Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors
Abstract
1. Introduction
2. Materials and Methods
2.1. Microfabrication of Field-Effect Transistors Based on 3D Graphene (VG and NCG)
2.2. Surface Activation Using Organosulfured Compounds Electron Donor (TTF)
2.3. Surface Activation Using Organonitrogen Compounds Electron Acceptor (HAT-CN)
2.4. Material and Device Characterization
3. Results and Discussions
3.1. Morphological Characterization of FET Devices Functionalized with Organic Semiconductor Molecules
3.2. Raman Characterization of FET Devices Functionalized with Organic Semiconductor Molecules
3.2.1. Raman Spectrum Interpretation of TTF
3.2.2. Raman Spectrum Interpretation of HAT-CN
3.3. FTIR Analysis for Devices Functionalized with TTF on NCG and VG Surfaces
3.4. FTIR Analysis of Devices Functionalized with HAT-CN on NCG and VG Surfaces
3.5. Transfer Characteristics of GFET Devices Functionalized with Organic Semiconductor Molecules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NCG | Nano Crystalline Graphite |
VG | Vertical Graphene |
SLG | Single Layer Graphene |
TTF | TetraThiaFulvalene |
HAT-CN | HexaAzaTriphenylene-hexaCarboNitrile |
FTIR | Fourier Transform Infrared Spectroscopy |
FET | Field-Effect Transistor |
SEM | Scanning Electron Microscopy |
CVD | Chemical Vapor Deposition |
PECVD | Plasma-Enhanced Chemical Vapor Phase Deposition |
HOMO | Highest Occupied Molecular Orbital |
OFET | Organic Field-Effect Transistors |
References
- Hemdan, M.; Ali, M.A.; Doghish, A.S.; Mageed, S.S.A.; Elazab, I.M.; Khalil, M.M.; Mabrouk, M.; Das, D.B.; Amin, A.S. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. Sensors 2024, 24, 5143. [Google Scholar] [CrossRef] [PubMed]
- Faham, S.; Salimi, A.; Ghavami, R. Electrochemical-Based Remote Biomarker Monitoring: Toward Internet of Wearable Things in Telemedicine. Talanta 2023, 253, 123892. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.-H.; Nguyen, C.M.; Huynh, M.A.; Vu, H.H.; Nguyen, T.-K.; Nguyen, N.-T. Field Effect Transistor Based Wearable Biosensors for Healthcare Monitoring. J. Nanobiotechnol. 2023, 21, 411. [Google Scholar] [CrossRef] [PubMed]
- Mostufa, S.; Rezaei, B.; Ciannella, S.; Yari, P.; Gómez-Pastora, J.; He, R.; Wu, K. Advancements and Perspectives in Optical Biosensors. ACS Omega 2024, 9, 24181–24202. [Google Scholar] [CrossRef]
- Skládal, P. Piezoelectric Biosensors: Shedding Light on Principles and Applications. Microchim. Acta 2024, 191, 184. [Google Scholar] [CrossRef]
- Xu, C.; Song, Y.; Sempionatto, J.R.; Solomon, S.A.; Yu, Y.; Nyein, H.Y.Y.; Tay, R.Y.; Li, J.; Heng, W.; Min, J.; et al. A Physicochemical-Sensing Electronic Skin for Stress Response Monitoring. Nat. Electron. 2024, 7, 168–179. [Google Scholar] [CrossRef]
- Geng, H.; Vilms Pedersen, S.; Ma, Y.; Haghighi, T.; Dai, H.; Howes, P.D.; Stevens, M.M. Noble Metal Nanoparticle Biosensors: From Fundamental Studies toward Point-of-Care Diagnostics. Acc. Chem. Res. 2022, 55, 593–604. [Google Scholar] [CrossRef]
- Ranjbari, S.; Bolourinezhad, M.; Kesharwani, P.; Rezayi, M.; Sahebkar, A. Applications of Carbon Nanotube Biosensors: Sensing the Future. J. Drug Deliv. Sci. Technol. 2024, 97, 105747. [Google Scholar] [CrossRef]
- Tran, V.A.; Vo, G.N.L.; Vo, T.-T.T.; Doan, V.D.; Vo, V.; Le, V.T. Recent Applications and Prospects of Nanowire-Based Biosensors. Processes 2023, 11, 1739. [Google Scholar] [CrossRef]
- Safari, M. Recent Advances in Quantum Dots-Based Biosensors. In Quantum Dots—Recent Advances, New Perspectives and Contemporary Applications; Thirumalai, J., Ed.; IntechOpen: Rijeka, Croatia, 2022; ISBN 978-1-80356-594-1. [Google Scholar] [CrossRef]
