What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications
Abstract
:1. Introduction
2. Electrochemical Biosensors Applied to Toxicological Forensic Analysis
2.1. Inorganic Poisons: Arsenic and Cyanide
2.2. Organic Toxics: Alcohol
2.3. Illicit Drugs
2.4. Doping
2.5. Toxins
2.6. Microorganisms
3. Electrochemical Biosensors for Chemical and Biological Weapons
3.1. Chemical Warfare Agents (CWAs)
3.2. Biological Weapons
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bayne, S.; Carlin, M. Forensic Applications of High Performance Liquid Chromatography; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Carlin, M.G.; Dean, J.R. Forensic Applications of Gas Chromatography; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Stuart, B.H. Forensic Analytical Techniques; Wiley & Sons Ltd.: Chichester, UK, 2013. [Google Scholar]
- Smith, J.P.; Randviir, E.P.; Banks, C.E. An introduction to forensic electrochemistry. In Forensic Science: A Multidisciplinary Approach; Katz, E., Halámek, J., Eds.; Wiley-VCH: Weinheim, Germany, 2016. [Google Scholar]
- Yáñez-Sedeño, P.; Agüí, L.; Villalonga, R.; Pingarrón, J.M. Biosensors in forensic analysis: A review. Anal. Chim. Acta 2014, 823, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Peinado, L.; Luque de Castro, M.D. An overview on forensic analysis devoted to analytical chemists. Talanta 2017, 167, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Current trends and challenges in bioelectrochemistry for non-invasive and early diagnosis. Curr. Opin. Electrochem. 2018, 12, 81–91. [Google Scholar] [CrossRef]
- Yáñez-Sedeño, P.; González-Cortés, A.; Aguí, L.; Pingarrón, J.M. Uncommon carbon nanostructures for the preparation of electrochemical immunosensors. Electroanalysis 2016, 28, 1679–1691. [Google Scholar] [CrossRef]
- Kim, M.; Um, H.-J.; Bang, S.; Lee, S.-H.; Oh, S.-J.; Han, J.-H.; Kim, K.-W.; Mim, J.; Kim, Y.-H. Arsenic removal from Vietnamese groundwater using the arsenic-binding DNA aptamer. Environ. Sci. Technol. 2009, 43, 9335–9340. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Yu, X.-Y.; Xiong, S.-Q.; Liu, J.-H.; Huang, X.-J. Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Anal. Chem. 2013, 85, 2673–2680. [Google Scholar] [CrossRef]
- Moghimi, N.; Mohapatra, M.; Leung, K.T. Bimetallic nanoparticles for arsenic detection. Anal. Chem. 2015, 87, 5546–5552. [Google Scholar] [CrossRef]
- Kaur, H.; Kumar, R.; Babu, J.N.; Mittal, S. Advances in arsenic biosensor development—A comprehensive review. Biosens. Bioelectron. 2015, 63, 533–545. [Google Scholar] [CrossRef]
- Farzin, L.; Shamsipur, M.; Sheibani, S. A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 2017, 174, 619–627. [Google Scholar] [CrossRef]
- Kempahanumakkagari, S.; Deep, A.; Kim, K.H.; Kailasa, S.K.; Yoon, H.O. Nanomaterial-based electrochemical sensors for arsenic—A review. Biosens. Bioelectron. 2017, 97, 106–116. [Google Scholar] [CrossRef]
- Antonova, S.; Zakharova, E. Inorganic arsenic speciation by electroanalysis. From laboratory to field conditions: A mini-review. Electrochem. Commun. 2016, 70, 33–38. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Gooch, J.; Daniel, B.; Parkin, M.; Frascione, N. Developing aptasensors for forensic analysis. Trends Anal. Chem. 2017, 94, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Baghbaderani, S.S.; Noorbakhsh, A. Novel chitosan-nafion composite for fabrication of highly sensitive impedimetric and colorimetric As(III) aptasensor. Biosens. Bioelectron. 2019, 131, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, A.A.; Akbarian, F.; Heydari-Soureshjani, E.; Rezaei, B. A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite. Biosens. Bioelectron. 2018, 122, 25–31. [Google Scholar] [CrossRef]
- Gu, H.; Yang, Y.; Chen, F.; Liu, T.; Jin, J.; Pan, Y.; Miao, P. Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJf exonuclease-mediated amplification. Chem. Eng. J. 2018, 353, 305–310. [Google Scholar] [CrossRef]
- Attar, A.; Cubillana-Aguilera, L.; Naranjo-Rodríguez, I.; Hidalgo-Hidalgo de Cisneros, J.L.; Palacios-Santander, J.M.; Amine, A. Amperometric inhibition biosensors based on horseradish peroxidase and gold sononanoparticles immobilized onto different electrodes for cyanide measurements. Bioelectrochem. 2015, 101, 84–91. [Google Scholar] [CrossRef]
- Özcan, H.M.; Aydin, T. A new PANI biosensor based on catalase for cyanide determination. Artif. Cells Nanomed. Biotechnol. 2016, 44, 664–671. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, A.; Kumar Singh, A.; Verma, N.; Bhalla, T.C. A potentiometric biosensor for cyanide detection using immobilized whole cell cyanide dihydratase of Flavobacterium indicum MTCC 6936. J. Anal. Chem. 2018, 73, 1014–1019. [Google Scholar] [CrossRef]
- Del Torno-de Román, L.; Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Dual biosensing device for the speciation of arsenic. Electroanalysis 2015, 27, 302–308. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Wang, Y.; He, X.; Wang, K. Single strand DNA functionalized single wall carbon nanotubes as sensitive electrochemical labels for arsenite detection. Talanta 2015, 141, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wu, J.; Ju, H. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite. Biosens. Bioelectron. 2016, 79, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Raes, E.; Pil, K.; Verstraete, A.G. The modern trends in alcohol, drugs and driving research. Forensic Sci. Int. Suppl. Ser. 2009, 1, 11–14. [Google Scholar] [CrossRef]
