Synbiotic Effects of Saccharomycescerevisiae, Mannan Oligosaccharides, and β-Glucan on Innate Immunity, Antioxidant Status, and Disease Resistance of Nile Tilapia, Oreochromis niloticus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feed Additives Used
2.2. Fish and Cultural Conditions
2.3. Diets and Experimental Design
2.4. Blood Sampling
2.5. Nonspecific Immune Parameters
2.6. Serum Biochemical Parameters
2.7. Antioxidant Activity
2.8. Challenge Test
2.9. Statistical Analysis
3. Results
3.1. Nonspecific Immune Response
3.2. Serum Biochemical Parameters
3.3. Antioxidant Status of Nile tilapia
3.4. Challenge with P. aeruginosa
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Saikia, D.J.; Chattopadhyay, P.; Banerjee, G.; Sarma, D. Time and Dose-Dependent Effect of Pseudomonas aeruginosa Infection on the Scales of Channapunctata (Bloch) Through Light and Electron Microscopy. Turk. J. Fish. Aquat. Sci. 2017, 17, 871–876. [Google Scholar] [CrossRef]
- El-Barbary, M.I.; Hal, A.M. Isolation and molecular characterization of some bacterial pathogens in El-Serw fish farm, Egypt. Egypt. J. Aquat. Biol. Fish. 2016, 20, 115–122, ISSN 1110–6131. [Google Scholar] [CrossRef] [Green Version]
- Hanna, M.I.; El-Hady, M.A.; Ahmed, H.A.; Elmeabawy, S.A.; Kenwy, A.M. A contribution to Pseudomonas aeruginosa infection in African Catfish (Clarias gariepinus). Res. J. Pharm. Biol. Chememicl Sci. 2014, 5, 575–588. [Google Scholar]
- Kholil, I.; Hossain, M.M.; Neowajh, S.; Islam, S.; Kabir, M. Comparative efficiency of some commercial antibiotics against Pseudomonas infection in fish. Int. J. Fish. Aquat. Stud. 2015, 2, 114–117. [Google Scholar] [CrossRef]
- Susmita, D.; Mondal, K.; Haque, S. A review on application of probiotic, prebiotic, and synbiotic for sustainable development of aquaculture. J. Entomol. Zool. Stud. 2017, 5, 422–429. [Google Scholar]
- Rasul, M.G.; Majumdar, B.C. Abuse of Antibiotics in Aquaculture and its Effects on Human, Aquatic Animal, and Environment. Saudi J. Life Sci. 2017, 10, 21276. [Google Scholar]
- Papich, M.G.; Riviere, J.E. Fluoroquinolones Antimicrobial Drugs, 8th ed.; Adams, H.R., Ed.; Iowa State University Press: Ames, IA, USA, 2001; pp. 898–917. [Google Scholar]
- Holmes, B.; Brogden, R.N.; Richards, D.M. Norfloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1985, 30, 482–513. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Abdel-Daim, M.M.; Doan, H.V. Probiotic application for sustainable aquaculture. Rev. Aquac. 2018, 907–924. [Google Scholar] [CrossRef]
- Iswarya, A.; Vaseeharan, B.; Anjugam, M.; Gobi, N.; Divya, M.; Faggio, C. β-1, 3 glucan binding protein-based selenium nanowire enhances the immune status of Cyprinus carpio and protection against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2018, 83, 61–75. [Google Scholar] [CrossRef]
- Wang, W.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Hossain, M.S.; Moss, A.S. Effects of dietary astaxanthin and vitamin E and their interactions on the growth performance, pigmentation, digestive enzyme activity of kuruma shrimp (Marsupenaeus japonicus). Aquat. Res. 2019, 50, 1186–1197. [Google Scholar] [CrossRef]
- Zhang, C.N.; Li, X.F.; Xu, W.N.; Jiang, G.Z.; Lu, K.L.; Wang, L.N.; Liu, W.B. Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability, and disease resistance of triangular bream Megalobrama terminalis. Fish Shellfish Immunol. 2013, 35, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- De, B.C.; Meena, D.K.; Behera, B.K.; Das, P.; das Mohapatra, P.K.; Sharma, A.P. Probiotics in fish and shellfish culture: Immunomodulatory and ecophysiological responses. Fish Physiol. Biochem. J. 2014, 40, 921–971. [Google Scholar] [CrossRef]
