Antibiotic-Resistant Bacteria in Clams—A Study on Mussels in the River Rhine
Abstract
:1. Introduction
1.1. Antibiotic-Resistant Bacteria in Water Systems
1.2. Mussel Species in the River Rhine
2. Results
2.1. Bacterial Flora in the Mussel Tissue
2.2. Distribution of Antibiotic-Resistant Bacteria
3. Discussion
3.1. Influence of Treated Wastewater on the Bacterial Flora in River Mussels
3.2. Antibiotic-Resistant Bacteria in the Mussel Tissue
4. Materials and Methods
4.1. Sampling Sites
4.2. Sampling Procedure
4.3. Preparation of Mussel Samples
4.4. Determination of the Relevant Bacterial Flora in Mussels
4.5. Detection of Antibiotic-Resistant Bacteria
4.6. Molecular Typing of Resistant Isolates
4.7. Determination of Individual Limit of Detection
4.8. Graphical Representation of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding Human Health Risks Caused by Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARG) in Water Environments: Current Knowledge and Questions to Be Answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and Antibiotic Resistance in Water Environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Nappier, S.P.; Liguori, K.; Ichida, A.M.; Stewart, J.R.; Jones, K.R. Antibiotic Resistance in Recreational Waters: State of the Science. Int. J. Environ. Res. Public. Health 2020, 17, 8034. [Google Scholar] [CrossRef]
- Schreiber, C.; Kistemann, T. Antibiotic Resistance among Autochthonous Aquatic Environmental Bacteria. Water Sci. Technol. 2013, 67, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Cacace, D.; Fatta-Kassinos, D.; Manaia, C.M.; Cytryn, E.; Kreuzinger, N.; Rizzo, L.; Karaolia, P.; Schwartz, T.; Alexander, J.; Merlin, C.; et al. Antibiotic Resistance Genes in Treated Wastewater and in the Receiving Water Bodies: A Pan-European Survey of Urban Settings. Water Res. 2019, 162, 320–330. [Google Scholar] [CrossRef]
- Gasse, J. Quantifizierung Der Emissionen Aus Abwasseranlagen Und Deren Auswirkungen Auf Die Hygienische Qualität von Flie\s Sgewässern; Oldenbourg Industrieverl: Munich, Germany, 2009. [Google Scholar]
- Schreiber, C.; Heinkel, S.-B.; Zacharias, N.; Mertens, F.-M.; Christoffels, E.; Gayer, U.; Koch, C.; Kistemann, T. Infectious Rain? Evaluation of Human Pathogen Concentrations in Stormwater in Separate Sewer Systems. Water Sci. Technol. 2019, 80, 1022–1030. [Google Scholar] [CrossRef]
- Schreiber, C.; Rechenburg, A.; Rind, E.; Kistemann, T. The Impact of Land Use on Microbial Surface Water Pollution. Int. J. Hyg. Environ. Health 2015, 218, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Voigt, A.M.; Zacharias, N.; Timm, C.; Wasser, F.; Sib, E.; Skutlarek, D.; Parcina, M.; Schmithausen, R.M.; Schwartz, T.; Hembach, N.; et al. Association between Antibiotic Residues, Antibiotic Resistant Bacteria and Antibiotic Resistance Genes in Anthropogenic Wastewater—An Evaluation of Clinical Influences. Chemosphere 2020, 241, 125032. [Google Scholar] [CrossRef]
- Graham, D.W.; Bergeron, G.; Bourassa, M.W.; Dickson, J.; Gomes, F.; Howe, A.; Kahn, L.H.; Morley, P.S.; Scott, H.M.; Simjee, S.; et al. Complexities in Understanding Antimicrobial Resistance across Domesticated Animal, Human, and Environmental Systems. Ann. N. Y. Acad. Sci. 2019, 1441, 17–30. [Google Scholar] [CrossRef]