- Ono, T.; Okuda, S.; Ushiba, S.; Kanai, Y.; Matsumoto, K. Challenges for Field-Effect-Transistor-Based Graphene Biosensors. Materials 2024, 17, 333. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Q.; Zhong, G.; Xu, T.; Zhang, X. Wearable Vertical Graphene-Based Microneedle Biosensor for Real-Time Ketogenic Diet Management. Anal. Chem. 2024, 96, 8713–8720. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, T.; Wang, H.; Wang, Z.; Hou, L.; Jiang, J.; Xu, T. Applications of Nanomaterial Technology in Biosensing. J. Sci. Adv. Mater. Devices 2024, 9, 100694. [Google Scholar] [CrossRef]
- Stoian, M.C.; Romanitan, C.; Simionescu, O.G.; Djourelov, N.; Brincoveanu, O.; Dinescu, A.; Radoi, A. Growth of Nanocrystalline Graphite and Vertically Aligned Graphite Nanowalls Thin Films and Their Transfer on Flexible Substrates for Applications as Electrochemical Sensors for Anthracene Detection. Microchem. J. 2024, 207, 111828. [Google Scholar] [CrossRef]
- Simionescu, O.-G.; Romanitan, C.; Albu, C.; Pachiu, C.; Vasile, E.; Djourelov, N.; Tutunaru, O.; Stoian, M.C.; Kusko, M.; Radoi, A. Properties of Nitrogen-Doped Nano-Crystalline Graphite Thin Films and Their Application as Electrochemical Sensors. J. Electrochem. Soc. 2020, 167, 126510. [Google Scholar] [CrossRef]
- Joo, E.; Hur, J.W.; Ko, J.Y.; Kim, T.G.; Hwang, J.Y.; Smith, K.E.; Lee, H.; Cho, S.W. Effects of HAT-CN Layer Thickness on Molecular Orientation and Energy-Level Alignment with ZnPc. Molecules 2023, 28, 3821. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Song, J.; Zhao, Z.; Zhao, S.; Tian, Z.; Yan, F. Organic Electrochemical Transistors for Biomarker Detections. Adv. Sci. 2024, 11, 2305347. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, K.; Xiao, K.; Xu, Q.; Wang, L.; Li, P.; Zhou, J.; Zhao, D.; Bai, L.; Cheng, Y.; et al. Biomolecule Sensors Based on Organic Electrochemical Transistors. npj Flex. Electron. 2025, 9, 9. [Google Scholar] [CrossRef]
- Wang, Y.; Wustoni, S.; Surgailis, J.; Zhong, Y.; Koklu, A.; Inal, S. Designing Organic Mixed Conductors for Electrochemical Transistor Applications. Nat. Rev. Mater. 2024, 9, 249–265. [Google Scholar] [CrossRef]
- Wang, D.; Noël, V.; Piro, B. Electrolytic Gated Organic Field-Effect Transistors for Application in Biosensors—A Review. Electronics 2016, 5, 9. [Google Scholar] [CrossRef]
- Yaghoobi Nia, N.; Bonomo, M.; Zendehdel, M.; Lamanna, E.; Desoky, M.M.H.; Paci, B.; Zurlo, F.; Generosi, A.; Barolo, C.; Viscardi, G.; et al. Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells. ACS Sustain. Chem. Eng. 2021, 9, 5061–5073. [Google Scholar] [CrossRef]
- Gregory, S.A.; Atassi, A.; Ponder, J.F.J.; Freychet, G.; Su, G.M.; Reynolds, J.R.; Losego, M.D.; Yee, S.K. Quantifying Charge Carrier Localization in PBTTT Using Thermoelectric and Spectroscopic Techniques. J. Phys. Chem. C 2023, 127, 12206–12217. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Y.; Li, J.; Chen, Y.; Wang, Z.; Wang, W.; Huang, L.; Chi, L. Performances of Pentacene OFETs Deposited by Arbitrary Mounting Angle Vacuum Evaporator. Front. Mater. 2020, 7, 245. [Google Scholar] [CrossRef]
- Yamada, K.; Yanagisawa, S.; Koganezawa, T.; Mase, K.; Sato, N.; Yoshida, H. Impact of the Molecular Quadrupole Moment on Ionization Energy and Electron Affinity of Organic Thin Films: Experimental Determination of Electrostatic Potential and Electronic Polarization Energies. Phys. Rev. B 2018, 97, 245206. [Google Scholar] [CrossRef]
- Wudl, F.; Wobschall, D.; Hufnagel, E.J. Electrical Conductivity by the Bis(1,3-Dithiole)-Bis(1,3-Dithiolium) System. J. Am. Chem. Soc. 1972, 94, 670–672. [Google Scholar] [CrossRef]
- MULCHANDANI, A.; BASSI, A.S.; NGUYEN, A. Tetrathiafulvalene-Mediated Biosensor for L-Lactate in Dairy Products. J. Food Sci. 1995, 60, 74–78. [Google Scholar] [CrossRef]