- Putra, A.N.; Utomo, N.B.P. Growth performance of tilapia Oreochromis niloticus fed with probiotic, prebiotic, and synbiotic in the diet. Pak. J. Nutr. 2015, 14, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Jain, K.K.; Sardar, P.; Jayant, M.; Tok, C.N. Effect of dietary on growth performance, body composition, digestive enzyme activity, and gut microbiota in Cirrhinus mrigala (Ham.) fingerling. Aquac. Nutr. 2017, 24, 921–929. [Google Scholar] [CrossRef]
- Putra, A.N.; Romdhonah, Y. Effects of dietary Bacillus NP5 and sweet potato extract on growth and digestive enzyme activity of dumbo catfish Clarias sp., University of Sultan Ageng Tirtayasa, Indonesia. J. Akuakultur Indones. 2018, 18, 80–88. [Google Scholar] [CrossRef]
- Maftei, N.M. Probiotic, Prebiotic, and Synbiotic Products in Human Health; Faculty of Medicine Pharmacy, University of Galati: Galati, Romania, 2019. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.F.M. Tilapia Culture, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Austin, B.; Austin, D.A. Aeromonadaceae representatives (motile aeromonads). In Bacterial Fish Pathogens; Springer: Dordrecht, The Netherlands, 2012; pp. 119–146. ISBN 978-94-007-4884-2. [Google Scholar]
- CCAC. Canadian Council on Animal Care Guidelines on: The Care and Use of Fish in Research, Teaching and Testing; Canadian Council on Animal Care: Ottawa, ON, Canada, 2005. [Google Scholar]
- Water Environment Federation; American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1998; ISBN 0-87553-235-7. [Google Scholar]
- NRC. Nutrient Requirements of Fish and Shrimp; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Ellis, A.E. Lysozyme Assays. Tech. Fish Immunol. 1990, 1, 101–103. [Google Scholar]
- Schmidt, H.H.; Seifert, R.; Bohme, E. Formation and release of nitric oxide from human neutrophils and HL-60 cells induced by a chemotactic peptide, platelet-activating factor, and leukotriene B4. FEBS Lett. 1989, 244, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Henry, R.J. Colorimetric Determination of Total Protein, Clinical Chemistry; Harper and Row Publishers: New York, NY, USA, 1964; p. 181. [Google Scholar]
- Reinhold, R.R. Determination of serum albumin. Clin. Chem. 1953, 21, 1370–1372. [Google Scholar]
- Coles, E.H. Veterinary Clinical Pathology; W.B. Saunders Co.: Philadelphia, PA, USA, 1986; pp. 10–42. [Google Scholar]
- Trinder, P. Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J. Clin. Pathol. 1969, 22, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, I.; Nelson, D.A. The Blood: In Clinical Diagnosis—By Laboratory Methods; Davidsohn, I., Henry, J.B., Eds.; W.B. Saunders Co.: Philadelphia, PA, USA, 1977; pp. 100–310. [Google Scholar]
- Aebi, H. Colorimetric method for determination of catalase. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Nishikimi, M.; Roa, N.A.; Yogi, K. Superoxide Dismutase serum detection. Biochem. Biophys. Res. Commun. 1972, 46, 849–854. [Google Scholar] [CrossRef]
- Pascual, P. Direct assay of glutathione peroxidase activity using high-performance capillary electrophoresis. J. Chromatogr. 1992, 581, 49–55. [Google Scholar] [CrossRef]