- Kümmerer, K. Antibiotics in the Aquatic Environment—A Review. Chemosphere 2009, 75, 417–441. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heuer, O.E.; et al. The Global Threat of Antimicrobial Resistance: Science for Intervention. N. Microbes N. Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-156474-8. [Google Scholar]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Schöll, F.; Becker, C.; Tittizer, T. Das Makrozoobenthos Des Schiffbaren Rheins von Basel Bis Emmerich 1986-1995. Lauterbornia 1995, 21, 115–137. [Google Scholar]
- Bernauer, D.; Jansen, W. Recent Invasions of Alien Macroinvertebrates and Loss of Native Species in the Upper Rhine River, Germany. Aquat. Invasions 2006, 1, 55–71. [Google Scholar] [CrossRef]
- Kinzelbach, R. The Main Features of the Phylogeny and Dispersal of the Zebra Mussel Dreissena polymorpha. Zebra Mussel Dreissena Polymorpha 1992, 4, 5–17. [Google Scholar]
- Chijimatsu, T.; Tatsuguchi, I.; Abe, K.; Oda, H.; Mochizuki, S. A Freshwater Clam (Corbicula fluminea) Extract Improves Cholesterol Metabolism in Rats Fed on a High-Cholesterol Diet. Biosci. Biotechnol. Biochem. 2008, 0809081039. [Google Scholar] [CrossRef] [Green Version]
- Mouthon, J. Sur La Présence En France et Au Portugal de Corbicula (Bivalvia, Corbiculidae) Originaire d’Asie. Basteria 1981, 45, 109–116. [Google Scholar]
- Pathy, D.A.; Mackie, G.L. Comparative Shell Morphology of Dreissena Polymorpha, Mytilopsis leucophaeata, and the “Quagga” Mussel (Bivalvia: Dreissenidae) in North America. Can. J. Zool. 1993, 71, 1012–1023. [Google Scholar] [CrossRef]
- Bonner, T.P.; Rockhill, R.L. Ultrastructure of the Byssus of the Zebra Mussel (Dreissena polymorpha, Mollusca: Bivalvia). Trans. Am. Microsc. Soc. 1994, 302–315. [Google Scholar] [CrossRef]
- Matthews, J.; Van der Velde, G.; De Vaate, A.B.; Collas, F.P.; Koopman, K.R.; Leuven, R.S. Rapid Range Expansion of the Invasive Quagga Mussel in Relation to Zebra Mussel Presence in The Netherlands and Western Europe. Biol. Invasions 2014, 16, 23–42. [Google Scholar] [CrossRef]
- Molloy, D.P.; bij de Vaate, A.; Wilke, T.; Giamberini, L. Discovery of Dreissena rostriformi bugensiss (Andrusov 1897) in Western Europe. Biol. Invasions 2007, 9, 871–874. [Google Scholar] [CrossRef] [Green Version]
- Haybach, A.; Christmann, K.H. Erster Nachweis Der Quaggamuschel Dreissena Rostriformis Bugensis (Andrusov, 1897)(Bivalvia: Dreissenidae) Im Niederrhein von Nordrhein-Westfalen. Lauterbornia 2009, 67, 69–72. [Google Scholar]
- Gomes, J.F.; Lopes, A.; Gonçalves, D.; Luxo, C.; Gmurek, M.; Costa, R.; Quinta-Ferreira, R.M.; Martins, R.C.; Matos, A. Biofiltration Using C. Fluminea for E. Coli Removal from Water: Comparison with Ozonation and Photocatalytic Oxidation. Chemosphere 2018, 208, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, C.C.; Hakenkamp, C.C. The Functional Role of Burrowing Bivalves in Freshwater Ecosystems. Freshw. Biol. 2001, 46, 1431–1446. [Google Scholar] [CrossRef] [Green Version]
- Winters, A.D.; Marsh, T.L.; Faisal, M. Heterogeneity of Bacterial Communities within the Zebra Mussel (Dreissena polymorpha) in the Laurentian Great Lakes Basin. J. Gt. Lakes Res. 2011, 37, 318–324. [Google Scholar] [CrossRef]
