 56 | 31 | 23 | 58 | 32 | 72 | 88 | 37 | 36 | 49 | 43 | 52 | 43 | ||
AcrB-Sa | S | T | Q | M | Q | T | I | M | F | F | N | L | I | E | L | G | T | D | R | N | S | E | L | |
AcrF-Sa | S | T | Q | M | Q | S | M | L | F | F | N | M | I | E | L | G | T | D | R | N | S | E | L | |
AcrF-Ec | S | T | Q | M | Q | A | M | F | I | F | N | M | I | E | L | G | T | D | R | N | S | E | Q | |
MexB-Pa | S | T | Q | Q | Q | S | M ** | M | F | F | A | P | V | E | L | G | N | D | R | N | A | E | L | |
AcrD-Ec | S | T | R | S | Q | V | R | R | I | S | S | P | I | G | L | G | S | D | R | N | A | E | V | |
AcrD-Sa | S | T | R | S | Q | V | R | R | F | S | S | P | I | G | L | G | S | D | R | N | A | E | V | |
MexY-Pa | K * | T | Q | M | M | S | M | T | Y | M | N | S | L | D | L | G | S | D | M | A | S | N | E | |
MexD-Pa | E | V | L | D | Q | A | L | T | M | V | S | P | I | G | L | G | N | A | M | E | S | R | V | |
AdeB-Ab | S | T | Q | S | Q | V | V | E | M | V | L | P | I | E | L | G | T | S | W | E | S | S | A | |
AdeJ-Ab | S | Q | Q | L | Q | A | I | Y | M | L | Q | L | M | E | L | G | V | N | R | E | S | N | Q | |
MtrD-Ng | S | S | Q | S | Q | M | M | F | I | V | V | P | I | E | L | G | N | S | R **** | G | S | K **** | S | |
MexQ-Pa | S | T | K | I | Q | A | V | F | G | F | P | P | V | G | L | G | T | K | M | S | S | D | S | |
MexF-Pa | S | T | K | F | Q | S | I | Y | A | F | P | P | V | G | L | G | T | R | F | S | T | E | N | |
AdeG-Ab | Q | T | K | F | Q | A | I | Y | A | F | P | P | V | G | L | G | T | K | F | S | S | D | N | |
MexI-Pa | S | T | Q | A | K | A | F | S | F | F | Q | L | L | G | S | – | – | P | D | D | A | T | Q | |
LpeB-Lp | T | T | R | Y | P | – | S | W | W | T | G | L | V | D | A | G | – | E | N | D | S ***** | T | H | |
AcrB-Hi | S | T | K | I | N | S | L | S | S | F | N | I | I | T | G | – | – | P | N | D | S | E | S | |
MexW-Pa | T | S | Q | M | N | A | I | Q | F | F | N | L | L | G | T | G | – | P | D | D | S | I | S |
Proximal Binding Pocket (PBP) | Distal Binding Pocket (DBP) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Transporters | + | - | Sum | HP | Hydrophilicity (kcal mol−1) | + | - | Sum | HP | Hydrophilicity (kcal mol−1) |
AcrD-Ec | 4 | 2 | 6 | 5 | 27.07 | 4 | 4 | 8 | 3 | 39.56 |
AcrD-Sa | 4 | 2 | 6 | 5 | 27.35 | 4 | 4 | 8 | 3 | 39.24 |
MexY-Pa | 1 | 3 | 4 | 7 | 23.16 | 1 | 6 | 7 | 8 | 26.97 |
MexB-Pa | 1 | 3 | 4 | 7 | 25.75 | 5 | 1 | 6 | 12 | 26.19 |
AcrB-Sa | 1 | 3 | 4 | 9 | 20.54 | 2 | 3 | 5 | 12 | 25.93 |
LpeB-Lp | 1 | 3 | 4 | 2 | 24.35 | 0 | 4 | 4 | 11 | 25.87 |
AcrB-Ec | 1 | 3 | 4 | 9 | 20.54 | 2 | 3 | 5 | 12 | 25.64 |
MexW-Pa | 0 | 2 | 2 | 7 | 20.14 | 1 | 3 | 4 | 6 | 23.23 |
MexD-Pa | 1 | 3 | 4 | 9 | 18.59 | 0 | 3 | 3 | 11 | 22.80 |
AcrF-Ec | 1 | 3 | 4 | 8 | 23.49 | 1 | 2 | 3 | 11 | 22.25 |
AdeB-Ab | 0 | 3 | 3 | 7 | 18.65 | 0 | 3 | 3 | 9 | 21.69 |
AcrF-Sa | 1 | 3 | 4 | 9 | 21.36 | 1 | 2 | 3 | 12 | 21.25 |
AdeJ-Ab | 1 | 2 | 3 | 8 | 23.74 | 1 | 2 | 3 | 13 | 18.62 |
MexF-Pa | 2 | 1 | 3 | 6 | 20.77 | 1 | 2 | 3 | 15 | 18.27 |
AcrB-Hi | 1 | 2 | 3 | 5 | 21.41 | 0 | 1 | 1 | 7 | 17.30 |
MtrD-Ng | 2 | 1 | 3 | 8 | 20.60 | 1 | 2 | 3 | 12 | 16.92 |
MexI-Pa | 1 | 2 | 3 | 5 | 21.57 | 0 | 2 | 2 | 6 | 15.47 |
MexQ-Pa | 2 | 1 | 3 | 7 | 19.95 | 0 | 2 | 2 | 15 | 13.59 |
AdeG-Ab | 2 | 1 | 3 | 6 | 22.82 | 1 | 0 | 1 | 15 | 10.16 |
Pump | EM | NOV | Tet | Qui | NSP | CAR | SUB | Bile | AG | AZT |