- SAS Institute, Inc. The Statical Analysis System for Windows; Version 24.0; IBM Corp: Armonk, NY, USA, 2016. [Google Scholar]
- Daniels, C.L.; Merrifield, D.L.; Boothroyd, D.P.; Davies, S.J.; Factor, J.R.; Arnold, K.E. Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster Homarus gammarus (Linn. larvae growth performance, gut morphology, and gut microbiota. Aquaculture 2010, 304, 49–57. [Google Scholar] [CrossRef]
- Kori-Siakpere, O.; Bemigho, I.R.; Gbemi, O.M. Variations in alanine aminotransferase and aspartate aminotransferase activities in African catfish: Clarias gariepinus (Burchell, 1822) at different sublethal concentrations of potassium permanganate. Sci. Res. Essays 2010, 5, 1501–1505. [Google Scholar]
- Abu-Elala, N.; Marzouk, M.; Moustafa, M. Use of different S. cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. Int. J. Vet. Sci. Med. Diagn. 2013, 1, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Opiyo, M.A.; Jumbe, J.; Ngugi, C.C.; Charo-Karisa, H. Dietary administration of probiotics modulates nonspecific immunity and gut microbiota of Nile tilapia (Oreochromis niloticus) cultured in low input ponds. Int. J. Vet. Sci. Med. Diagn. 2019, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Zhou, Z.; Meng, K.; Zhao, H.; Yao, B.; Ringø, E.; Yoon, I. Effects of dietary antibiotic growth promoter and Saccharomyces cerevisiae fermentation product on production, intestinal bacterial community, and nonspecific immunity of hybrid tilapia (Oreochromis niloticus female, Oreochromis aureus male). J. Anim. Sci. 2011, 89, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Guardiola, F.A.; Cerezuela, R.; Meseguer, J.; Esteban, M.A. Modulation of the immune parameters and expression of genes of gilthead seabream (Sparus aurata L.) by dietary administration of oxytetracycline. Aquaculture 2012, 334–337, 51–57. [Google Scholar] [CrossRef]
- Sewaka, M.; Trullas, C.; Chotiko, A.; Rodkhum, C.; Chansue, N.; Boonanuntanasarn, S.; Pirarat, N. Efficacy of synbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters, and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.). Fish Shellfish Immunol. 2019, 86, 260–268. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Eweedah, N.M.; Moustafa, E.M.; Shahin, M.G. Synbiotic effects of Aspergillus oryzae and β-Glucan on growth and oxidative and immune responses of Nile Tilapia, Oreochromis niloticus. Probiotics Antimicrob. Proteins 2020, 12, 172–183. [Google Scholar] [CrossRef]
- Gharekhani, A.; Azari, T.G.; Tukmechi, A.; Afsharnasab, M.; Agh, N. Effect of dietary supplementation with zinc enriched yeast (Saccharomyces cerevisiae) on the immunity of rainbow trout (Oncorhynchus mykiss). Iran. J. Vet. Res. 2015, 16, 278–282. [Google Scholar]
- Okey, I.B.; Gabriel, U.U.; Deekae, S.N. The Use of Synbiotics (Prebiotic and Probiotic) in Aquaculture Development. Sumer. J. Biotechnol. 2018, 1, 51–60. [Google Scholar]
- Adloo, M.N.; Soltanian, S.; Hafezieh, M.; Ghadimi, N. Effects of long term dietary administration of β-Glucan on the growth, survival, and some blood parameters of striped catfish, Pangasianodon hypophthalmus (Siluriformes: Pangasiidae). Iran. J. Ichthyol. 2015, 2, 194–200. [Google Scholar]
- Dawood, M.A.O.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; El Basuini, M.F.; Hossain, M.S.; Nhu, T.H.; Moss, A.S.; Dossou, S.; Wei, H. Dietary supplementation of β-glucan improves growth performance, the innate immune response, and stress resistance of red sea bream, Pagrus major. Aquac. Nutr. 2017, 23, 148–159. [Google Scholar] [CrossRef]