- Boufafa, M.; Kadri, S.; Redder, P.; Bensouilah, M. Occurrence and Distribution of Fecal Indicators and Pathogenic Bacteria in Seawater and Perna Perna Mussel in the Gulf of Annaba (Southern Mediterranean). bioRxiv 2020, 2020.10.04.325167. [Google Scholar] [CrossRef]
- Ilic, N.; Velebit, B.; Teodorovic, V.; Djordjevic, V.; Karabasil, N.; Vasilev, D.; Djuric, S.; Adzic, B.; Dimitrijevic, M. Influence of Environmental Conditions on Norovirus Presence in Mussels Harvested in Montenegro. Food Environ. Virol. 2017, 9, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Ghozzi, K.; Marangi, M.; Papini, R.; Lahmar, I.; Challouf, R.; Houas, N.; Dhiab, R.B.; Normanno, G.; Babba, H.; Giangaspero, A. First Report of Tunisian Coastal Water Contamination by Protozoan Parasites Using Mollusk Bivalves as Biological Indicators. Mar. Pollut. Bull. 2017, 117, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Zannella, C.; Mosca, F.; Mariani, F.; Franci, G.; Folliero, V.; Galdiero, M.; Tiscar, P.G.; Galdiero, M. Microbial Diseases of Bivalve Mollusks: Infections, Immunology and Antimicrobial Defense. Mar. Drugs 2017, 15, 182. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, T.K.; Marcogliese, D.J.; de Lafontaine, Y.; Da Silva, A.J.; Mhangami-Ruwende, B.; Pieniazek, N.J. Cryptosporidium Parvum Oocysts in Zebra Mussels (Dreissena polymorpha): Evidence from the St. Lawrence River. Parasitol. Res. 2001, 87, 231–234. [Google Scholar] [CrossRef]
- Ladeiro, M.P.; Aubert, D.; Villena, I.; Geffard, A.; Bigot, A. Bioaccumulation of Human Waterborne Protozoa by Zebra Mussel (Dreissena polymorpha): Interest for Water Biomonitoring. Water Res. 2014, 48, 148–155. [Google Scholar] [CrossRef]
- Karatayev, A.Y.; Burlakova, L.E.; Padilla, D.K. Contrasting Distribution and Impacts of Two Freshwater Exotic Suspension Feeders, Dreissena polymorpha and Corbicula fluminea. In The Comparative Roles of Suspension-Feeders in Ecosystems; Dame, R.F., Olenin, S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 239–262. [Google Scholar]
- Andrès, S.; Baudrimont, M.; Lapaquellerie, Y.; Ribeyre, F.; Maillet, N.; Latouche, C.; Boudou, A. Field Transplantation of the Freshwater Bivalve Corbicula fluminea along a Polymetallic Contamination Gradient (River Lot, France): I. Geochemical Characteristics of the Sampling Sites and Cadmium and Zinc Bioaccumulation Kinetics. Environ. Toxicol. Chem. 1999, 18, 2462–2471. [Google Scholar] [CrossRef]
- Bighiu, M.A.; Haldén, A.N.; Goedkoop, W.; Ottoson, J. Assessing Microbial Contamination and Antibiotic Resistant Bacteria Using Zebra Mussels (Dreissena Polymorpha). Sci. Total Environ. 2019, 650, 2141–2149. [Google Scholar] [CrossRef] [PubMed]
- Araujo, R.; Moreno, D.; Ramos, M.A. The Asiatic Clam Corbicula fluminea (Muller, 1774) (Bivalvia, Corbiculidae) in Europe. Am. Malacol. Bull. 1993, 10, 39–49. [Google Scholar]
- Belanger, S.E.; Farris, J.L.; Cherry, D.S.; Cairns, J., Jr. Validation of Corbicula fluminea Growth Reductions Induced by Copper in Artificial Streams and River Systems. Can. J. Fish. Aquat. Sci. 1990, 47, 904–914. [Google Scholar] [CrossRef]