- Zhen, S.; Wang, Y.; Liu, C.; Xie, G.; Zou, C.; Zhu, J.Y. A novel microassay for measuring blood alcohol concentration using a disposable biosensor strip. Forensic Sci. Int. 2011, 207, 177–182. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; Esteban-Fernández de Ávila, B.; Wang, J. Wearable biosensors for healthcare monitoring. Nature Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Hooda, V.; Kumar, V.; Gahlaut, A.; Hooda, V. Alcohol quantification: Recent insights into amperometric enzyme biosensors. Artif. Cells Nanomed. Biotechnol. 2018, 46, 398–410. [Google Scholar] [CrossRef]
- Eguílaz, M.; Gutierrez, F.; González-Domínguez, J.M.; Martínez, M.T.; Rivas, G. Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors. Biosens. Bioelectron. 2016, 86, 308–314. [Google Scholar] [CrossRef]
- Bilgi, M.; Ayranci, E. Biosensor application of screen-printed carbon electrodes modified with nanomaterials and a conducting polymer: Ethanol biosensors based on alcohol dehydrogenase. Sens. Actuators B. Chem. 2016, 237, 849–855. [Google Scholar] [CrossRef]
- Ozdokur, K.V.; Demir, B.; Atman, E.; Tatli, A.Y.; Yilmaz, B.; Demirkol, D.O.; Kocak, S.; Timur, S.; Ertas, F.N. A novel ethanol biosensor on pulsed deposited MnOx-MoOx electrodedecorated with Pt nanoparticles. Sens. Actuators B Chem. 2016, 237, 291–297. [Google Scholar] [CrossRef]
- Fucci, N.; Gili, A.; Aroni, K.; Bacci, M.; Carletti, P.; Pascali, V.L.; Gambelunghe, C. Monitoring people at risk of drinking by a rapid urinary ethyl glucuronide test. Interdiscip. Toxicol. 2017, 10, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Selvam, A.P.; Muthukumar, S.; Kamakoti, V.; Prasad, S. A wearable biochemical sensor for monitoring alcohol consumption lifestyle through ethyl glucuronide (EtG) detection in human sweat. Sci. Rep. 2016, 6, 23111. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.S.; Kim, J.; Wang, J. Wearable electrochemical alcohol biosensors. Curr. Opin. Electrochem. 2018, 10, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeerapan, I.; Imani, S.; Cho, T.N.; Bandodkar, A.; Cinti, S.; Mercier, P.P.; Wang, J. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 2016, 1, 1011–1019. [Google Scholar] [CrossRef]
- Bhide, A.; Muthukumar, S.; Saini, A.; Prasad, S. Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat. Sci. Rep. 2018, 8, 6507. [Google Scholar] [CrossRef]
- Aymerich, J.; Márquez, A.; Terés, L.; Muñoz-Berbel, X.; Jiménez, C.; Domínguez, C.; Serra-Graells, F.; Dei, M. Cost-effective smartphone-based reconfigurable electrochemical instrument for alcohol determination in whole blood samples. Biosens. Bioelectron. 2018, 117, 736–742. [Google Scholar] [CrossRef]
- Samphao, A.; Kunpatee, K.; Prayoonpokarach, S.; Wittayakun, J.; Švorc, L.; Stankovic, D.M.; Zagar, M.; Ceh, M.; Kalcher, K. An ethanol biosensor based on simple immobilization of alcohol dehydrogenase on Fe3O4@Au nanoparticles. Electroanalysis 2015, 27, 2829–2837. [Google Scholar] [CrossRef]
- Gómez-Anquela, C.; García-Mendiola, T.; Abad, J.M.; Pita, M.; Pariente, F.; Lorenzo, E. Scaffold electrodes based on thioctic acid-capped gold nanoparticles coordinated alcohol dehydrogenase and Azure A films for high performance biosensor. Bioelectrochemistry 2015, 106, 335–342. [Google Scholar] [CrossRef]
- Çolak, O.; Arslan, F. Amperometric biosensing of ethanol based on integration of alcohol dehydrogenase with a Pt/PPy–PVS/MB electrode. Turk. J. Chem. 2015, 39, 84–95. [Google Scholar]
- Jaime, J.; Rangel, G.; Muñoz-Bonilla, A.; Mayoral, A.; Herrasti, P. Magnetite as a platform material in the detection of glucose, ethanol and cholesterol. Sens. Actuators B Chem. 2017, 238, 693–701. [Google Scholar] [CrossRef]
- Tomassetti, M.; Angeloni, R.; Marchiandi, S.; Castucci, M.; Sammartino, M.P.; Campanella, L. Direct methanol (or ethanol) fuel cell as enzymatic or non-enzymatic device, used to check ethanol in several pharmaceutical and forensic samples. Sensors 2018, 18, 3596. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Jalal, A.H.; Pala, N. Selective detection of alcohol through ethyl-glucuronide immunosensor based on 2D zinc oxide nanostructures. IEEE Sens. J. 2019, 19, 3084–3992. [Google Scholar] [CrossRef]
- Zedeck, B.E.; Zedeck, M.S. Introduction: The role of the forensic pharmacologist. In Inside Forensic Science: Forensic Pharmacology, 1st ed.; Kobilinsky, L., Ed.; Infobase Publishing: New York, NY, USA, 2007; pp. 1–11. [Google Scholar]
- Shaw, L.; Dennany, L. Applications of electrochemical sensors: Forensic drug analysis. Curr. Opin. Electrochem. 2017, 3, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Campuzano, S.; Pedrero, M.; Pingarrón, J.M. Electrochemical nucleic acid-based biosensing of drugs of abuse and pharmaceuticals. Curr. Med. Chem. 2018, 25, 4102–4118. [Google Scholar] [CrossRef] [PubMed]
- Poltorak, L.; Sudholter, E.J.R.; de Puit, M. Electrochemical cocaine (bio)sensing. From solid electrodes to soft junctions. Trends Anal. Chem. 2019, 114, 48–55. [Google Scholar] [CrossRef]
- Hashemi, P.; Bagheri, H.; Afkhami, A.; Ardakani, Y.H.; Madrakian, T. Fabrication of a novel aptasensor based on three-dimensional reduced graphene oxide/polyaniline/gold nanoparticle composite as a novel platform for high sensitive and specific cocaine detection. Anal. Chim. Acta 2017, 996, 10–19. [Google Scholar] [CrossRef]
