Biological Properties of Bee Bread Collected from Apiaries Located across Greece
Abstract
:1. Introduction
2. Results
2.1. Palynological Analysis
2.2. Antioxidant Activity
2.3. Total Phenolic (TPC) and Total Flavonoid Content (TFC)
2.4. Antimicrobial Activity
2.5. Statistical Analysis
2.6. Machine Learning Analysis
3. Discussion
4. Materials and Methods
4.1. Bee Bread Samples
4.2. Palynological Analysis
4.3. Assessment of the Total Phenolic Content (TPC)
4.4. Assessment of the Total Flavonoid Content (TFC)
4.5. Assessment of Free Radical Scavenging Ability by the Use of the DPPH Radical Assay
4.6. Assesment of Free Radical Scavenging Ability by the Use of the ABTS•+ Radical Cation Assay
4.7. Bacterial Strains and Growth Conditions
4.8. Determination of Minimum Inhibitory Concentration (MIC)
4.9. Determination of Minimum Bactericidal Concentration (MBC)
4.10. Statistical Analysis
4.11. Machine Learning Analysis for Prediction of Properties
4.12. Clustering of Samples Based on Their Properties
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Didaras, N.A.; Karatasou, K.; Dimitriou, T.G.; Amoutzias, G.D.; Mossialos, D. Antimicrobial Activity of Bee-Collected Pollen and Beebread: State of the Art and Future Perspectives. Antibiotics 2020, 9, 811. [Google Scholar] [CrossRef]
- Bakour, M.; Fernandes, Â.; Barros, L.; Sokovic, M.; Ferreira, I.C.F.R.; Lyoussi, B. Bee bread as a functional product: Chemical composition and bioactive properties. LWT 2019, 109, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Mărgăoan, R.; Stranț, M.; Varadi, A.; Topal, E.; Yücel, B.; Cornea-Cipcigan, M.; Campos, M.G.; Vodnar, D.C. Bee Collected Pollen and Bee Bread: Bioactive Constituents and Health Benefits. Antioxidants 2019, 8, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucekova, M.; Bugarova, V.; Godocikova, J.; Majtan, J. Demanding New Honey Qualitative Standard Based on Antibacterial Activity. Foods 2020, 9, 1263. [Google Scholar] [CrossRef]
- Godocikova, J.; Bugarova, V.; Kast, C.; Majtan, V.; Majtan, J. Antibacterial potential of Swiss honeys and characterisation of their bee-derived bioactive compounds. J. Sci. Food Agric. 2020, 100, 335–342. [Google Scholar] [CrossRef]
- Tsavea, E.; Mossialos, D. Antibacterial activity of honeys produced in Mount Olympus area against nosocomial and foodborne pathogens is mainly attributed to hydrogen peroxide and proteinaceous compounds. J. Apic. Res. 2019, 58, 756–763. [Google Scholar] [CrossRef]
- Stagos, D.; Soulitsiotis, N.; Tsadila, C.; Papaeconomou, S.; Arvanitis, C.; Ntontos, A.; Karkanta, F.; Adamou-Androulaki, S.; Petrotos, K.; Spandidos, D.A.; et al. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. Int. J. Mol. Med. 2018, 42, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.; Deighton, M.; Livanos, G.; Pang, E.C.K.; Mantri, N. Agastache honey has superior antifungal activity in comparison with important commercial honeys. Sci. Rep. 2019, 9, 18197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hatamleh, M.A.I.I.; Hatmal, M.M.; Sattar, K.; Ahmad, S.; Mustafa, M.Z.; Bittencourt, M.D.C.; Mohamud, R. Antiviral and Immunomodulatory Effects of Phytochemicals from Honey against COVID-19: Potential Mechanisms of Action and Future Directions. Molecules 2020, 25, 5017. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Rahmasari, R.; Matsunaga, A.; Haruyama, T.; Kobayashi, N. Anti-influenza Viral Effects of Honey In Vitro: Potent High Activity of Manuka Honey. Arch. Med. Res. 2014, 45, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, A.; Cohrs, R.J. In vitro antiviral activity of honey against varicella zoster virus (VZV): A translational medicine study for potential remedy for shingles. Transl. Biomed. 2012, 3, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadagali, M.D.; Chua, L.S. The anti-inflammatory and wound healing properties of honey. Eur. Food Res. Technol. 2014, 239, 1003–1014. [Google Scholar] [CrossRef]
- Waheed, M.; Hussain, M.B.; Javed, A.; Mushtaq, Z.; Hassan, S.; Shariati, M.A.; Khan, M.U.; Majeed, M.; Nigam, M.; Mishra, A.P.; et al. Honey and cancer: A mechanistic review. Clin. Nutr. 2019, 38, 2499–2503. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Othman, N.H. The anti-cancer effects of Tualang honey in modulating breast carcinogenesis: An experimental animal study. BMC Complement. Altern. Med. 2017, 17, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsiapara, A.V.; Jaakkola, M.; Chinou, I.; Graikou, K.; Tolonen, T.; Virtanen, V.; Moutsatsou, P. Bioactivity of Greek honey extracts on breast cancer (MCF-7), prostate cancer (PC-3) and endometrial cancer (Ishikawa) cells: Profile analysis of extracts. Food Chem. 2009, 116, 702–708. [Google Scholar] [CrossRef]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant Activity as Biomarker of Honey Variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [Green Version]
- Beretta, G.; Orioli, M.; Facino, R.M. Antioxidant and radical scavenging activity of honey in endothelial cell cultures (EA.hy926). Planta Med. 2007, 73, 1182–1189. [Google Scholar] [CrossRef]
- Gheldof, N.; Wang, X.H.; Engeseth, N.J. Buckwheat honey increases serum antioxidant capacity in humans. J. Agric. Food Chem. 2003, 51, 1500–1505. [Google Scholar] [CrossRef]
- Jan Mei, S.; Mohd Nordin, M.S.; Norrakiah, A.S. Fructooligosaccharides in honey and effects of honey on growth of Bifidobacterium longum BB 536. Int. Food Res. J. 2010, 17, 557–561. [Google Scholar]
- Mohan, A.; Quek, S.Y.; Gutierrez-Maddox, N.; Gao, Y.; Shu, Q. Effect of honey in improving the gut microbial balance. Food Qual. Saf. 2017, 1, 107–115. [Google Scholar] [CrossRef]
- Gaifullina, L.R.; Saltykova, E.S.; Nikolenko, A.G. Prebiotic and probiotic properties of honey. In Honey: Geographical Origins, Bioactive Properties and Health Benefits; Nova Science Publishers, Inc.: New York, NY, USA, 2016; pp. 53–79. ISBN 9781634854719. [Google Scholar]
- Kostić, A.Ž.; Milinčić, D.D.; Barać, M.B.; Ali Shariati, M.; Tešić, Ž.L.; Pešić, M.B. The Application of Pollen as a Functional Food and Feed Ingredient—The Present and Perspectives. Biomolecules 2020, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.-Q.; Wang, K.; Marcucci, M.C.; Sawaya, A.C.H.F.; Hu, L.; Xue, X.-F.; Wu, L.-M.; Hu, F.-L. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J. Funct. Foods 2018, 49, 472–484. [Google Scholar] [CrossRef]
