Hemozoin as a Diagnostic Biomarker: A Scoping Review of Next-Generation Malaria Detection Technologies
Abstract
1. Introduction
2. Materials and Methods
2.1. Review Framework and Protocol
2.2. Information Sources
2.3. Search Strategy
- PubMed Search Strategy: (“hemozoin” [MeSH] OR hemozoin OR “malarial pigment”) AND (“malaria diagnosis” [MeSH] OR malaria OR Plasmodium) AND (detection OR “diagnostic method” OR biosensor OR magneto-optic OR photoacoustic OR magnetoacoustic OR “light scattering” OR “laser detection”).
- Scopus Search Strategy: TITLE-ABS-KEY (hemozoin OR “malarial pigment”) AND TITLE-ABS-KEY (malaria OR Plasmodium) AND TITLE-ABS-KEY (detection OR diagnostic OR magneto-optic OR photoacoustic OR biosensor OR magnetoacoustic OR “light scattering”).
2.4. Eligibility Criteria
2.4.1. Inclusion Criteria
- Population: clinical samples, Plasmodium-infected blood, or in vitro cultures relevant for diagnostic evaluation.
- Exposure/Concept: evaluation of diagnostic methods that directly detect hemozoin, including but not limited to magneto-optic, photoacoustic, laser-based, depolarized light scattering, magnetic field-assisted, or biosensor-integrated platforms.
- Outcome: reporting at least one diagnostic parameter: sensitivity, specificity, limit of detection (LOD), detection principle, or performance evaluation.
- The search was limited to English-language articles published from 2020 to 2025.
2.4.2. Exclusion Criteria
2.5. Selection of Sources of Evidence
2.6. Data Charting Process
2.7. Synthesis of Results
3. Results
3.1. PRISMA-ScR Flow Summary
3.2. Study Characteristics
- (1)
- magneto-optical detection (MOD/Magneto-optical Detection & RMOD/Rotating-Field Magneto-Optics) (n = 8);
- (2)
- magnetophoretic microdevices (n = 1);
- (3)
- photoacoustic detection (n = 2);
- (4)
- Raman/SERS spectroscopy (n = 3);
- (5)
- optical and hyperspectral imaging (n = 3);
- (6)
- NMR relaxometry (n = 1);
- (7)
- Smartphone microscopy & pigment-containing leukocytes (n = 3)
- (8)
- flow cytometry, chemical, and nonlinear optical methods (n = 3).
| Technology Group | Study | Method Summary | Core Principle | Typical Setting | Summary of Findings |
|---|---|---|---|---|---|
| Magneto-optical (Gazelle/Hz-MOD) | [7] | Point-of-care MO detection for P. vivax | Magnetic alignment of hemozoin → optical modulation | Field/ clinic | High specificity; stable P. vivax detection; reduced sensitivity at low parasitemia |
| [8] | MO detection of P. falciparum | Static magnetic modulation | Hospital | Excellent specificity; weaker detection of low-density ring-stage infections | |
| [9] | MO detection of P. knowlesi | Magnetically induced optical contrast | Hospital | High specificity; first MO evaluation for P. knowlesi | |
| [10] | Multicenter Hz-MOD field evaluation | Optical modulation under a magnetic field | Field/clinic | Strong multi-site specificity; operationally feasible | |
| [11] | Gazelle field evaluation | Magneto-optical scattering | Field | User-friendly; moderate sensitivity in low-density infections | |
| RMOD (Rotating-Field Magneto-Optics) | [12] | Clinical RMOD detection for P. vivax | Rotating-field MO detection | Clinic/research | High detection for P. vivax; strong correlation with parasite density; LOD ~5 parasites/µL |
| [13] | Large-scale RMOD evaluation (n = 956) | Rotating magnetic field → MO signal | Clinic | Sensitivity 82%; specificity 84%; better for P. vivax; detects residual hemozoin in recent infections | |
| [14] | Stage- & crystal-dependent RMOD physicochemical analysis | Frequency-dependent MO response | Laboratory | RMOD detects hemozoin amount + crystal-size distribution; explains stage-dependent variation | |
| Magnetophoretic Lab-on-Chip | [15] | TMek chip capturing magnetized iRBC | Magnetic capture + impedance readout | Prototype/lab | High analytical sensitivity in early-phase prototype |