- Roushani, M.; Shahdost-fard, F. A novel ultrasensitive aptasensor based on silver nanoparticlesmeasured via enhanced voltammetric response of electrochemicalreduction of riboflavin as redox probe for cocaine detection. Sens. Actuators B Chem. 2015, 207, 764–771. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, K. The fabrication of an amperometric immunosensor based on double-layer 2D-network (3-mercaptopropyl)trimethoxysilane polymer and platinum Prussian Blue hybrid film. Bull. Chem. Soc. Jpn. 2018, 91, 368–374. [Google Scholar] [CrossRef]
- Talemi, R.P.; Mashhadizadeh, M.H. A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode. Talanta 2015, 131, 460–466. [Google Scholar] [CrossRef]
- Niu, X.; Huang, L.; Zhao, J.; Yin, M.; Luo, D.; Yang, Y. An ultrasensitive aptamer biosensor for the detection of codeine based on a Au nanoparticle/polyamidoamine dendrimer-modified screen-printed carbon electrode. Anal. Meth. 2016, 8, 1091–1095. [Google Scholar] [CrossRef]
- Xiong, W.; Wu, S.F.; Liao, F.S.; Hong, N.; Fan, H.; Wei, G.B. A ZnS-nanoparticle-label-based electrochemical codeine sensor. Appl. Mechanics Mater. 2017, 872, 173–177. [Google Scholar] [CrossRef]
- Campos, A.C.; Fogaça, M.V.; Sonego, A.B.; Guimarães, F.S. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol. Res. 2009, 112, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Lu, F.; Pang, G. A novel tetrahydrocannabinol electrochemical nano immunosensor based on horseradish peroxidase and double-layer gold nanoparticles. Molecules 2016, 21, 1377. [Google Scholar] [CrossRef] [PubMed]
- Sengel, T.Y.; Guler, E.; Gumus, Z.P.; Aldemir, E.; Coskunol, H.; Akbulut, H.; Colak, D.G.; Cianga, I.; Yamada, S.; Timur, S.; et al. An immunoelectrochemical platform for biosensing of “Cocaine use”. Sens. Actuator B Chem. 2017, 246, 310–318. [Google Scholar] [CrossRef]
- Mazzei, F.; Antiochia, R.; Botrè, F.; Favero, G.; Tortollini, C. Affinity-based biosensors in sport medicine and doping control analysis. Bioanalysis 2014, 6, 225–245. [Google Scholar] [CrossRef]
- Knopp, W.D.; Wang, T.W.; Bach, B.R., Jr. Ergogenic drugs in sports. Clin. Sports Med. 1997, 16, 375–392. [Google Scholar] [CrossRef]
- Malve, H.O. Forensic pharmacology: An important and evolving subspecialty needs recognition in India. J. Pharm. Bioallied. Sci. 2016, 8, 92–97. [Google Scholar] [CrossRef]
- Balaban, S.; Durmus, C.; Aydindogan, E.; Gumus, Z.P.; Timur, S. An electrochemical biosensor platform for testing of dehydroepiandrosterone 3-sulfate (DHEA−S) as a model for doping materials. Electroanalysis. In Press. [CrossRef]
- Li, G.; Zhu, M.; Ma, L.; Yan, J.; Lu, X.; Shen, Y.; Wan, Y. Generation of small single domain nanobody binders for sensitive detection of testosterone by electrochemical impedance spectroscopy. ACS Appl. Mater. Interf. 2016, 8, 13830–13839. [Google Scholar] [CrossRef]
- Lasne, F.; de Ceaurriz, J. Recombinant erythropoietin in urine. Nature 2000, 405, 635–637. [Google Scholar] [CrossRef]
- Han, J.; Zhuo, Y.; Chai, Y.Q.; Xiang, Y.; Yuan, R. New type of redox nanoprobe: C60-based nanomaterial and its application in electrochemical immunoassay for doping detection. Anal. Chem. 2015, 87, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- Allafchian, A.R.; Moini, E.; Mirahmadi-Zare, S.Z. Flower-like self-assembly of diphenylalanine for electrochemical human growth hormone biosensor. EEE Sens. J. 2018, 18, 8979–8985. [Google Scholar] [CrossRef]
- Barroso, O.; Schamasch, P.; Rabin, O. Detection of GH abuse in sport: Past, present and future. Growth Hormone IGF Res. 2009, 19, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhang, H. Detection of insulin-like growth factor 1 based on an electrochemical impedance spectroscopy sensor. Int. J. Electrochem. Sci. 2017, 12, 11163–11170. [Google Scholar] [CrossRef]
- Jeong, G.; Oh, J.; Jang, J. Fabrication of N-doped multidimensional carbon nanofibers for high performance cortisol biosensors. Biosens. Bioelectron. 2019, 131, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Dighe, K.; Wang, Z.; Srivastava, I.; Schwartz-Duval, A.S.; Misra, S.K.; Pan, D. Electrochemical-digital immunosensor with enhanced sensitivity for detecting human salivary glucocorticoid hormone. Analyst 2019, 144, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Mehennaoui, S.; Poorahong, S.; Contreras Jimenez, G.; Siaj, M. Selection of high affinity aptamer ligand for dexamethasone and its electrochemical biosensor. Sci. Rep. 2019, 9, 6600. [Google Scholar] [CrossRef] [PubMed]
- Machini, W.B.S.; Teixeira, M.F.S. Analytical development of a binuclear oxo-manganese complex bio-inspired on oxidase enzyme for doping control analysis of acetazolamide. Biosens. Bioelectron. 2016, 79, 442–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Taher, F.; Banaszewski, K.; Jackson, L.; Zweigenbaum, J.; Ryu, D.; Cappozzo, J. Rapid method for the determination of multiple mycotoxins in wines and beers by LC-MS/MS using a stable isotope dilution assay. J. Agric. Food Chem. 2013, 61, 2378–2384. [Google Scholar] [CrossRef]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Shim, W.-B.; Kim, M.J.; Mun, H.; Kim, M.-G. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens. Bioelectron. 2014, 62, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Che, C.; Korolchuk, V.I.; Gan, F.; Pan, C.; Huang, K. Selenomethionine alleviates AFB1-induced damage in primary chicken hepatocytes by inhibiting CYP450 1A5 expression via upregulated SelW expression. J. Agric. Food Chem. 2017, 65, 2495–2502. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lustig, W.P.; Zhang, J.; Zheng, C.; Wang, H.; Teat, S.J.; Gong, Q.; Rudd, N.D.; Li, J. Effective detection of mycotoxins by a highly luminescent metal-organic framework. J. Am. Chem. Soc. 2015, 137, 16209–16215. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qian, J.; An, K.; Ren, C.; Lu, X.; Hao, N.; Liu, Q.; Li, H.; Huang, X.; Wang, K. Fabrication of magnetically assembled aptasensing device for label-free determination of aflatoxin B1 based on EIS. Biosens. Bioelectron. 2018, 108, 69–75. [Google Scholar] [CrossRef]