- Ares, A.M.; Valverde, S.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Extraction and determination of bioactive compounds from bee pollen. J. Pharm. Biomed. Anal. 2018, 147, 110–124. [Google Scholar] [CrossRef]
- Palmer-Young, E.C.; Farrell, I.W.; Adler, L.S.; Milano, N.J.; Egan, P.A.; Irwin, R.E.; Stevenson, P.C. Secondary metabolites from nectar and pollen: A resource for ecological and evolutionary studies. Ecology 2019, 100, e02621. [Google Scholar] [CrossRef] [Green Version]
- Paupière, M.J.; Müller, F.; Li, H.; Rieu, I.; Tikunov, Y.M.; Visser, R.G.F.; Bovy, A.G. Untargeted metabolomic analysis of tomato pollen development and heat stress response. Plant Reprod. 2017, 30, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Rivest, S.; Forrest, J.R.K. Defence compounds in pollen: Why do they occur and how do they affect the ecology and evolution of bees? New Phytol. 2020, 225, 1053–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eteraf-Oskouei, T.; Shafiee-Khamneh, A.; Heshmati-Afshar, F.; Delazar, A. Anti-inflammatory and anti-angiogenesis effect of bee pollen methanolic extract using air pouch model of inflammation. Res. Pharm. Sci. 2020, 15, 66. [Google Scholar] [CrossRef]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evid.-Based Complement. Altern. Med. 2015, 2015, 297425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graikou, K.; Kapeta, S.; Aligiannis, N.; Sotiroudis, G.; Chondrogianni, N.; Gonos, E.; Chinou, I. Chemical analysis of Greek pollen—Antioxidant, antimicrobial and proteasome activation properties. Chem. Cent. J. 2011, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Morais, M.; Moreira, L.; Feás, X.; Estevinho, L.M. Honeybee-collected pollen from five Portuguese Natural Parks: Palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chem. Toxicol. 2011, 49, 1096–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, T.F.; Park, S.; Shi, Q.; Zhang, X.; Liu, Q.; Song, Y.; Chin, H.; Bin Ibrahim, M.S.; Mokrzecka, N.; Yang, Y.; et al. Transformation of hard pollen into soft matter. Nat. Commun. 2020, 11, 1449. [Google Scholar] [CrossRef] [Green Version]
- Amores-Arrocha, A.; Roldán, A.; Jiménez-Cantizano, A.; Caro, I.; Palacios, V. Evaluation of the use of multiflora bee pollen on the volatile compounds and sensorial profile of Palomino fino and Riesling white young wines. Food Res. Int. 2018, 105, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.; Karabagias, V.; Gatzias, I.; Riganakos, K. Bio-Functional Properties of Bee Pollen: The Case of “Bee Pollen Yoghurt”. Coatings 2018, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Uțoiu, E.; Matei, F.; Toma, A.; Diguță, C.F.; Ștefan, L.M.; Mănoiu, S.; Vrăjmașu, V.V.; Moraru, I.; Oancea, A.; Israel-Roming, F.; et al. Bee collected pollen with enhanced health benefits, produced by fermentation with a Kombucha Consortium. Nutrients 2018, 10, 1365. [Google Scholar] [CrossRef] [Green Version]