- Martín, N. Tetrathiafulvalene: The Advent of Organic Metals. Chem. Commun. 2013, 49, 7025–7027. [Google Scholar] [CrossRef]
- Santra, S.; Bose, A.; Mitra, K.; Adalder, A. Exploring Two Decades of Graphene: The Jack of All Trades. Appl. Mater. Today 2024, 36, 102066. [Google Scholar] [CrossRef]
- Nair, M.N.; Mattioli, C.; Cranney, M.; Malval, J.-P.; Vonau, F.; Aubel, D.; Bubendorff, J.-L.; Gourdon, A.; Simon, L. STM Studies of Self-Assembled Tetrathiafulvalene (TTF) Derivatives on Graphene: Influence of the Mode of Deposition. J. Phys. Chem. C 2015, 119, 9334–9341. [Google Scholar] [CrossRef]
- Chen, K.; Ma, X.; Han, X.; Yang, Y. Graphene-Sandwiched Nitrogen-Enriched π-Conjugated Molecules as Redox-Active Cathodes for Li-Ion Batteries. Mater. Adv. 2023, 4, 3285–3291. [Google Scholar] [CrossRef]
- Parfenov, A.A.; Mumyatov, A.V.; Sagdullina, D.K.; Shestakov, A.F.; Troshin, P.A. Ammonia Gas Sensors Using 1,4,5,8,9,11-Hexaazatriphenylene Hexacarbonitrile Semiconductor Films. Synth. Met. 2021, 277, 116764. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, J.; Zhang, L.; Su, H.; Liu, X.; Liu, J. A Sensitive H2O2 Biosensor Based on Carbon Nanotubes/Tetrathiafulvalene and Its Application in Detecting NADH. Anal. Biochem. 2020, 589, 113493. [Google Scholar] [CrossRef]
- Yuvaraja, S.; Nawaz, A.; Liu, Q.; Dubal, D.; Surya, S.G.; Salama, K.N.; Sonar, P. Organic Field-Effect Transistor-Based Flexible Sensors. Chem. Soc. Rev. 2020, 49, 3423–3460. [Google Scholar] [CrossRef]
- Saleh, A.; Koklu, A.; Uguz, I.; Pappa, A.-M.; Inal, S. Bioelectronic Interfaces of Organic Electrochemical Transistors. Nat. Rev. Bioeng. 2024, 2, 559–574. [Google Scholar] [CrossRef]
- Simionescu, O.-G.; Avram, A.; Adiaconiţă, B.; Preda, P.; Pârvulescu, C.; Năstase, F.; Chiriac, E.; Avram, M. Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials. Micromachines 2023, 14, 1096. [Google Scholar] [CrossRef] [PubMed]
- Adiaconita, B.; Chiriac, E.; Burinaru, T.; Marculescu, C.; Pachiu, C.; Brincoveanu, O.; Simionescu, O.; Avram, M. Field-Effect Transistor Based on Nanocrystalline Graphite for DNA Immobilization. Biomolecules 2025, 15, 619. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-W.; Lin, W.-C.; Chang, J.-H.; Wu, C.-I. Solution-Processed Hexaazatriphenylene Hexacarbonitrile as a Universal Hole-Injection Layer for Organic Light-Emitting Diodes. Org. Electron. 2013, 14, 1204–1210. [Google Scholar] [CrossRef]
- Liu, Y.; Han, Y.; Zhao, X.; Tong, Y.; Tang, Q.; Liu, Y. Single-Crystal Tetrathiafulvalene Microwire Arrays Formed by Drop-Casting Method in the Saturated Solvent Atmosphere. Synth. Met. 2014, 198, 248–254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiriac, E.; Adiaconita, B.; Burinaru, T.; Marculescu, C.; Stoian, M.; Parvulescu, C.; Avram, M. Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors. Biosensors 2025, 15, 622. https://doi.org/10.3390/bios15090622
Chiriac E, Adiaconita B, Burinaru T, Marculescu C, Stoian M, Parvulescu C, Avram M. Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors. Biosensors. 2025; 15(9):622. https://doi.org/10.3390/bios15090622
Chicago/Turabian StyleChiriac, Eugen, Bianca Adiaconita, Tiberiu Burinaru, Catalin Marculescu, Marius Stoian, Catalin Parvulescu, and Marioara Avram. 2025. "Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors" Biosensors 15, no. 9: 622. https://doi.org/10.3390/bios15090622
APA StyleChiriac, E., Adiaconita, B., Burinaru, T., Marculescu, C., Stoian, M., Parvulescu, C., & Avram, M. (2025). Interaction of Organic Semiconductors and Graphene Materials in the Source-Drain Channel of Field-Effect Transistors. Biosensors, 15(9), 622. https://doi.org/10.3390/bios15090622