- Jalalian, S.H.; Ramezani, M.; Danesh, N.M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode. Biosens. Bioelectron. 2018, 117, 487–492. [Google Scholar] [CrossRef]
- Gerez, C.L.; Dallagnol, A.; Ponsone, L.; Chulze, S.; Font de Valdez, G. Ochratoxin A production by Aspergillus niger: Effect of water activity and a biopreserver formulated with Lactobacillus plantarum CRL 778. Food Control 2014, 14, 115–119. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Liu, F.; Wang, Q.; Selvaraj, J.N.; Xing, F.; Zhao, Y.; Liu, Y. Ochratoxin A producing fungi, biosynthetic pathway and regulatory mechanisms. Toxins 2016, 8, 83. [Google Scholar] [CrossRef]
- Machado, J.M.D.; Soares, R.R.G.; Chu, V.; Conde, J.P. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection. Biosens. Bioelectron. 2018, 99, 40–46. [Google Scholar] [CrossRef]
- Zhang, T.; Xing, B.; Han, Q.; Lei, Y.; Wu, D.; Ren, X.; Wei, Q. Electrochemical immunosensor for ochratoxin A detection based on Au octahedron plasmonic colloidosomes. Anal. Chim. Acta 2018, 1032, 114–121. [Google Scholar] [CrossRef]
- Liang, C.X.; Cao, L.X.; Zhang, Y.J.; Yan, P.S. Electrochemical biosensors for marine toxins analysis. Prog. Chem. 2018, 30, 1028–1034. [Google Scholar]
- Reverté, L.; Campbell, K.; Rambla-Alegre, M.; Elliott, C.T.; Diogène, J.; Campàs, M. Immunosensor array platforms based on self-assembled dithiols for the electrochemical detection of tetrodotoxins in puffer fish. Anal. Chim. Acta 2017, 99, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Bratakou, S.; Nikoleli, G.P.; Siontorou, C.G.; Nikoleleis, D.P.; Karapetis, S.; Tzamtis, N. Development of an electrochemical biosensor for the rapid detection of saxitoxin based on air stable lipid films with incorporated anti-STX using graphene electrodes. Electroanalysis 2017, 29, 990–997. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Commission regulation (EU) no 786/2013 of 16 August 2013 amending annex III to regulation (EC) no 853/2004 of European Parliament and of the Council as regards the permitted limits of yessotoxins in live bivalve molluscs (text with EEA relevance). Off. J. Eur. 2013, 220, 14. [Google Scholar]
- Zhou, J.; Qiu, X.; Su, K.; Xu, G.; Wang, P. Disposable poly(o-aminophenol)-carbon nanotubes modified screen print electrode-based enzyme sensor for electrochemical detection of marine toxin okadaic acid. Sens. Actuators B Chem. 2016, 235, 170–178. [Google Scholar] [CrossRef]
- Pham, T.-L.; Utsumi, M. An overview of the accumulation of microcystins in aquatic ecosystems. J. Environ. Manag. 2018, 213, 520–529. [Google Scholar] [CrossRef]
- Bostan, H.B.; Taghdisi, S.M.; Bowen, J.L.; Demertzis, N.; Rezaee, N.; Panahi, Y.; Tsatsakis, A.M.; Karimi, G. Determination of microcystin-LR employing aptasensors. Biosens. Bioelectron. 2018, 119, 110–118. [Google Scholar] [CrossRef]
- Gan, C.; Wang, B.; Huang, J.; Qileng, A.; He, Z.; Lei, H.; Liu, W.; Liu, Y. Multiple amplified enzyme-free electrochemical immunosensor based on Gquadruplex/hemin functionalized mesoporous silica with redox-active intercalators for microcystin-LR detection. Biosens. Bioelectron. 2017, 98, 126–133. [Google Scholar] [CrossRef]
- Istamboulié, G.; Paniel, N.; Zara, L.; Granados, L.R.; Bathelmebs, L.; Noguer, T. Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta 2016, 146, 464–469. [Google Scholar] [CrossRef]
- Ma, H.; Sun, J.; Zhang, Y.; Xia, S. Disposable amperometric immunosensor for simple and sensitive determination of aflatoxin B1 in wheat. Biochem. Eng. J. 2016, 115, 38–46. [Google Scholar] [CrossRef]
- Mishra, R.K.; Rupesh, K.; Hayat, A.; Catanante, G.; Ocaña, C.; Marty, J.L. A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries. Anal. Chim. Acta 2015, 889, 106–112. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, W.Y. A novel impedimetric aptasensor based on AuNPs-carboxylic porous carbon for the ultrasensitive detection of ochratoxin A. RSC Adv. 2017, 7, 28655–28660. [Google Scholar] [CrossRef]
- Zejli, H.; Goud, K.Y.; Marty, J.L. Label free aptasensor for ochratoxin A detection using polythiophene-3 carboxylic acid. Talanta 2018, 185, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yan, C.; Cheng, L.; Yao, L.; Xue, F.; Xu, J. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Biosens. Bioelectron. 2018, 117, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ning, G.; Wu, Y.; Wu, S.; Zeng, B.; Liu, G.; He, X.; Wang, K. Facile combination of beta-cyclodextrin host-guest recognition with exonuclease-assistant signal amplification for sensitive electrochemical assay of ochratoxin A. Biosens. Bioelectron. 2019, 124, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Regiart, M.; Fernández, O.; Vicario, A.; Villarroel-Rocha, J.; Sapag, K.; Messina, G.A.; Raba, J.; Bertolino, F.A. Mesoporous immunosensor applied to zearalenone determination in Amaranthus cruentus seeds. Microchem. J. 2018, 141, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Foubert, A.; Beloglazova, N.V.; Hedström, M.; De Saeger, S. Antibody immobilization strategy for the development of a capacitive immunosensor detecting zearalenone. Talanta 2019, 191, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Li, C.R.; Yang, X.X.; Zhou, X.P.; Xue, J.; Luo, M.; Xu, X.; Chen, S.; Qiu, J.F. Electrochemical immunosensor using single-walled carbon nanotubes/chitosan for ultrasensitive detection of deoxynivalenol in food samples. J. Appl. Electrochem. 2016, 46, 1049–1057. [Google Scholar] [CrossRef]