- Yerlikaya, O. Effect of bee pollen supplement on antimicrobial, chemical, rheological, sensorial properties and probiotic viability of fermented milk beverages. Mljekarstvo 2014, 64, 268–279. [Google Scholar] [CrossRef] [Green Version]
- Roldán, A.; Van Muiswinkel, G.C.J.; Lasanta, C.; Palacios, V.; Caro, I. Influence of pollen addition on mead elaboration: Physicochemical and sensory characteristics. Food Chem. 2011, 126, 574–582. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honey bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Vásquez, A.; Olofsson, T.C. The lactic acid bacteria involved in the production of bee pollen and bee bread. J. Apic. Res. 2009, 48, 189–195. [Google Scholar] [CrossRef]
- Gilliam, M. Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol. Lett. 1997, 155, 1–10. [Google Scholar] [CrossRef]
- Di Cagno, R.; Filannino, P.; Cantatore, V.; Gobbetti, M. Novel solid-state fermentation of bee-collected pollen emulating the natural fermentation process of bee bread. Food Microbiol. 2019, 82, 218–230. [Google Scholar] [CrossRef]
- Salazar-González, C.; Díaz-Moreno, C. The nutritional and bioactive aptitude of bee pollen for a solid-state fermentation process. J. Apic. Res. 2016, 55, 161–175. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Adaškevičiūtė, V.; Kaškonas, P.; Mickienė, R.; Maruška, A. Antimicrobial and antioxidant activities of natural and fermented bee pollen. Food Biosci. 2020, 34, 100532. [Google Scholar] [CrossRef]
- Dharampal, P.S.; Carlson, C.; Currie, C.R.; Steffan, S.A. Pollen-borne microbes shape bee fitness. Proc. R. Soc. B Biol. Sci. 2019, 286. [Google Scholar] [CrossRef] [Green Version]
- Steffan, S.A.; Dharampal, P.S.; Danforth, B.N.; Gaines-Day, H.R.; Takizawa, Y.; Chikaraishi, Y. Omnivory in bees: Elevated trophic positions among all major bee families. Am. Nat. 2019, 194, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Kaškonienė, V.; Katilevičiūtė, A.; Kaškonas, P.; Maruška, A. The impact of solid-state fermentation on bee pollen phenolic compounds and radical scavenging capacity. Chem. Pap. 2018, 72, 2115–2120. [Google Scholar] [CrossRef]
- Anđelković, B.; Jevtić, G.; Mladenović, M.; Marković, J.; Petrović, M.; Nedić, N. Quality of pollen and honey bee bread collected in spring. J. Hyg. Eng. Des. 2012, 1, 275–277. [Google Scholar]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and bee bread as new health-oriented products: A review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Pełka, K.; Otłowska, O.; Worobo, R.W.; Szweda, P. Bee bread exhibits higher antimicrobial potential compared to bee pollen. Antibiotics 2021, 10, 125. [Google Scholar] [CrossRef]
- Urcan, A.; Criste, A.; Dezmirean, D.; Bobiș, O.; Mărghitaș, L.; Mărgăoan, R.; Hrinca, A. Antimicrobial Activity of Bee Bread Extracts Against Different Bacterial Strains. Bull. UASVM Anim. Sci. Biotechnol. 2018, 75, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Abouda, Z.; Zerdani, I.; Kalalou, I.; Faid, M.; Ahami, M.T. The antibacterial activity of moroccan bee bread and bee-pollen (fresh and dried) against pathogenic bacteria. Res. J. Microbiol. 2011, 6, 376. [Google Scholar] [CrossRef] [Green Version]