| Photoacoustic (PAFC/Cytophone) | [16] | ‘Rainbow’ portable Cytophone using laser diodes | Dual-wavelength (808/915 nm) PAFC with time-color-coded signals | Preclinical (murine + in vitro P. falciparum) | Demonstrated portable PAFC platform; discriminates iRBCs, hemozoin, clots, and artefacts; detects iRBCs within hours of invasion with very low analytical LOD |
| [17] | Noninvasive in vivo PA detection of malaria in Cameroon | 1064-nm laser + focused ultrasound array; PA peaks from Hz in iRBCs | Clinical, hospital in an endemic setting | Cross-sectional + longitudinal trial (n = 20, 94 visits); sensitivity 90% and specificity 69% vs. microscopy; ROC–AUC 0.84; performance comparable to qPCR/RDT; safe and feasible noninvasive field prototype | |
| Raman/SERS | [18] | SnSe1.75 nanoflake–Au SERS substrate for malaria detection | Defect-engineered semiconductor + SERS | Laboratory | LOD <100 infected RBC/mL; 100% detection in clinical validation; rapid (15 min) high-uniformity signal |
| [19] | UTLC-SERS β-hematin quantification | Surface-enhanced Raman scattering | Laboratory | High analytical resolution; detects very low β-hematin concentrations | |
| [20] | 2D-COS Raman mapping of hemozoin | Raman spectral correlation analysis | Laboratory | Captures structural transitions and hemozoin growth signatures | |
| Optical/Spectrophotometric | [21] | UV–Vis–NIR spectral profiling of malaria stages | Optical absorption spectra | Laboratory | Stage-dependent absorbance is useful for differentiation |
| [22] | Hyperspectral confocal imaging | Hyperspectral reflectance | Laboratory | Precisely differentiates trophozoite vs. schizont stages | |
| [23] | ON–OFF magneto-optical modulation spectroscopy | Field-modulated optical anisotropy | Laboratory | Stable spectrophotometric MO signal; not a diagnostic platform | |
| NMR Relaxometry | [24] | T1/T2 relaxometry of infected RBCs | Magnetic relaxation perturbation by hemozoin | Laboratory | Distinct relaxation signatures; linked to maturation and pigment load |
| Smartphone-based Microscopy | [25] | Polarized smartphone microscope | Hemozoin birefringence | Clinic/prototype | Low-cost hemozoin imaging with high contrast |
| [26] | WBC pigment visualization | Visualization of hemozoin granules | Hospital | Helps explain false-negative RDTs due to pigment sequestration | |
| [27] | Pigment-in-leukocyte scoring | Phagocytosed hemozoin quantification | Hospital | Predicts severity and mortality in severe malaria | |
| Flow Cytometry | [28] | iPSC-RBC optical scatter detection | Hemozoin-induced light scatter | Research | Enables label-free detection of infected RBCs |
| Chemical Assay | [29] | Hemozoin-catalyzed ATRP polymerization | Radical polymerization catalysis | Laboratory | Ultra-low LOD; multi-step workflow |
| Nonlinear Optical Physics | [30] | Z-scan nonlinear optical hemozoin detection | Nonlinear optical absorption | Laboratory | Sensitive detection of nonlinear β-hematin response |
3.3. Findings by Technology Group
3.3.1. Magneto-Optical Detection
Static-Field Magneto-Optical Detection (Hz-MOD/Gazelle)
Rotating-Field Magneto-Optical Detection (RMOD)
3.3.2. Magnetophoretic Lab-on-Chip (TMek Microdevice)
3.3.3. Photoacoustic Detection (Cytophone/PAFC)
3.3.4. Raman and SERS-Based Diagnostics
3.3.5. Optical, Spectrophotometric, and Hyperspectral Imaging
3.3.6. NMR Relaxometry
3.3.7. Smartphone Microscopy and Pigment-Containing Leukocytes
3.3.8. Flow Cytometry
3.3.9. Chemical and Nonlinear Optical Approaches
4. Discussion
4.1. Advances in Hemozoin-Targeted Diagnostic Technologies
4.2. Detection Performance and Biological Determinants
4.3. Readiness for Implementation in Malaria-Endemic Settings
4.4. Integration with Prognostic Markers and Host Response
4.5. Evidence Gaps and Research Priorities
- Limited evaluation in low-density and asymptomatic infections, despite their epidemiological significance.