- Lu, L.; Seenivasan, R.; Wang, Y.Z.; Yu, J.H.; Gunasekaran, S. An electrochemical immunosensor for rapid and sensitive detection of mycotoxins fumonisin B1 and deoxynivalenol. Electrochim. Acta 2016, 213, 89–97. [Google Scholar] [CrossRef]
- Ramalingam, S.; Chand, R.; Singh, C.B.; Singh, A. Phosphorene-gold nanocomposite based microfluidic aptasensor for the detection of okadaic acid. Biosens. Bioelectron. 2019, 135, 14–21. [Google Scholar] [CrossRef]
- Eissa, S.; Siaj, M.; Zourob, M. Aptamer-based competitive electrochemical biosensor for brevetoxin. Biosens. Bioelectron. 2015, 69, 148–154. [Google Scholar] [CrossRef]
- Hou, L.; Jiang, L.; Song, Y.; Ding, Y.; Zhang, J.; Wu, X.; Tang, D. Amperometric aptasensor for saxitoxin using a gold electrode modified with carbon nanotubes on a self-assembled monolayer, and methylene blue as an electrochemical indicator probe. Microchim. Acta 2016, 183, 1971–1980. [Google Scholar] [CrossRef]
- Jin, X.; Chen, J.; Zeng, X.; Xu, L.J.; Wu, Y.; Fu, F.F. A signal-on magnetic electrochemical immunosensor for ultra-sensitive detection of saxitoxin using palladium-doped graphitic carbon nitride-based non-competitive strategy. Biosens. Bioelectron. 2019, 128, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, S.; Kiparissis, S.; Rambla-Alegre, M.; Almarza, S.; Roque, A.; Andree, K.B.; Christidis, A.; Flores, C.; Caixach, J.; Campbell, K.; et al. Detection of tetrodotoxins in juvenile pufferfish Lagocephalus sceleratus (Gmelin, 1789) from the North Aegean Sea (Greece) by an electrochemical magnetic bead-based immunosensing tool. Food Chem. 2019, 290, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Peng, D.; Xie, S.; Chen, D.; Pan, Y.; Tao, Y.; Yuan, Z. Construction of electrochemical immunosensor based on gold-nanoparticles/carbon nanotubes/chitosan for sensitive determination of T-2 toxin in feed and swine meat. Int. J. Mol. Sci. 2018, 19, 3895. [Google Scholar] [CrossRef]
- He, Z.Y.; Wei, J.; Gan, C.F.; Liu, W.P.; Liu, Y.J. A rolling circle amplification signal-enhanced immunosensor for ultrasensitive microcystin-LR detection based on a magnetic graphene-functionalized electrode. RSC Adv. 2017, 7, 39906–39913. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Jia, B.; Furumai, H. Fabrication of graphene film composite electrochemical biosensor as a pre-screening algal toxin detection tool in the event of water contamination. Sci. Rep. 2018, 8, 10686. [Google Scholar] [CrossRef]
- Zhang, K.; Ma, H.; Yan, P.; Tong, W.; Huang, X.; Chen, D.D.Y. Electrochemical detection of microcystin-LR based on its deleterious effect on DNA. Talanta 2018, 185, 405–410. [Google Scholar] [CrossRef]
- Barreiros dos Santos, M.; Queirós, R.B.; Geraldes, Á.; Marques, C.; Vilas-Boas, V.; Dieguez, L.; Paz, E.; Ferreira, R.; Morais, J.; Vasconcelos, V.; et al. Portable sensing system based on electrochemical impedance spectroscopy for the simultaneous quantification of free and total microcystin-LR in freshwaters. Biosens. Bioelectron. 2019, 142, 111550. [Google Scholar] [CrossRef]
- Pandey, A.; Gurbuz, Y.; Ozguz, V.; Niazi, J.H.; Qureshi, A. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosens. Bioelectron. 2017, 91, 225–231. [Google Scholar] [CrossRef]
- Park, Y.M.; Lim, S.Y.; Jeong, S.W.; Song, Y.; Bae, N.H.; Hong, S.B.; Choi, B.G.; Lee, S.J.; Lee, K.J. Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens. Nano Converg. 2018, 5, 15. [Google Scholar] [CrossRef]
- Hills, K.D.; Oliveira, D.A.; Cavallaro, N.D.; Gomes, C.L.; McLamore, E.S. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst 2018, 143, 1650–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiriacò, M.S.; Parlangeli, I.; Sirsi, F.; Poltronieri, P.; Primiceri, E. Impedance sensing platform for detection of the food pathogen Listeria Monocytogenes. Electronics 2018, 7, 347. [Google Scholar] [CrossRef]
- Lu, D.; Pang, G.; Xie, J. A new phosphothreonine lyase electrochemical immunosensor for detecting Salmonella based on horseradish peroxidase/AuNPs-thionine/chitosan. Biomed. Microdevices 2017, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.G.; Siragusa, G.R. Quantitative detection of Clostridium perfringens in the broiler fowl gastrointestinal tract by real-time PCR. Appl. Environ. Microbiol. 2005, 71, 3911–3916. [Google Scholar] [CrossRef]
- Qian, X.; Qu, Q.; Li, L.; Ran, X.; Zuo, L.; Huang, R.; Wang, Q. Ultrasensitive electrochemical detection of Clostridium perfringens DNA based morphology-dependent DNA adsorption properties of CeO2 nanorods in dairy products. Sensors 2018, 18, 1878. [Google Scholar] [CrossRef]
- Liu, R.; Li, Z.; Huang, Z.; Li, K.; Lv, Y. Biosensors for explosives: State of art and future trends. Trends Anal. Chem. 2019, 118, 123–137. [Google Scholar] [CrossRef]