- Baltrušayt, V.; Venskmonis, P.R.; Čeksteryte, V. Antibacterial activity of honey and beebread of different origin against S. Aureus and S. epidermidis. Food Technol. Biotechnol. 2007, 45, 201–208. [Google Scholar]
- Velásquez, P.; Rodríguez, K.; Retamal, M.; Giordano, A.; Valenzuela, L.M.; Montenegro, G. Relation between composition, antioxidant and antibacterial activities and botanical origin of multi-floral bee pollen. J. Appl. Bot. Food Qual. 2017, 90, 306–314. [Google Scholar] [CrossRef]
- Mǎrgǎoan, R.; Al Mǎrghitaş, L.; Dezmirean, D.S.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Bobiş, O. Predominant and secondary pollen botanical origins influence the carotenoid and fatty acid profile in fresh honeybee-collected pollen. J. Agric. Food Chem. 2014, 62, 6306–6316. [Google Scholar] [CrossRef]
- Bucekova, M.; Buriova, M.; Pekarik, L.; Majtan, V.; Majtan, J. Phytochemicals-mediated production of hydrogen peroxide is crucial for high antibacterial activity of honeydew honey. Sci. Rep. 2018, 8, 9061. [Google Scholar] [CrossRef] [Green Version]
- Felicioli, A.; Cilia, G.; Mancini, S.; Turchi, B.; Galaverna, G.; Cirlini, M.; Cerri, D.; Fratini, F. In vitro antibacterial activity and volatile characterisation of organic Apis mellifera ligustica (Spinola, 1906) beeswax ethanol extracts. Food Biosci. 2019, 29, 102–109. [Google Scholar] [CrossRef]
- Cilia, G.; Fratini, F.; Marchi, M.; Sagona, S.; Turchi, B.; Adamchuk, L.; Felicioli, A.; Kačániová, M. Antibacterial activity of honey samples from Ukraine. Vet. Sci. 2020, 7, 181. [Google Scholar] [CrossRef] [PubMed]
- Almasaudi, S.B.; Al-Nahari, A.A.M.; Abd El-Ghany, E.S.M.; Barbour, E.; Al Muhayawi, S.M.; Al-Jaouni, S.; Azhar, E.; Qari, M.; Qari, Y.A.; Harakeh, S. Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J. Biol. Sci. 2017, 24, 1255–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georghiou, K.; Delipetrou, P. Patterns and traits of the endemic plants of Greece. Bot. J. Linn. Soc. 2010, 162, 130–153. [Google Scholar] [CrossRef] [Green Version]
- Tomás, A.; Falcão, S.I.; Russo-Almeida, P.; Vilas-Boas, M. Potentialities of beebread as a food supplement and source of nutraceuticals: Botanical origin, nutritional composition and antioxidant activity. J. Apic. Res. 2017, 56, 219–230. [Google Scholar] [CrossRef]
- Nagai, T.; Nagashima, T.; Myoda, T.; Inoue, R. Preparation and functional properties of extracts from bee bread. Nahrung/Food 2004, 48, 226–229. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elashal, M.; Kieliszek, M.; Ghazala, N.E.; Farag, M.A.; Saeed, A.; Xiao, J.; Zou, X.; Khatib, A.; Göransson, U.; et al. Recent insights into chemical and pharmacological studies of bee bread. Trends Food Sci. Technol. 2020, 97, 300–316. [Google Scholar] [CrossRef]
- Azonwade, F.E.; Paraïso, A.; Tossou, M.G.; Sina, H.; Kelomey, A.E.; Chabi-Sika, K.; Baba-Moussa, L. Pollen Analysis of the Honeys Samples Produced in the Three Phyto-geographical Zones of Benin. Eur. Sci. J. 2017, 13, 528. [Google Scholar] [CrossRef]