---|---|---|---|---|---|---|---|---|---|---|
AcrB-Ec | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | X | X |
AcrD-Ec | X | ✓ | X | X | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
MexB-Pa | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | n/a | X | ✓ |
MexD-Pa | ✓ | ✓ | ✓ | ✓ | ✓ | X | X | n/a | X | X |
MexY-Pa | ✓ | X | ✓ | ✓ | ✓ | X | X | n/a | ✓ | X |
AcrB-Hi | ✓ | ✓ | ✓ | ✓ | ✓ | n/a | n/a | ✓ * | X | X |
Organism | Pump | Mutations | Country | Resistance | References |
---|---|---|---|---|---|
Salmonella enterica | AcrB | G288D * | UK | Ciprofloxacin (fluoroquinolone) | [80,81] |
P319L * | China | Multiple (fluoroquinolones) | [112] | ||
P319L/M78I * | China | Multiple (fluoroquinolones) | [112] | ||
R717Q * | Bangladesh, Pakistan, India | Azithromycin (macrolide) | [85,86,87,88] | ||
R717L * | Bangladesh, Nepal | Azithromycin (macrolide) | [85,88,111] | ||
Salmonella Paratyphi A | AcrB | R717L * | Bangladesh | Azithromycin (macrolide) | [85] |
R717Q * | Bangladesh | Azithromycin (macrolide) | [88] | ||
Neisseria gonorrhoeae | MtrD | R714H * | Europe, Russia | Azithromycin (macrolide) | [89] |
R714L * | USA | Azithromycin (macrolide) | [89] | ||
R714C * | USA | Azithromycin (macrolide) | [89] | ||
R714G * | Experimentally | Azithromycin (macrolide) | [43] | ||
K823N * | Canada | Azithromycin (macrolide) | [89] | ||
K823E * | USA, India, Canada | Azithromycin (macrolide) | [24,89,113] | ||
K823E/S821A * | USA | Azithromycin (macrolide) | [24] | ||
K823D * | USA | (N/D) | [24] | ||
Pseudomonasaeruginosa | MexB | A562V | Denmark | (N/D) | [5] |
M626V | Denmark | (N/D) | [5] | ||
F178S | Australia | (N/D) | [82] | ||
MexY | K79T * | Experimentally | Tobramycin (aminoglycoside) | [83] | |
K79A * | Experimentally | Paromomycin (aminoglycoside) | [56] | ||
G287A | Australia, Spain | High tobramycin MIC isolates | [82] | ||
G287S | Europe (and other), Experimentally | Tobramycin (aminoglycoside) | [83,84] | ||
Escherichia coli | AcrB | V139F | Experimentally | (N/D) | [114,115,116,117] |
G288S/M/C * | Experimentally | (N/D) | [118] | ||
G288C * | Experimentally (frequent mutation) | Multiple (especially erythromycin) | [79] | ||
A279T | Experimentally | (N/D) | [118] | ||
A279T, F617L | Experimentally (frequent mutation) | (Increased 1-Hexene tolerance) | [119] | ||
Acinetobacter baumannii | AdeJ | F136L * | Australia | Meropenem (carbapenem) | [77,78] |
G288S * | Australia | Meropenem (carbapenem) | [77,78] | ||
Legionella pneumophila | LpeB | S824I (I911L, G1158W, F1124 insert) | China | Azithromycin (macrolide) | [90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zwama, M.; Nishino, K. Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time. Antibiotics 2021, 10, 774. https://doi.org/10.3390/antibiotics10070774
Zwama M, Nishino K. Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time. Antibiotics. 2021; 10(7):774. https://doi.org/10.3390/antibiotics10070774
Chicago/Turabian StyleZwama, Martijn, and Kunihiko Nishino. 2021. "Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time" Antibiotics 10, no. 7: 774. https://doi.org/10.3390/antibiotics10070774
APA StyleZwama, M., & Nishino, K. (2021). Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time. Antibiotics, 10(7), 774. https://doi.org/10.3390/antibiotics10070774