- Shahdost-fard, F.; Roushani, M. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe. Biosens. Bioelectron. 2019, 87, 724–731. [Google Scholar] [CrossRef]
- Roushani, M.; Shahdost-Fard, F.; Azadbakht, A. Using Au@nano-C60 nanocomposite as an enhanced sensing platform in modeling a TNT aptasensor. Anal. Biochem. 2017, 534, 78–85. [Google Scholar] [CrossRef]
- Shahdost-fard, F.; Roushani, M. Impedimetric detection of trinitrotoluene by using a glassy carbon electrode modified with a gold nanoparticle@fullerene composite and an aptamer-imprinted polydopamine. Microchim. Acta 2017, 184, 3997–4006. [Google Scholar] [CrossRef]
- Zhang, D.M.; Jiang, M.; Chen, J.Y.; Zhang, Q.; Lu, Y.L.; Yao, Y.; Li, S.; Liu, G.L.; Liu, Q.J. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection. Biosens. Bioelectron. 2015, 70, 81–88. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhao, M.R.; Wang, H.Y. Label-free peptide aptamer based impedimetric biosensor for highly sensitive detection of TNT with a ternary assembly layer. Anal. Bioanal. Chem. 2017, 409, 6371–6377. [Google Scholar] [CrossRef] [PubMed]
- Komarova, N.V.; Andrianova, M.S.; Gubanova, O.V.; Kuznetsov, E.V.; Kuznetsov, A.E. Development of a novel enzymatic biosensor based on anion-selective field effect transistor for the detection of explosives. Sens. Actuators B Chem. 2015, 221, 1017–1026. [Google Scholar] [CrossRef]
- Seto, Y. On-Site detection of chemical warfare agents. In Handbook of Toxicology of Chemical Warfare Agents, 2nd ed.; Gupta, R.C., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; p. 897. [Google Scholar]
- Colozza, N.; Kehe, K.; Dionisi, G.; Popp, T.; Tsoutsoulopoulos, A.; Steinritz, D.; Moscone, D.; Arduini, F. A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosens. Bioelectron. 2019, 129, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, J.B.; Gupta, S.; Prabha, C.R. Acetylcholine esterase enzyme doped multiwalled carbon nanotubes for the detection of organophosphorus pesticide using cyclic voltammetry. Int. J. Biol. Macromol. 2019, 137, 895–903. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, T.; Rong, S.; Zeng, D.; Yu, H.; Zhang, Z.; Chang, D.; Pan, H. A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite. Bioelectrochemistry 2019, 127, 163–170. [Google Scholar] [CrossRef]
- Mishra, R.K.; Hubble, L.J.; Martín, A.; Kumar, R.; Barfidokht, A.; Kim, J.; Musameh, M.M.; Kyratzis, I.L.; Wang, J. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sens. 2017, 24, 553–561. [Google Scholar] [CrossRef]
- Dorner, B.G.; Zeleny, R.; Harju, K.; Hennekinne, J.A.; Vanninen, P.; Schimmel, H.; Rummel, A. Biological toxins of potential bioterrorism risk: Current status of detection and identification technology. Trends Anal. Chem. 2016, 85, 89–102. [Google Scholar] [CrossRef]
- Pohanka, M. Current trends in the biosensors for biological warfare agents assay. Materials 2019, 12, 2303. [Google Scholar] [CrossRef]
- Afkhami, A.; Hashemi, P.; Bagheri, H.; Salimian, J.; Ahmadi, A.; Madrakian, T. Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene chitosan composite. Biosens. Bioelectron. 2017, 93, 124–131. [Google Scholar] [CrossRef]
- Mazzaracchio, V.; Neagu, D.; Porchetta, A.; Marcoccio, E.; Pomponi, A.; Faggioni, G.; D’Amore, N.; Notargiacomo, A.; Pea, M.; Moscone, D.; et al. A label-free impedimetric aptasensor for the detection of bacillus anthracis spore simulant. Biosens. Bioelectron. 2019, 126, 640–646. [Google Scholar] [CrossRef]
- Ziółkowski, R.; Oszwałdowski, S.; Zacharczuk, K.; Zasada, A.A.; Malinowska, E. Electrochemical detection of Bacillus anthracis protective antigen gene using DNA biosensor based on stem−loop probe. J. Electrochem. Soc. 2018, 165, B187–B195. [Google Scholar] [CrossRef]
- Karapetis, S.; Nikoleli, G.P.; Siontorou, C.G.; Nikolelis, D.P.; Tzamtzis, N.; Psaroudakis, N. Development of an electrochemical biosensor for the rapid detection of cholera toxin based on air stable lipid films with incorporated Ganglioside GM1 using graphene electrodes. Electroanalysis 2016, 28, 1584–1590. [Google Scholar] [CrossRef]
- Singh, A.; Pasha, S.K.; Manickam, P.; Bhansali, S. Single-domain antibody based thermally stable electrochemical immunosensor. Biosens. Bioelectron. 2016, 83, 162–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Electrode | Analyte/Sample | Method | Transduction Technique | Analytical Characteristics | Ref. |
---|---|---|---|---|---|
GA/SPCE | As(III) and As(V)/waters | Immobilization of AcChE and AcP; measurements based on the respective inhibitory effects on enzymes activity of As(III) using ATI and TTF, and As(V) using 2-phospho-l-ascorbic | Amperometry, 150 (III), 250 mV (V) vs. Ag/AgCl | LR: 0.2–1.6 mM; 35.9–352.9 μM (III); 2.0–19.6 μM; 20–160 μM (V); LOD: 28.7 μM (III); 1.2 μM (V) | [24] |
AuE | As(III)/spiked water | Preparation of ssDNA/SWCNT conjugates. Dissociation in presence of As, assembling of liberated SWCNTs onto AuE and increasing conductivity | DPV, FcCOOH | LR: 5–10 μg·L−1 LOD: 0.5 μg·L−1 | [25] |
AuNPs/Chit/SPCE | As(III)/Waters | Immobilization of As specific aptamer and adsorption of PDDA. Measurement of the conductivity increase in the presence of As by desorption of PDDA | DPV, Ru(NH3)63+ | LR: 0.2–100 nM LOD: 0.15 nM | [26] |
AuE | As(III)/Waters | Immobilization of ssDNAcap, hybridization with As specific aptamer AptH0, and with H1 and H2 strands. Measurements of decreasing RCT by interaction with As and dissociation of the dsDNAcap. Amplification by digestion with RecJf exonuclease. | EIS, Fe(CN)63−/4− | LR: 0.1–500 μg·L−1 LOD: 0.02 μg·L−1 | [20] |