- Harrison, S.; Spasojevic, M.J.; Li, D. Climate and plant community diversity in space and time. Proc. Natl. Acad. Sci. USA 2020, 117, 4464–4470. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, C.M.; Serrato, J.C.; Quicazan, M.C. Bee-pollen structure modification by physical and biotechnological processing: Influence on the availability of nutrients and bioactive compounds. Chem. Eng. Trans. 2015, 43, 79–84. [Google Scholar] [CrossRef]
- Sreeramulu, D.; Reddy, C.V.K.; Chauhan, A.; Balakrishna, N.; Raghunath, M. Natural Antioxidant Activity of Commonly Consumed Plant Foods in India: Effect of Domestic Processing. Oxidative Med. Cell. Longev. 2013, 2013, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Barreira, J.C.M.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Turski, M.P.; Chwil, S.; Turska, M.; Chwil, M.; Kocki, T.; Rajtar, G.; Parada-Turska, J. An exceptionally high content of kynurenic acid in chestnut honey and flowers of chestnut tree. J. Food Compos. Anal. 2016, 48, 67–72. [Google Scholar] [CrossRef]
- Fisher, E.L.; Otto, M.; Cheung, G.Y.C. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front. Microbiol. 2018, 9, 436. [Google Scholar] [CrossRef]
- Schelin, J.; Wallin-Carlquist, N.; Cohn, M.T.; Lindqvist, R.; Barker, G.C.; Rådström, P. The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence 2011, 2, 580–592. [Google Scholar] [CrossRef] [Green Version]
- Mena, K.D.; Gerba, C.P. Risk assessment of pseudomonas aeruginosa in water. Rev. Environ. Contam. Toxicol. 2009, 201, 71–115. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The chemical constituents and pharmacological effects of Capsella bursa-pastoris—A review. Int. J. Pharmacol. Toxicol. 2015, 5, 76–81. [Google Scholar]
- Boscaro, V.; Boffa, L.; Binello, A.; Amisano, G.; Fornasero, S.; Cravotto, G.; Gallicchio, M. Antiproliferative, Proapoptotic, Antioxidant and Antimicrobial Effects of Sinapis nigra L. and Sinapis alba L. Extracts. Molecules 2018, 23, 3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saladino, F.; Bordin, K.; Luciano, F.B.; Franzón, M.F.; Mañes, J.; Meca, G. Antimicrobial Activity of the Glucosinolates. In Reference Series in Phytochemistry; Springer Science and Business Media B.V.: Dordrecht, The Netherlands, 2017; pp. 249–274. [Google Scholar]
- Melrose, J. The Glucosinolates: A Sulphur Glucoside Family of Mustard Anti-Tumour and Antimicrobial Phytochemicals of Potential Therapeutic Application. Biomedicines 2019, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Dungey, S.G.; Sang, J.P.; Rothnie, N.E.; Palmer, M.V.; Burke, D.G.; Knox, R.B.; Williams, E.G.; Hilliard, E.P.; Salisbury, P.A. Glucosinolates in the pollen of rapeseed and indian mustard. Phytochemistry 1988, 27, 815–817. [Google Scholar] [CrossRef]
- Avato, P.; Argentieri, M.P. Brassicaceae: A rich source of health improving phytochemicals. Phytochem. Rev. 2015, 14, 1019–1033. [Google Scholar] [CrossRef]