- Small, geographically narrow clinical studies limit generalizability.
- Incomplete species coverage, with data lacking for P. knowlesi, P. malariae, and P. ovale.
- Lack of head-to-head comparisons across magneto-optical, photoacoustic, SERS, and optical modalities.
- Sparse pediatric data, despite a high malaria burden in children.
4.6. Overall Interpretation
4.7. Relevance to the Sustainable Development Goals (SDGs)
4.8. Implications for Practice
4.9. Implications for Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATRP | Atom Transfer Radical Polymerization |
| COS | Two-Dimensional Correlation Spectroscopy |
| Cytophone | Photoacoustic flow cytometry system |
| Hz | Hemozoin |
| Hz-MOD | Hemozoin Magneto-Optical Detection |
| iRBC | Infected red blood cells |
| iPSC-RBC | Induced pluripotent stem cell-derived red blood cells |
| LOD | Limit of detection |
| ML | Machine learning |
| MO | Magneto-optical |
| NIR | Near-infrared |
| NMR | Nuclear magnetic resonance |
| PA | Photoacoustic |
| PAFC | Photoacoustic flow cytometry |
| RMOD | Rotating Magneto-Optical Detection |
| SERS | Surface-Enhanced Raman Scattering |
| SPOI | Smartphone polarized optical imaging |
| T1/T2 | Longitudinal and transverse relaxation times |
| TRL | Technology Readiness level |
| WBC | White Blood Cells |
References
- Orbán, Á.; Butykai, Á.; Molnár, A.; Pröhle, Z.; Fülöp, G.; Zelles, T.; Forsyth, W.; Hill, D.; Müller, I.; Schofield, L.; et al. Evaluation of a Novel Magneto-Optical Method for the Detection of Malaria Parasites. PLoS ONE 2014, 9, e96981. [Google Scholar] [CrossRef]
- Rathi, A.; Chowdhry, Z.; Patel, A.; Zuo, S.; Veettil, T.C.P.; Adegoke, J.A.; Heidari, H.; Wood, B.R.; Bhallamudi, V.P.; Peng, W.K. Hemozoin in malaria eradication—From material science, technology to field test. NPG Asia Mater. 2023, 15, 70. [Google Scholar] [CrossRef]
- Delahunt, C.; Horning, M.P.; Wilson, B.K.; Proctor, J.L.; Hegg, M.C. Limitations of haemozoin-based diagnosis of Plasmodium falciparum using dark-field microscopy. Malar. J. 2014, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Baptista, V.; Peng, W.K.; Minas, G.; Veiga, M.I.; Catarino, S.O. Review of microdevices for hemozoin-based malaria detection. Biosensors 2022, 12, 110. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Carulla, L.; Woods, C.; de Miquel, C.; Lukersmith, S. Adaptation of the Technology Readiness Levels for impact assessment in implementation sciences: The TRL-IS checklist. Heliyon 2024, 10, e29930. [Google Scholar] [CrossRef]
- Mahendrakar, N. Adopting Technologies in Medical and Healthcare Systems. Int. J. Sci. Technol. Eng. 2025, 13, 1997–2009. [Google Scholar] [CrossRef]
- Melo, G.C.; Netto, R.L.A.; Mwangi, V.I.; Salazar, Y.E.A.R.; Sampaio, V.d.S.; Monteiro, W.M.; Val, F.F.d.A.e.; Rocheleau, A.; Thota, P.; Lacerda, M.V.G. Performance of a sensitive haemozoin-based malaria diagnostic test validated for vivax malaria diagnosis in Brazilian Amazon. Malar. J. 2021, 20, 146. [Google Scholar] [CrossRef]