3D-rGO/AuNPs/GCE | As(III)/Water | Immobilization of a thiolated aptamer and measurement of electron transfer hindrance in presence of the target. Amplification with GA and HOOC-CNTs-BSA | EIS, Fe(CN)63−/4− | LR: 3.8 × 10 −7–3.0 × 10−4 ng·mL−1 LOD: 1.4 × 10−7 ng·mL−1 | [19] |
GA/Nf/Chit/GCE | As(III)/Waters | Immobilization of ssDNAcap and hybridization with the As specific aptamer. Measurements of ΔRCT in presence of different concentrations of arsenic | EIS, Fe(CN)63−/4− | LR: 0.15–10; 20–100 nM LOD: 74 pM | [18] |
HRP/AuSNPs/SNGCE | CN−/- | Immobilization of HRP and measurements based on the inhibitory effect of cyanide on the enzyme activity using caffeic acid as substrate | Amperometry, –0.15 V vs. Ag/AgCl | LR: 0.1–58.6 μM LOD: 0.03 μM | [21] |
GA/PANI/PtE | CN/artificial waste water | Immobilization of CAT and measurements based on the inhibitory effect of cyanide on the enzyme activity using H2O2 as substrate | EIS, Fe(CN)63−/4− | LR: 0.0136–0.65 mg·L−1 LOD: 2 μg·L−1 | [22] |
NH4+-ISE | CN/industrial wastewater, food | Immobilization of Flavobacterium indicum whole cells. Measurement of ammonium produced by cyanide dehydratase of the cells proportional to target concentration. | Potentiometry | LR. 10−10–0.1 M LOD: 1 nM | [23] |
Electrode | Analyte/Sample | Method | Transduction Technique | Analytical Characteristics | Ref. |
---|---|---|---|---|---|
Fe3O4@AuNPs/MnO2/CPE | ethanol/beverages | Immobilization of ADH and detection of NADH in the presence of NAD+ | Amperometry, 0.1 V vs. Ag/AgCl | LR: 0.1–2.0 M LOD: 0.07M | [41] |
TOA-AuNPs/Azure A-SPCE | ethanol/wine | Immobilization of ADH; covering with chitosan and voltammetric measurements in the presence of NAD+ | DPV, NADH | LR: 0.001–2.0 mM LOD: 0.14 mM | [42] |
PPy-PVS/PtE | ethanol/beverages | Immobilization of ADH and NAD+; NADH detection with Meldola’s blue as redox mediator | Amperometry, −0.072 V vs. Ag/AgCl | LR: 1.0–10.0 µM; 0.01–0.1 mM; LOD: 0.1 μM | [43] |
PtNPs/MnOx-MoOx/GCE | ethanol/beverages | Immobilization of Gluconobacter oxydans. Monitoring of oxygen consumption | Amperometry, 0.0 V vs. Ag/AgCl | LR: 0.075–5.0 mM | [33] |
wearable tattoo with PB carbon ink | ethanol/sweat | Sweat induction with pilocarpine and iontophoretic biosensing with AOx | Amperometry, −0.2 V vs. Ag/AgCl | LR: up to 36 mM | [38] |
PNR/AuNPs/MWCNTs/SPCE | ethanol/beverages | Immobilization of ADH and detection of NADH in the presence of NAD+ | Amperometry, 0.2 V vs. Ag/AgCl | LR: 0.32–1.0 mM LOD: 0.096 mM | [32] |
polyTyr/SWCNTs/GCE | ethanol/beverages | Immobilization of ADH by entrapment with Nafion and NADH detection in the presence of NAD+ | Amperometry, 0.2 V vs. Ag/AgCl | LR: 0.01–0.15 mM LOD: 0.67 mM | [31] |
wearable Au or ZnO electrodes onto glass or polyimide | EtG/sweat | Immobilization of EtG antibody using thiol-based chemistry. Measurement of impedance changes | EIS | LR: 0.001–100 μg/L LOD: 1 μg·L−1 (AuE); 0.001 μg·L−1 (ZnO) | [35] |
PDA/Fe3O4/GCE | ethanol/human serum | Immobilization of AOx; detection of H2O2 as substrate | Amperometry, −0.1 V vs. Ag/AgCl | LR: 0.5–3.0 mM LOD: 130 μM | [44] |
smartphone-based platform with PtEs | ethanol/blood | Electrodeposition of HRP and AOx onto calcium alginate; H2O2 detection with TMB as redox mediator | Amperometry, 0.0 V vs. Pt | LR: up to 1.25 g L-1 LOD: 0.056 g L-1 | [40] |
Pt-Ru | ethanol/serum, saliva | ADH immobilized on a dialysis membrane in the anode of the fuel cell | Amperometry | LR: 0.5–600 mM LOD: 0.2 mM | [45] |
ZnO | ethanol/sweat | Immobilization of AOx and measuring of impedance changes | EIS | LR: 0.01–200 mg·dL−1 LOD: 0.01 mg·dL−1 | [39] |
ZnO-NFs/Au/pET | EtG | Immobilization of EtG antibody via electrostatic interaction | CV, EIS [Fe(CN)6]3−/4- | LR: 1 ng·mL−1-100 μg·mL−1 LOD: <1 ng·mL−1 | [46] |
Electrode | Analyte/Sample | Method | Transduction Technique | Analytical Characteristics | Ref. |
---|---|---|---|---|---|
SPCE | AFM1/milk | Label-free aptasensor. Apt immobilization by diazonium-coupling. RCT measurements in the presence of AFM1 | EIS, [Fe(CN)6]3−/4− | LR: 2–150 ng·L−1 LOD: 1.15 ng·L−1 | [93] |
SPAuE | AFM1/milk, serum | Apt immobilization onto SPAuE; Apt CS conjugation with AuNPs. Disassembled of Apt hairpin structure in presence of AFM1 and current increasing with MB as redox agent | DPV, MB | LR: 2–600 pg·mL−1 LOD: 0.9 pg·mL−1 | [80] |
Chit/AuNP/disk-ring AuμE | AFB1/wheat | Label-free immunosensor. Immobilization of anti-AFB1 and current measurement after conjugation with the antigen | CV, [Fe(CN)6]3−/4− | LR: 0.2–2, 2–30 ng·mL−1 LOD: 0.12 ng·mL−1 | [94] |
PDMS/SPCE | AFB1/peanuts | Immobilization of thiolated Apt onto Fe3O4@Au and assembling on PDMS/SPCE. Measurement of impedance changes | EIS, [Fe(CN)6]3−/4− | LR: 20–5 × 104 pg·mL−1 LOD: 15 pg·mL−1 | [79] |
SPCE | OTA/cocoa beans | Label-free aptasensor. Apt immobilization by diazonium-coupling. RCT measurements in the presence of OTA | EIS, [Fe(CN)6]3−/4− | LR: 0.15–2.5 ng·mL−1 LOD: 0.15 ng·mL−1 | [95] |
Cyst-GCE | OTA/soybean | Immobilization of cDNA onto AuNPs-Cyst-cPC and drop onto Cyst-GCE to hybridize with the Apt. RCT measurements in the presence of OTA | EIS, [Fe(CN)6]3−/4− | LR: 10−8–0.1 ng·mL−1 LOD: 10−8 ng·mL−1 | [96] |
SPCE | OTA/coffee | Grafting of PT3C or PP3C onto SPCE and covalent immobilization of Apt to complex OTA increasing RCT | EIS, [Fe(CN)6]3−/4− | LR: 0.125–2.5 ng·mL−1 LOD: 0.125 ng·mL−1 | [97] |