- Ştefanescu, B.E.; Szabo, K.; Mocan, A.; Crisan, G. Phenolic compounds from five ericaceae species leaves and their related bioavailability and health benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Hassan, S.M.; Al Aqil, A.A.; Attimarad, M. Determination of crude saponin and total flavonoids content in guar meal. Adv. Med. Plant Res. 2013, 1, 24–28. [Google Scholar]
- Stagos, D.; Portesis, N.; Spanou, C.; Mossialos, D.; Aligiannis, N.; Chaita, E.; Panagoulis, C.; Reri, E.; Skaltsounis, L.; Tsatsakis, A.M.; et al. Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from Greek domestic Lamiaceae species. Food Chem. Toxicol. 2012, 50, 4115–4124. [Google Scholar] [CrossRef]
- Cano, A.; Acosta, M.; Arnao, M.B. A method to measure antioxidant activity in organic media: Application to lipophilic vitamins. Redox Rep. 2000, 5, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Szweda, P. Antimicrobial Activity of Honey. In Honey Analysis; InTech: London, UK, 2017. [Google Scholar]
Bee Bread Samples | TPC a | TFC b | DPPH c | ABTS•+ d |
---|---|---|---|---|
1 | 9.56 ± 0.02. | 3.88 ± 0.12 | 1.25 ± 0.04 | 0.51 ± 0.01 |
2 | 7.78 ± 0.13 | 3.78 ± 0.04 | 1.8 ± 0.07 | 1.80 ± 0.12 |
3 | 11.88 ± 0.06 | 5.49 ± 0.02 | 0.47 ± 0.03 | 0.55 ± 0.02 |
4 | 8.34 ± 0.13 | 5.02 ± 0.20 | 0.53 ± 0.03 | 0.53 ± 0.03 |
5 | 7.10 ± 0.08 | 3.61 ± 0.21 | 1.05 ± 0.09 | 1.50 ± 0.07 |
6 | 9.02 ± 0.08 | 4.60 ± 0.00 | 0.45 ± 0.03 | 0.50 ± 0.01 |
7 | 14.26 ± 0.31 | 4.82 ± 0.07 | 0.46 ± 0.08 | 0.60 ± 0.04 |
8 | 10.69 ± 0.08 | 4.62 ± 0.02 | 0.70 ± 0.09 | 0.80 ± 0.03 |
9 | 8.66 ± 0.26 | 3.63 ± 0.09 | 0.41 ± 0.04 | 0.45 ± 0.02 |
10 | 10.17 ± 0.01 | 2.56 ± 0.05 | 0.61 ± 0.02 | 0.50 ± 0.05 |
11 | 13.40 ± 0.43 | 5.27 ± 0.00 | 0.57 ± 0.05 | 0.51 ± 0.01 |
12 | 6.49 ± 0.04 | 3.54 ± 0.02 | 0.75 ± 0.05 | 0.81 ± 0.04 |
13 | 6.63 ± 0.05 | 3.31 ± 0.08 | 0.70 ± 0.05 | 1.02 ± 0.10 |
14 | 11.56 ± 0.03 | 4.75 ± 0.15 | 0.61 ± 0.08 | 0.62 ± 0.04 |
15 | 8.30 ± 0.13 | 2.34 ± 0.22 | 0.72 ± 0.03 | 0.72 ± 0.03 |
16 | 9.87 ± 0.07 | 3.18 ± 0.05 | 0.57 ± 0.05 | 0.63 ± 0.06 |
17 | 11.90 ± 0.03 | 3.92 ± 0.28 | 0.56 ± 0.09 | 0.62 ± 0.04 |
18 | 14.64 ± 0.26 | 4.18 ± 0.03 | 0.18 ± 0.02 | 0.38 ± 0.05 |
Sample | S. aureus | P. aeruginosa | S. typhimurium | K. pneumoniae | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
1 | 22.6 | 45.2 | 45.2 | 45.2 | 90.4 | >90.4 | 90.4 | >90.4 |
2 | 22.6 | 45.2 | 22.6 | 22.6 | 22.6 | 45.2 | 11.3 | 22.6 |
3 | 48 | 48 | 24 | 24 | 12 | 24 | 24 | 24 |
4 | 9.9 | 19.8 | 19.8 | 19.8 | 9.9 | 9.9 | 9.9 | 9.9 |
5 | 23.5 | 23.5 | 23.5 | 23.5 | 23.5 | 23.5 | 23.5 | 23.5 |
6 | 45.6 | 45.6 | 45.6 | 45.6 | 45.6 | 91.2 | 45.6 | >91.2 |
7 | 10.4 | 20.8 | 41.6 | 41.6 | 20.8 | 20.8 | 20.8 | 41.6 |
8 | 21.9 | 21.9 | 43.8 | 43.8 | 21.9 | 21.9 | 43.8 | 43.8 |
9 | 4.4 | 4.4 | 17.6 | 35.2 | 8.8 | 8.8 | 17.6 | 17.6 |
10 | 9.4 | 9.4 | 18.8 | 18.8 | 9.4 | 9.4 | 37.6 | 75.2 |
11 | 10.2 | 10.2 | 40.8 | 40.8 | 40.8 | 40.8 | 40.8 | 40.8 |
12 | 5 | 5 | 40 | 40 | 10 | 10 | 40 | 40 |
13 | 4.1 | 4.1 | 65.6 | 65.6 | 16.4 | 16.4 | 32.8 | 32.8 |
14 | 3.9 | 3.9 | 15.6 | 15.6 | 7.8 | 7.8 | 15.6 | 15.6 |
15 | 5.2 | 5.2 | 20.8 | 20.8 | 20.8 | 41.6 | 20.8 | 20.8 |
16 | 11.3 | 11.3 | 22.6 | 22.6 | 45.2 | 90.4 | 45.2 | >90.4 |