- Fernando, D.; Thota, P.; Semege, S.; Booso, R.; Bell, D.; de A W Gunasekera, K.T.; Ranaweera, P. Evaluation of a haemozoin-based rapid diagnostic test for diagnosis of imported malaria during the phase of prevention of reestablishment in Sri Lanka. Malar. J. 2022, 21, 263. [Google Scholar] [CrossRef]
- Tan, A.F.; Thota, P.; Sakam, S.S.B.; Lew, Y.L.; Rajahram, G.S.; William, T.; Barber, B.E.; Kho, S.; Anstey, N.M.; Bell, D. Evaluation of a point-of-care haemozoin assay (Gazelle device) for rapid detection of Plasmodium knowlesi malaria. Sci. Rep. 2023, 13, 4760. [Google Scholar] [CrossRef]
- Nallapati, V.T.; A R, M.; Belurkar, S.; Kulal, N.; Bhat, P.; Prasada, K.S.; Gupta, N.; H Hande, M.; Thota, P.; Bell, D.; et al. Diagnostic performance of hemozoin-based magneto-optical detection assay and RDT: A prospective observational study. Pathog. Glob. Health 2025, 119, 311–320. [Google Scholar] [CrossRef]
- Fontecha, G.; Escobar, D.; Ortiz, B.; Pinto, A.; Serrano, D.; Valdivia, H.O. Field Evaluation of a Hemozoin-Based Malaria Diagnostic Device in Puerto Lempira, Honduras. Diagnostics 2022, 12, 1206. [Google Scholar] [CrossRef] [PubMed]
- Orbán, Á.; Longley, R.J.; Sripoorote, P.; Maneechai, N.; Nguitragool, W.; Butykai, Á.; Mueller, I.; Sattabongkot, J.; Karl, S.; Kézsmárki, I. Sensitive detection of Plasmodium vivax malaria by the rotating-crystal magneto-optical method in Thailand. Sci. Rep. 2021, 11, 18547. [Google Scholar] [CrossRef] [PubMed]
- Arndt, L.; Koleala, T.; Orbán, Á.; Ibam, C.; Lufele, E.; Timinao, L.; Lorry, L.; Butykai, Á; Kaman, P.; Molnár, A.P.; et al. Magneto-optical diagnosis of symptomatic malaria in Papua New Guinea. Nat. Commun. 2021, 12, 969. [Google Scholar] [CrossRef] [PubMed]
- Orbán, Á.; Zelles, T.; Prohle, Z.; Fülöp, G.; Kezsmarki, I.; Hänscheid, T. Magneto-optical assessment of Plasmodium parasite growth via hemozoin crystal size. Sci. Rep. 2024, 14, 60988. [Google Scholar] [CrossRef]
- Giacometti, M.; Milesi, F.; Coppadoro, P.L.; Rizzo, A.; Fagiani, F.; Rinaldi, C.; Cantoni, M.; Petti, D.; Albisetti, E.; Sampietro, M.; et al. A Lab-On-chip Tool for Rapid, Quantitative, and Stage-selective Diagnosis of Malaria. Adv. Sci. 2021, 8, 2004101. [Google Scholar] [CrossRef]
- Jawad, H.J.; Yadem, A.C.; Menyaev, Y.A.; Sarimollaoglu, M.; Armstrong, J.N.; Watanabe, F.; Biris, A.S.; Stumhofer, J.S.; Nedosekin, D.; Suen, J.Y.; et al. Towards rainbow portable Cytophone with laser diodes for global disease diagnostics. Sci. Rep. 2022, 12, 8671. [Google Scholar] [CrossRef]
- Yadem, A.C.; Armstrong, J.N.; Sarimollaoglu, M.; Kiki Massa, C.; Ndifo, J.-M.; Menyaev, Y.A.; Mbe, A.; Richards, K.; Wade, M.; Zeng, Y.; et al. Noninvasive in vivo photoacoustic detection of malaria with Cytophone in Cameroon. Nat. Commun. 2024, 15, 9228. [Google Scholar] [CrossRef]
- Xu, G.; Dong, R.; Gu, D.; Tian, H.; Xiong, L.; Wang, Z.; Wang, W.; Shao, Y.; Li, W.; Li, G.; et al. Selenium Vacancies and Synergistic Effect of Near- and Far-Field-Enabled Ultrasensitive Surface-Enhanced Raman-Scattering-Active Substrates for Malaria Detection. J. Phys. Chem. Lett. 2022, 13, 1453–1463. [Google Scholar] [CrossRef]