OctAuNPs/GCE | OTA/wine | Immobilization of Ab1 onto OctAuNPs/GCE. OTA sandwiched with AuOct PCs-TB@Ab2 as carrier tag for signal amplification | SWV, TB | LR: 0.1–104 pg·mL−1 LOD: 39 fg·mL−1 | [84] |
AuE | OTA/wine | DNA-controlled layer-by-layer assembly of dual AuNPs conjugates using capture probes to hybridize Apt and Fc tagged SH-signal probe | DPV, Fc | LR: 0.001–500 ng·mL−1 LOD: 0.001 ng·mL−1 | [98] |
β-CD-SH-SPAuE | OTA/wine | Apt hybridization with cDNA-MB. Apt-OTA complexation, cDNA-MB separation. Target recycling signal amplification by RecJf exonuclease | DPV, MB | LR: 10–104 pg·mL−1 LOD: 3 pg·mL−1 | [99] |
Fe2O3/MCM-41/SPCE | ZEA/seeds | Sandwich-type immunoassay. Immobilization of anti-ZEA onto Fe2O3/MCM-41/SPCE and conjugation with HRP-anti-ZEA. Current measurements by addition of H2O2/4-TBC | Amperometry, −0.1 V vs. Ag/AgCl | LR: 1.88–45 ng·mL−1 LOD: 0.57 ng·mL−1 | [100] |
AuE | ZEA/– | Flow-injection capacitive immunosensor. Immobilization of anti-ZEN onto pTYR or 3-MPA or LA SAMs-modified AuE | Capacitance current-pulse FI | LR: 0.01–10 nM (pTYR); 0.02–10 nM (SAMs) LOD: 0.006 nM (LA SAM) | [101] |
Chit/SWCNT/GCE | DON/sorghum, infant food | Indirect competitive immunosensor. Detection with AP-IgG, using 1-NPP as substrate | DPV, 1-NP | LR: 0.01–1000 ng·mL−1 LOD: 5 pg·mL−1 | [102] |
AuNPs/PPy/ErGO/SPCE | FB1 and DON | Label-free immunosensor. Immobilization of antitoxin onto the modified electrode and RCT measurements | DPV, [Fe(CN)6]3−/4− | LR: 0.2–4.5 (FB1), 0.05–1 ng·mL−1 (DON); LOD: 4.2 (FB1) 8.6 ng·L−1 (DON) | [103] |
PoAP/CNT/SPCE | OA/shellfish | Enzyme biosensor based on inhibition of PP2A and voltammetric detection after addition of 1-NPP | DPV, 1-NP | LR: 1–300 μg·L−1 LOD: 0.55 μg·L−1 | [89] |
Phosphorene-gold/SPCE | OA/mussel | Microfluidic biochip of OA. Immobilization of Apt. Current decreasing in presence of OA | DPV, [Fe(CN)6]3−/4− | LR: 10–250 nM LOD: 8 nM | [104] |
PDIC/Cyst/AuE | BTX-2 | Aptasensor. Immobilization of BTX-2 and competitive assay between BTX-2 onto electrode and free BTX-2 in presence of a fixed amount of Apt | EIS, [Fe(CN)6]3−/4− | LR: 0.1–100 ng·L−1 LOD: 106 pg·mL−1 | [105] |
MB-cMWCNTs/ODT/AuE | STX/mussel | Label-free aptasensor. Target-induced conformational change of Apt with STX binding. Measurement of current decreasing in presence of toxin | DPV/ MB | LR: 0.9–30 nM LOD: 0.38 nM | [106] |
lipid film/ graphene | STX/lake water, shellfish | Potentiometric immunosensor. Immobilization of anti-STX onto a lipid film prepared by polymerization in a mixture of DPPC, MA, EGDM and AMPN | Potentiometry, stopped-flow | LR: 1.3 × 10−9–1.3 × 10−6 M LOD: 1 nM | [87] |
MGE | STX/seawater, shellfish | Sandwich-type magnetoimmunosensor. Biotin-Ab2 immobilization onto Avidin-MBs. Conjugation with Ab1, STX complexation and interaction with (g-C3N4-PdNPs). Current measurements by addition of H2O2/TMB | Amperometry, 0.2 V vs. Ag/AgCl | LOD: 1.2 pg·mL−1 | [107] |
HOOC-PEG6-DTA/SPAuEa | TTX/putter fish | TTX immobilization onto activated carboxylate-dithiol. Addition of cAb and IgG-HRP. Current measurements in presence of TMB | Amperometry, −0.11 V vs. Ag | LR: 2.6–10.2 ng·mL−1 LOD: 2.6 ng·mL−1 | [86] |
SPCEa | TTX/putter fish | TTX immobilization on Cyst-maleimide-MBs. Addition of cAb and IgG-HRP. Current measurements in presence of TMB | Amperometry, −0.2 V vs. Ag | LR: 1.2–52.7 ng·mL−1 LOD: 1.2 ng·mL−1 | [108] |
cSWCNTs/ Chit/AuNPs/ GCE | T-2 toxin/feed, swine meat | Immunosensor. Competitive assay between T-2 and OVA-T-2-cSWCNTs. Detection by AP-Ab2 and 1-NPP | DPV, 1-NP | LR: 0.01–100 μg·L−1 LOD: 0.13 μg·mL−1 | [109] |
pDA/AuNRs magnetic rGO | MC-LR/water | Competitive immunosensor. Immobilization of antibody and rolling circle DNA amplification | DPV; H2O2/HQ | LR: 0.01–50 μg·L−1 LOD: 0.007 μg·mL−1 | [110] |
AuNDs/ITO | MC-LR/− | Label-free immunosensor. Conjugation of Ab and sDNA to (SiO2@MSN). HCR to form G-quadruplex/hemin. MB intercalation. | DPV, H2O2 | LR: 0.5 ng·L−1–25 μg·L−1 LOD: 0.3 ng·L−1 | [92] |
PET/graphene/Cu | MC-LR/waters | Label-free immunosensor involving covalent immobilization of MC-LR onto oxidized electrode and competitive assay between immobilized and free antigen in presence of a fixed amount of antibody | EIS, [Fe(CN)6]3−/4− | LR: 0.005–10 μg·L−1 LOD: 2.3 ng·mL−1 | [111] |
AuE | MC-LR/water | Label-free DNA biosensor. Immobilization of calf thymus DNA and measurement of RCT decrease in presence of MC-LR | EIS, [Fe(CN)6]3−/4− | LR: 4.0–512 ng·L−1 LOD: 1.4 ng·L−1 | [112] |
Cyst/AuE | MC-LR/cyano-bacteria culture | Microfluidic immunosensor. Immobilization of MC-LR. Competitive assay between immobilized and free antigen with a fixed amount of antibody | EIS, [Fe(CN)6]3−/4− | LR: 0.1–330 μg·L−1 LOD: 0.57 ng·L−1 | [113] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yáñez-Sedeño, P.; Agüí, L.; Campuzano, S.; Pingarrón, J.M. What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications. Biosensors 2019, 9, 127. https://doi.org/10.3390/bios9040127
Yáñez-Sedeño P, Agüí L, Campuzano S, Pingarrón JM. What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications. Biosensors. 2019; 9(4):127. https://doi.org/10.3390/bios9040127
Chicago/Turabian StyleYáñez-Sedeño, Paloma, Lourdes Agüí, Susana Campuzano, and José Manuel Pingarrón. 2019. "What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications" Biosensors 9, no. 4: 127. https://doi.org/10.3390/bios9040127