17 | 23.3 | 23.3 | 46.6 | 46.6 | 46.6 | 93.2 | 46.6 | >93.2 |
18 | 11 | 11 | 22 | 44 | 22 | 88 | 44 | >88 |
Methods | TPC | TFC | DPPH | ABTS•+ |
---|---|---|---|---|
TPC | 0.583 * | −0.586 * | −0.512 * | |
TFC | −0.444 | −0.249 | ||
DPPH | 0.719 ** |
S. aureus | P. aeruginosa | S. typhymurium | K. pneumoniae | |||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
TPC | 0.211 | 0.149 | 0.196 | 0.348 | 0.180 | −0.011 | 0.325 | 0.203 |
TFC | 0.291 | 0.363 | 0.255 | 0.240 | 0.001 | 0.081 | −0.112 | 0.084 |
DPPH | −0.033 | 0.013 | 0.057 | −0.279 | 0.000 | 0.192 | −0.224 | 0.049 |
ABTS•+ | 0.009 | 0.008 | 0.122 | −0.249 | 0.156 | 0.229 | −0.179 | 0.175 |
Pollen Family | TPC | TFC | DPPH | ABTS | S. aureus | P. aeruginosa | S. typhimurium | K. pneumoniae | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |||||
Boraginaceae | 0.500 | 0.500 | 0.000 | −0.500 | −0.500 | −0.500 | 0.500 | 0.500 | −0.500 | - | −0.500 | - |
Brassicaceae | −0.300 | −0.200 | 0.800 | 0.500 | −0.900 * | −0.900 * | −0.100 | −0.100 | −0.100 | −0.500 | −0.100 | 0.500 |
Cistaceae | −0.600 | −0.800 | 0.800 | 1.000 ** | 0.000 | 0.000 | 0.800 | 0.800 | 0.800 | 0.800 | 0.600 | 0.600 |
Ericaceae | 0.500 | −1.000 ** | −1.000 ** | −0.500 | −0.500 | −0.500 | −1.000 ** | −1.000 ** | - | - | - | - |
Fabaceae | −0.071 | −0.321 | 0.000 | −0.450 | −0.536 | −0.607 | −0.893 ** | −0.536 | −0.857 * | −0.679 | −0.393 | −0.300 |
Fagaceae | 1.000 ** | 0.000 | −1.000 ** | −0.949 | 0.400 | 0.200 | 0.200 | 0.400 | 0.400 | 0.400 | 0.400 | - |
Guttiferae | −0.300 | −0.100 | 0.500 | 0.300 | −0.200 | −0.200 | −0.300 | −0.400 | −0.300 | −0.100 | −0.100 | −0.800 |
Rosaceae | −0.800 | 0.000 | 0.200 | −1.000 ** | 0.200 | 0.400 | 0.200 | 0.200 | −0.500 | −0.500 | −0.500 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Didaras, N.A.; Kafantaris, I.; Dimitriou, T.G.; Mitsagga, C.; Karatasou, K.; Giavasis, I.; Stagos, D.; Amoutzias, G.D.; Hatjina, F.; Mossialos, D. Biological Properties of Bee Bread Collected from Apiaries Located across Greece. Antibiotics 2021, 10, 555. https://doi.org/10.3390/antibiotics10050555
Didaras NA, Kafantaris I, Dimitriou TG, Mitsagga C, Karatasou K, Giavasis I, Stagos D, Amoutzias GD, Hatjina F, Mossialos D. Biological Properties of Bee Bread Collected from Apiaries Located across Greece. Antibiotics. 2021; 10(5):555. https://doi.org/10.3390/antibiotics10050555
Chicago/Turabian StyleDidaras, Nikos Asoutis, Ioannis Kafantaris, Tilemachos G. Dimitriou, Chrysanthi Mitsagga, Katerina Karatasou, Ioannis Giavasis, Dimitris Stagos, Grigoris D. Amoutzias, Fani Hatjina, and Dimitris Mossialos. 2021. "Biological Properties of Bee Bread Collected from Apiaries Located across Greece" Antibiotics 10, no. 5: 555. https://doi.org/10.3390/antibiotics10050555
APA StyleDidaras, N. A., Kafantaris, I., Dimitriou, T. G., Mitsagga, C., Karatasou, K., Giavasis, I., Stagos, D., Amoutzias, G. D., Hatjina, F., & Mossialos, D. (2021). Biological Properties of Bee Bread Collected from Apiaries Located across Greece. Antibiotics, 10(5), 555. https://doi.org/10.3390/antibiotics10050555