- Yadav, S.; Bhardwaj, R.; Mishra, P.; Singh, J.P. A magnetic field augmented ultra-thin layer chromatography coupled surface enhanced Raman spectroscopy separation of hemozoin from bacterial mixture. J. Chromatogr. A 2023, 1708, 464318. [Google Scholar] [CrossRef]
- Migdalski, M.; Czepiel, J.; Moskal, P.; Birczyńska-Zych, M.; Kucharska, M.; Biesiada, G.; Stokłosa, J.; Bociąga-Jasik, M.; Wesełucha-Birczyńska, A. Two-dimensional correlation spectroscopy (2D-COS) in the analysis of parasitemia in Raman spectra of red blood cells of patients diagnosed with malaria. Analyst 2025, 150, 4972–4981. [Google Scholar] [CrossRef]
- Baptista, V.; Silva, M.; Ferreira, G.M.; Calçada, C.; Minas, G.; Veiga, M.I.; Catarino, S.O. Optical Spectrophotometry as a Promising Method for Quantification and Stage Differentiation of Plasmodium falciparum Parasites. ACS Infect. Dis. 2023, 9, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Kwon, I.H.; Lee, J.Y.; Tokumasu, F.; Lee, S.-W.; Hwang, J. Hyperspectral analysis to assess gametocytogenesis stage progression in malaria-infected human erythrocytes. J. Biomed. Opt. 2025, 30, 023516. [Google Scholar] [CrossRef] [PubMed]
- Kara, D.; Deissler, R.J.; Helo RAl Blasinsky, K.; Grimberg, B.T.; Brown, R. An ON-OFF Magneto-Optical Probe of Anisotropic Biofluid Crystals: A β-Hematin Case Study. IEEE Trans. Magn. 2021, 57, 5200211. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, E.; Ferrauto, G.; Schwarzer, E.; Gianolio, E.; Valente, E.; Ulliers, D.; Aime, S.; Skorokhod, O. Relaxometric studies of erythrocyte suspensions infected by Plasmodium falciparum: A tool for staging infection and testing anti-malarial drugs. Magn. Reson. Med. 2020, 84, 3366–3378. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Y.; Deng, L.; Luo, B.; Wu, P.; Geng, D. A high-performance cell-phone based polarized microscope for malaria diagnosis. J. Biophotonics 2023, 16, e202200290. [Google Scholar] [CrossRef]
- Eeckhout, K.; Elst, K.V.; Vermeiren, S.; Weekx, S. A false-negative rapid diagnostic malaria test and white blood cell inclusions in a patient with severe Plasmodium falciparum infection. Int. J. Lab. Hematol. 2021, 43, 1262–1263. [Google Scholar] [CrossRef]
- Srinamon, K.; Watson, J.A.; Silamut, K.; Intharabut, B.; Phu, N.H.; Diep, P.T.; Lyke, K.E.; Fanello, C.; von Seidlein, L.; Chotivanich, K.; et al. The Prognostic and Diagnostic Value of Intraleukocytic Malaria Pigment in Patients with Severe Falciparum Malaria: An Individual Patient Data Meta-Analysis. Nat. Commun. 2022, 13, 6882. [Google Scholar] [CrossRef]
- Pance, A.; Ng, B.L.; Mwikali, K.; Koutsourakis, M.; Agu, C.; Rouhani, F.J.; Montandon, R.; Law, F.; Ponstingl, H.; Rayner, J.C. Novel stem cell technologies are powerful tools to understand the impact of human factors on Plasmodium falciparum malaria. Front. Cell. Infect. Microbiol. 2023, 13, 1287355. [Google Scholar] [CrossRef]
- Raccio, S.; Pollard, J.; Djuhadi, A.; Balog, S.; Pellizzoni, M.M.; Rodriguez, K.J.; Rifaie-Graham, O.; Bruns, N. Rapid quantification of the malaria biomarker hemozoin by improved biocatalytically initiated precipitation atom transfer radical polymerizations. Analyst 2020, 145, 7741–7751. [Google Scholar] [CrossRef]