- Tang, X.L.; Fu, J.H.; Li, Z.H.; Fang, W.P.; Yang, J.Y.; Zou, J.X. Effects of a dietary administration of purple coneflower (Echinacea purpurea) on growth, antioxidant activities and 8 mRNAs expressions in crucian carp (Carassius auratus). Aquac. Res. 2016, 47, 1631–1638. [Google Scholar] [CrossRef]
- Oskoii, S.B.; Kohyani, A.T.; Parseh, A.; Salati, A.P.; Sadeghi, E. Effects of dietary administration of Echinacea purpurea on growth indices and biochemical and hematological indices in rainbow trout (Oncorhynchus mykiss) fingerlings. Fish Physiol. Biochem. 2012, 38, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.A.; ElHady, M. Effects of Echinacea purpurea and vitamin c on the health status, immune response and resistance of Oreochromis niloticus to Aeromonas sobria infection. Abbassa Int. J. Aquac. 2015, 8, 253–267. [Google Scholar]
- Aly, S.M.; Mohamed, M.F.; John, G. Echinacea as Immunostimulatory Agent in Nile Tilapia (Oreochromis niloticus) via Earthen Pond Experiment. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12–14 October 2008; pp. 1033–1041. [Google Scholar]
- Reverter, M.; Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 2014, 433, 50–61. [Google Scholar] [CrossRef]
- Shalaby, A.M.; Khattab, Y.M.; Abdel Rahman, A.M. Effects of garlic (Allium sativum) and chloramphenicol on growth performance, physiological parameters, and survival of Nile Tilapia (Oreochromis niloticus). J. Venom. Anim. Toxins Incl. Trop. Dis. 2006, 12, 172–201. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Song, G.; Lim, W. A review of the toxicity in fish exposed to antibiotics. Comp. Biochem. Physiol. 2020, 237, 108840. [Google Scholar] [CrossRef]
- El-Nobi, G.; Hassanin, M.; Khalil, A.A.; Mohammed, A.Y. Comparative efficiency of the dietary addition of synbiotic “curazol-M” and norfloxacin on the growth performance, body composition, and histological alteration of the Nile tilapia. Egypt. J. Aquatic Biol. Fish. 2021, 25, 371–582. [Google Scholar]
- Peres, H.; Santos, S.; Oliva-Teles, A. Selected plasma biochemistry parameters in gilthead seabream (Sparus aurata) juveniles. J. Appl. Ichthyol. 2013, 29, 630–636. [Google Scholar] [CrossRef]
- Gelibolu, S.; Yanar, Y.; Genc, M.A.; Genc, E. The Effect of Mannan-Oligosaccharide (MOS) as a Feed Supplement on Growth and Some Blood Parameters of Gilthead Sea Bream (Sparus aurata). Turk. J. Fish. Aquat. Sci. 2017, 18, 817–823. [Google Scholar] [CrossRef]
- Kuhlwein, H.; Merrifield, D.L.; Rawling, M.D.; Foey, A.D.; Davies, S.J. Effects of dietary β-(1,3)(1,6)-D-glucan supplementation on growth performance, intestinal morphology, and haemato-immunological profile of mirror carp (Cyprinus carpio L.). J. Anim. Physiol. Anim. Nutr. 2013, 98, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Pilarski, F.; Oliveira, C.A.F.; Souza, F.P.B.D.; Zanuzzo, F.S. Different β-glucans improve the growth performance and bacterial resistance in Nile tilapia. Fish Shellfish Immunol. 2017, 70, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Martínez, J.G.; Rábago-Castro, J.L.; Vázquez-Sauceda, M.L.; Pérez-Castañeda, R.; Blanco-Martínez, Z.; Benavides-González, F. Effect of β-glucan dietary levels on immune response and hematology of channel catfish Ictalurus punctatus juveniles. Lat. Am. J. Aquat. Res. 2017, 45, 690–698. [Google Scholar] [CrossRef]