- Feng, W.; Sun, F.; Wang, Q.; Xiong, W.; Qiu, X.; Dai, X.; Xia, P. Epidemiology and Resistance Characteristics of Pseudomonas Aeruginosa Isolates from the Respiratory Department of a Hospital in China. J. Glob. Antimicrob. Resist. 2017, 8, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Wang, J.; Zhou, Z.; Wang, H.; Jiang, Y.; Yu, Y. Multilocus Sequence Typing Reveals Genetic Diversity of Carbapenem- or Ceftazidime-Nonsusceptible Pseudomonas Aeruginosa in China. Antimicrob. Agents Chemother. 2013, 57, 5697–5700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musila, L.; Kyany’a, C.; Maybank, R.; Stam, J.; Oundo, V.; Sang, W. Detection of Diverse Carbapenem and Multidrug Resistance Genes and High-Risk Strain Types among Carbapenem Non-Susceptible Clinical Isolates of Target Gram-Negative Bacteria in Kenya. PLoS ONE 2021, 16, e0246937. [Google Scholar] [CrossRef] [PubMed]
- Müller, H.; Sib, E.; Gajdiss, M.; Klanke, U.; Lenz-Plet, F.; Barabasch, V.; Albert, C.; Schallenberg, A.; Timm, C.; Zacharias, N.; et al. Dissemination of Multi-Resistant Gram-Negative Bacteria into German Wastewater and Surface Waters. FEMS Microbiol. Ecol. 2018, 94. [Google Scholar] [CrossRef] [PubMed]
- Silverman, H.; Achberger, E.C.; Lynn, J.W.; Dietz, T.H. Filtration and Utilization of Laboratory-Cultured Bacteria by Dreissena polymorpha, Corbicula fluminea, and Carunculina texasensis. Biol. Bull. 1995, 189, 308–319. [Google Scholar] [CrossRef]
- Cohen, R.R.; Dresler, P.V.; Phillips, E.J.; Cory, R.L. The Effect of the Asiatic Clam, Corbicula fluminea, on Phytoplankton of the Potomac River, Maryland. Limnol. Oceanogr. 1984, 29, 170–180. [Google Scholar] [CrossRef]
- International Commission for the Protection of the Rhine (ICPR). Assessment “Rhine 2020”. Available online: https://www.iksr.org/fileadmin/user_upload/DKDM/Dokumente/Broschueren/EN/bro_En_Assessment_%E2%80%9CRhine_2020%E2%80%9D.pdf (accessed on 9 March 2021).
- Huijbers, P.M.C.; Blaak, H.; de Jong, M.C.M.; Graat, E.A.M.; Vandenbroucke-Grauls, C.M.J.E.; de Roda Husman, A.M. Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review. Environ. Sci. Technol. 2015, 49, 11993–12004. [Google Scholar] [CrossRef] [PubMed]
- DIN 38402-11:2009-2. In German Standard Methods for the Examination of Water, Waste Water and Sludge—General Information (Group A)—Part 11: Sampling of Waste Water (A 11); Beuth Verlag GmbH: Berlin, Germany, 1995.
- ISO 8199:2018-10. In Water Quality—General Requirements and Guidance for Microbiological Examinations by Culture; ISO: Geneva, Switzerland, 2018.
- Schreiber, C.; Zacharias, N.; Essert, S.M.; Wasser, F.; Müller, H.; Sib, E.; Precht, T.; Parcina, M.; Bierbaum, G.; Schmithausen, R.M.; et al. Clinically Relevant Antibiotic-Resistant Bacteria in Aquatic Environments—An Optimized Culture-Based Approach. Sci. Total Environ. 2021, 750, 142265. [Google Scholar] [CrossRef] [PubMed]
- KRINKO. Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen. Bundesgesundheitsblatt—Gesundheitsforsch.—Gesundh. 2012, 55, 1311–1354. [Google Scholar] [CrossRef] [Green Version]
- KRINKO. Ergänzung zur Empfehlung der KRINKO „Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen“ (2012) im Zusammenhang mit der von EUCAST neu definierten Kategorie „I“ bei der Antibiotikaresistenzbestimmung: Konsequenzen für die Definition von MRGN. Epidemiol. Bull. 2019, 82–83. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-Access Bacterial Population Genomics: BIGSdb Software, the PubMLST.Org Website and Their Applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