- Sahoo, P.; Pathak, N.K.; Scott Bohle, D.; Dodd, E.L.; Tripathy, U. Hematin anhydride (β-hematin): An analogue to malaria pigment hemozoin possesses nonlinearity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 310, 123902. [Google Scholar] [CrossRef]
- Kattenberg, J.H.; Ochodo, E.A.; Boer, K.R.; Schallig, H.D.; Mens, P.F.; Leeflang, M.M. Systematic review and meta-analysis: Rapid diagnostic tests versus placental histology, microscopy and PCR for malaria in pregnant women. Malar. J. 2011, 10, 321. [Google Scholar] [CrossRef] [PubMed]
- Opoku Afriyie, S.; Addison, T.K.; Gebre, Y.; Mutala, A.H.; Antwi, K.B.; Abbas, D.A.; Addo, K.A.; Tweneboah, A.; Ayisi-Boateng, N.K.; Koepfli, C.; et al. Accuracy of diagnosis among clinical malaria patients: Comparing microscopy, RDT and a highly sensitive quantitative PCR looking at the implications for submicroscopic infections. Malar. J. 2023, 22, 76. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.M.; Heptinstall, J.; Matelon, R.J.; Savage, L.; Wears, M.L.; Beddow, J.; Cox, M.; Schallig, H.D.; Mens, P.F. A magneto-optic route toward the in vivo diagnosis of malaria: Preliminary results and preclinical trial data. Biophys. J. 2008, 95, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.; O’Sullivan, T.D. Quantitative diffuse optical spectroscopy for noninvasive measurements of the malaria pigment hemozoin. Biomed. Opt. Express 2020, 11, 5800–5813. [Google Scholar] [CrossRef]
- Catarino, S.O.; Silva, I.; Lima, R.; Minas, G. Spectrophotometric characterization of hemozoin as a malaria biomarker. Proc. SPIE 2017, 10453, 1045304. [Google Scholar]
- Wood, B.R.; Hermelink, A.; Lasch, P.; Bambery, K.R.; Webster, G.T.; Khiavi, M.A.; Cooke, B.M.; Deed, S.; Naumann, D.; McNaughton, D. Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics. Analyst 2009, 134, 1119–1125. [Google Scholar] [CrossRef]
- Graumans, W.; Andolina, C.; Awandu, S.S.; Grignard, L.; Lanke, K.; Bousema, T. Plasmodium falciparum Gametocyte Enrichment in Peripheral Blood Samples by Magnetic Fractionation: Gametocyte Yields and Possibilities to Reuse Columns. Am. J. Trop. Med. Hyg. 2019, 100, 572–577. [Google Scholar] [CrossRef]
- Moore, L.R.; Fujioka, H.; Williams, P.S.; Chalmers, J.J.; Grimberg, B.T.; Zimmerman, P.A. Hemozoin detection in malaria-infected erythrocytes and leukocytes by flow cytometry. Cytom. Part A 2006, 69, 118–126. [Google Scholar]
- Saha, R.K.; Karmakar, S.; Roy, M. A Monte Carlo study on intraerythrocytic staging of malaria parasite using photoacoustics. In Proceedings of the IEEE International Ultrasonics Symposium, Dresden, German, 7–10 October 2012; pp. 2328–2331. [Google Scholar]
- Custer, J.R.; Kariuki, M.; Beerntsen, B.T.; Viator, J.A. Photoacoustic detection of hemozoin in human mononuclear cells as an early indicator of malaria infection. Bios 2010, 7564, 332–339. [Google Scholar]
- Mawili-Mboumba, D.P.; Bouyou-Akotet, M.K.; Mbouoronde, C.O.; Kombila, M. Analysis of malaria diagnosis discrepancies between RDTs and microscopy by nested PCR. J. Biomed. Sci. Eng. 2013, 2013, 967–972. [Google Scholar] [CrossRef]