- Dalmo, R.A.; Bøgwald, J. β-glucans as conductors of immune symphonies. Fish Shellfish Immunol. 2008, 25, 384–396. [Google Scholar] [CrossRef]
- Li, P.; Wen, Q.; Gatlin, D.M. Dose-dependent influences of dietary β-1, 3-glucan on innate immunity and disease resistance of hybrid striped bass Morone chrysops × Morone saxatilis. Aquac. Res. 2009, 40, 1578–1584. [Google Scholar] [CrossRef]
- Lin, S.; Pan, Y.; Luo, L.; Luo, L. Effects of dietary β-1, 3-glucan, chitosan or raffinose on the growth, innate immunity, and resistance of koi (Cyprinus carpio koi). Fish Shellfish Immunol. 2011, 31, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Villanueva, L.T.; Tovar-Ramírez, D.; Gisbert, E.; Cordero, H.; Guardiola, F.A.; Cuesta, A.; Meseguer, J.; Ascencio-Valle, F.; Esteban, M.A. Dietary administration of β-1, 3/1, 6-glucan and probiotic strain Shewanella putrefaciens, single or combined, on gilthead seabream growth, immune responses and gene expression. Fish Shellfish Immunol. 2014, 39, 34–41. [Google Scholar] [CrossRef]
- Vaccaro, E.; Giorgi, M.; Longo, V.; Mengozzi, G.; Gervasi, P.G. Inhibition of cytochrome P450 enzymes by enrofloxacin in the sea bass. Aquat. Toxicol. 2003, 62, 27–33. [Google Scholar] [CrossRef]
- Li, S.W.; Wang, D.; Liu, H.B.; Lu, T.Y. Effects of norfloxacin on the drug metabolism enzymes of two sturgeon species (Acipenser schrencki and Acipenser ruthenus). J. Appl. Ichthyol. 2013, 29, 1204–1207. [Google Scholar] [CrossRef]
- Abdel-Tawab, A.A.; Maarouf, A.A.; Ahmed, N.M.G. Detection of virulence factors of Pseudomonas species isolated from freshwater fish by PCR. Benha Vet. Med. J. 2016, 30, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Kollner, B.G.; Kotterba, U. Evaluation of immune functions of rainbow trout, how can environmental influences be detected? Toxicological. Letter. 2002, 131, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Amer, S.A.; Ahmed, S.A.; Ibrahim, R.E.; Al-Gabri, N.A.; Osman, A.; Sitohy, M. Impact of partial substitution of fish meal by methylated soy protein isolates on the nutritional, immunological, and health aspects of Nile tilapia, Oreochromis niloticus fingerlings. Aquaculture 2020, 518, 734871. [Google Scholar] [CrossRef]
- Ibrahim, R.E.; Ahmed, S.A.; Amer, S.A.; Al-Gabri, N.A.; Ahmed, A.I.; Abdel-Warith, A.-W.A.; Younis, E.-S.M.; Metwally, A.E. Influence of vitamin C feed supplementation on the growth, antioxidant activity, immune status, tissue histomorphology, and disease resistance in Nile tilapia, Oreochromis niloticus. Aquac. Rep. 2020, 18, 100545. [Google Scholar] [CrossRef]
- Ibrahim, R.E.; Amer, S.A.; Farroh, K.Y.; Al-Gabri, N.A.; Ahmed, A.I.; El-Araby, D.A.; Ahmed, S.A. The effects of chitosan-vitamin C nanocomposite supplementation on the growth performance, antioxidant status, immune response, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings. Aquaculture 2020, 534, 736269. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Khalil, A.A.; Amer, S.A.; Shalaby, S.I.; Badr, H.A.; Farag, M.F.; Altohamy, D.E.; Abdel Rahman, A.N. Effects of Dietary Doum Palm Fruit Powder on Growth, Antioxidant Capacity, Immune Response, and Disease Resistance of African Catfish, Clarias gariepinus (B.). Animals 2020, 10, 1407. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.A.; Osman, A.; Al-Gabri, N.A.; Elsayed, S.A.; El-Rahman, A.; Ghada, I.; Elabbasy, M.T.; Ahmed, S.A.; Ibrahim, R.E. The Effect of Dietary Replacement of Fish Meal with Whey Protein Concentrate on the Growth Performance, Fish Health, and Immune Status of Nile Tilapia Fingerlings, Oreochromis niloticus. Animals 2019, 9, 1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredients | g kg–1 |