Mussel Species Investigated in the River Rhine | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Corbicula spp. upstream STP (Cu) | Dreissena spp. (D) | |||||||||||||
Cu1 | Cu2 | Cu3 | Cu4 | Cu5 | Cu6 | Cu7 | Cu8 | Cu9 | D1 | D2 | D3 | D4 | D5 | |
weight mussel tissue (g) | 0.6 | 0.4 | 2.3 | 1.0 | 2.8 | 2.1 | 1.3 | 1.2 | 1.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Corbicula spp. downstream STP (Cd) | ||||||||||||||
Cd1 | Cd2 | Cd3 | Cd4 | Cd5 | Cd6 | Cd7 | Cd8 | |||||||
weight mussel tissue (g) | 1.2 | 0.3 | 0.4 | 0.4 | 0.1 | 0.1 | 0.1 | 0.6 |
Antibiotic Substances | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Species (Number of Isolates) | Piperacillin/ Tazobactam | Cefotaxime | Ceftazidime | Imipenem | Meropenem | Ciprofloxacin | Carbapenemase | 3MRGN | 4MRGN | XDR | |
Corbicula spp. (upstream STP) | E. coli (1) | 0 | 1 (100%) | 1 (100%) | 0 | 0 | 1 (100%) | 0 | 0 | 0 | 0 |
A. calcoaceticus-baumannii complex (1) | 0 | 1 (100%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
River water Bonn (upstream STP) | E. coli (4) | 0 | 4 (100%) | 3 (75%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A. calcoaceticus-baumannii complex (6) | 1 (17%) | 6 (100%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Corbicula spp. (downstream STP) | A. calcoaceticus-baumannii complex (8) | 0 | 8 (100%) | 2 (25%) | 0 | 0 | 1 (13%) | 0 | 0 | 0 | 0 |
River water Bonn (downstream STP) | E. coli (2) | 1 (50%) | 2 (100%) | 2 (100%) | 0 | 0 | 1 (50%) | 0 | 1 (50%) | 0 | 0 |
K. pneumoniae (2) | 0 | 2 (100%) | 1 (50%) | 0 | 0 | 1 (50%) | 0 | 0 | 0 | 0 | |
P. aeruginosa (1) | 0 | 1 (100%) | 1 (100%) | 0 | 1 (100%) | 0 | 1 (100%) | 0 | 1 (100%) | 0 | |
A. calcoaceticus-baumannii complex (3) | 0 | 3 (100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Dreissena spp. | A. calcoaceticus-baumannii complex (2) | 0 | 2 (100%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
River water Cologne | E. coli (1) | 0 | 1 (100%) | 0 | 0 | 0 | 1 (100%) | 0 | 0 | 0 | 0 |
A. calcoaceticus-baumannii complex (4) | 1 (25%) | 4 (100%) | 0 | 0 | 0 | 0 | 0 | 1 (25%) | 0 | 0 | |
Isolates total | 35 | 3 (8.6%) | 35 (100%) | 10 (28.6%) | 0 | 1 (0.3%) | 5 (14.3%) | 1 (2.9%) | 2 (5.7%) | 1 (2.9%) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacharias, N.; Löckener, I.; Essert, S.M.; Sib, E.; Bierbaum, G.; Kistemann, T.; Schreiber, C. Antibiotic-Resistant Bacteria in Clams—A Study on Mussels in the River Rhine. Antibiotics 2021, 10, 571. https://doi.org/10.3390/antibiotics10050571
Zacharias N, Löckener I, Essert SM, Sib E, Bierbaum G, Kistemann T, Schreiber C. Antibiotic-Resistant Bacteria in Clams—A Study on Mussels in the River Rhine. Antibiotics. 2021; 10(5):571. https://doi.org/10.3390/antibiotics10050571
Chicago/Turabian StyleZacharias, Nicole, Iris Löckener, Sarah M. Essert, Esther Sib, Gabriele Bierbaum, Thomas Kistemann, and Christiane Schreiber. 2021. "Antibiotic-Resistant Bacteria in Clams—A Study on Mussels in the River Rhine" Antibiotics 10, no. 5: 571. https://doi.org/10.3390/antibiotics10050571
APA StyleZacharias, N., Löckener, I., Essert, S. M., Sib, E., Bierbaum, G., Kistemann, T., & Schreiber, C. (2021). Antibiotic-Resistant Bacteria in Clams—A Study on Mussels in the River Rhine. Antibiotics, 10(5), 571. https://doi.org/10.3390/antibiotics10050571