- Baum, E.; Sattabongkot, J.; Sirichaisinthop, J.; Kiattibutr, K.; Jain, A.; Taghavian, O.; Lee, M.-C.; Davies, D.H.; Cui, L.; Felgner, P.L.; et al. Common asymptomatic and submicroscopic malaria infections in Western Thailand revealed in longitudinal molecular and serological studies: A challenge to malaria elimination. Malar. J. 2016, 15, 333. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.L.; Day, N.P.J.; White, N.J. Intraleucocytic Malaria Pigment and Prognosis in Severe Malaria. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Milesi, F.; Giacometti, M.; Coppadoro, L.P.; Ferrari, G.; Fiore, G.B.; Bertacco, R. On-Chip Selective Capture and Detection of Magnetic Fingerprints of Malaria. Sensors 2020, 20, 4972. [Google Scholar] [CrossRef] [PubMed]
- Burnett, J.L.; Carns, J.L.; Richards-Kortum, R. In vivo microscopy of hemozoin: Towards a needle free diagnostic for malaria. Biomed. Opt. Express 2015, 6, 3462–3474. [Google Scholar] [CrossRef]
- Mohapatra, S.; Ghosh, A.; Singh, R.; Singh, D.P.; Sharma, B.; Samantaray, J.C.; Deb, M.; Gaind, R. Hemozoin Pigment: An Important Tool for Low Parasitemic Malarial Diagnosis. Korean J. Parasitol. 2016, 54, 393. [Google Scholar] [CrossRef]
- Burnett, J.L.; Carns, J.L.; Richards-Kortum, R. Towards a needle-free diagnosis of malaria: In vivo identification and classification of red and white blood cells containing haemozoin. Malar. J. 2017, 16, 447. [Google Scholar] [CrossRef]
- Lamsfus Calle, C.; Schaumburg, F.; Rieck, T.; Nkoma Mouima, A.M.; Martinez de Salazar, P.; Breil, S.; Behringer, J.; Kremsner, P.G.; Mordmüller, B.; Fendel, R. Slow clearance of histidine-rich protein-2 in Gabonese with uncomplicated malaria. Microbiol. Spectr. 2024, 12, e0099424. [Google Scholar] [CrossRef]
- Ojeniyi, F.D.; Ayoola, A.O.; Ibitoye, O.; Opaleye, O.O.; Olowe, O.A.; Ehigie, L.O.; Thomas, B. Performance and Challenges of Malaria Rapid Diagnostic Tests in Endemic Regions of Africa. Sci. Rep. 2025, 15, 43663. [Google Scholar] [CrossRef]
- Hänscheid, T.; Frita, R.; Längin, M.; Kremsner, P.G.; Grobusch, M.P. Is flow cytometry better in counting malaria pigment-containing leukocytes compared to microscopy? Malar. J. 2009, 8, 255. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Berbudi, A.; Khairani, S.; Kwarteng, A.; Otuonye, N.M. Hemozoin as a Diagnostic Biomarker: A Scoping Review of Next-Generation Malaria Detection Technologies. Biosensors 2026, 16, 48. https://doi.org/10.3390/bios16010048
Berbudi A, Khairani S, Kwarteng A, Otuonye NM. Hemozoin as a Diagnostic Biomarker: A Scoping Review of Next-Generation Malaria Detection Technologies. Biosensors. 2026; 16(1):48. https://doi.org/10.3390/bios16010048
Chicago/Turabian StyleBerbudi, Afiat, Shafia Khairani, Alexander Kwarteng, and Ngozi Mirabel Otuonye. 2026. "Hemozoin as a Diagnostic Biomarker: A Scoping Review of Next-Generation Malaria Detection Technologies" Biosensors 16, no. 1: 48. https://doi.org/10.3390/bios16010048
APA StyleBerbudi, A., Khairani, S., Kwarteng, A., & Otuonye, N. M. (2026). Hemozoin as a Diagnostic Biomarker: A Scoping Review of Next-Generation Malaria Detection Technologies. Biosensors, 16(1), 48. https://doi.org/10.3390/bios16010048