---|---|
Fish meal 70.7% CP | 180 |
Yellow corn | 220 |
Corn gluten 67% CP | 90 |
Soybean meal 49% CP | 284 |
Wheat flour | 90 |
Wheat bran | 70 |
Fish oil | 60 |
Vitamins and minerals mixture 1 | 3.0 |
Methionine | 3.0 |
Chemical analysis (g kg–1) | |
Crude protein | 373.94 |
Fat | 98.85 |
Crude fiber | 38.43 |
NFE 2 | 423.25 |
GE (MJ/kg) 3 | 20.73 |
Lysine | 20.76 |
Methionine | 10.63 |
Ash | 65.51 |
Groups | Total Protein (g/dL) | Albumin (g/dL) | Globulin (g/dL) |
---|---|---|---|
CON | 5.90 ± 0.23 a | 2.48 ± 0.07 | 3.16 ± 0.04 a,b |
NFLX | 3.59 ± 0.47 c | 2.50 ± 0.17 | 1.09 ± 0.31 c |
SYN | 6.09 ± 0.19 a | 2.65 ± 0.28 | 3.54 ± 0.15 a |
NFLX+SYN | 5.15 ± 0.15 b | 2.45 ± 0.15 | 2.70 ± 0.30 b |
Groups | Nitric Oxide (µmol/L) | Lysozyme (µg/mL) |
---|---|---|
CON | 74.00 ± 2.60 c | 18.50 ± 2.50 b |
NFLX | 77.25 ± 3.35 c | 19.00 ± 1.00 b |
SYN | 97.70 ± 2.20 a | 24.50 ± 2.50 a |
NFLX+SYN | 89.65 ± 1.15 b | 20.50 ± 1.50 b |
Groups | Glucose (mg/dL) | Total Cholesterol (mg/dL) | Triglycerides (mg/dL) |
---|---|---|---|
CON | 89.96 ± 2.35 b | 191.00 ± 4.00 c | 165.50 ± 5.50 c |
NFLX | 111.95 ± 7.75 a | 248.00 ± 3.00 a | 221.00 ± 10.00 a |
SYN | 89.65 ± 1.15 b | 195.50 ± 4.50 c | 170.50 ± 5.50 c |
NFLX+SYN | 97.55 ± 3.25 b | 215.50 ± 5.50 b | 200.50 ± 3.50 b |
Groups | SOD (U/mL) | CAT (U/L) | GSH (IU/L) |
---|---|---|---|
CON | 3.95 ± 0.18 c | 260.00 ± 11.00 b | 147.50 ± 22.50 b |
NFLX | 4.42 ± 0.35 c | 275.50 ± 12.50 b | 157.50 ± 7.50 b |
SYN | 5.31 ± 0.29 b | 295.00 ± 6.00 a | 187.00 ± 3.00 a |
NFLX+SYN | 6.36 ± 0.59 a | 301.50 ± 5.50 a | 209.00 ± 14.00 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Nobi, G.; Hassanin, M.; Khalil, A.A.; Mohammed, A.Y.; Amer, S.A.; Montaser, M.M.; El-sharnouby, M.E. Synbiotic Effects of Saccharomycescerevisiae, Mannan Oligosaccharides, and β-Glucan on Innate Immunity, Antioxidant Status, and Disease Resistance of Nile Tilapia, Oreochromis niloticus. Antibiotics 2021, 10, 567. https://doi.org/10.3390/antibiotics10050567
El-Nobi G, Hassanin M, Khalil AA, Mohammed AY, Amer SA, Montaser MM, El-sharnouby ME. Synbiotic Effects of Saccharomycescerevisiae, Mannan Oligosaccharides, and β-Glucan on Innate Immunity, Antioxidant Status, and Disease Resistance of Nile Tilapia, Oreochromis niloticus. Antibiotics. 2021; 10(5):567. https://doi.org/10.3390/antibiotics10050567
Chicago/Turabian StyleEl-Nobi, Gamal, Mohammed Hassanin, Alshimaa A. Khalil, Alaa Y. Mohammed, Shimaa A. Amer, Metwally M. Montaser, and Mohamed E. El-sharnouby. 2021. "Synbiotic Effects of Saccharomycescerevisiae, Mannan Oligosaccharides, and β-Glucan on Innate Immunity, Antioxidant Status, and Disease Resistance of Nile Tilapia, Oreochromis niloticus" Antibiotics 10, no. 5: 567. https://doi.org/10.3390/antibiotics10050567
APA StyleEl-Nobi, G., Hassanin, M., Khalil, A. A., Mohammed, A. Y., Amer, S. A., Montaser, M. M., & El-sharnouby, M. E. (2021). Synbiotic Effects of Saccharomycescerevisiae, Mannan Oligosaccharides, and β-Glucan on Innate Immunity, Antioxidant Status, and Disease Resistance of Nile Tilapia, Oreochromis niloticus. Antibiotics, 10(5), 567. https://doi.org/10.3390/antibiotics10050567