Head-Specific Spatial Spectra of Electroencephalography Explained: A Sphara and BEM Investigation
Abstract
1. Introduction
2. Materials and Methods
2.1. Generalized Spatial Fourier Analysis—Sphara
2.2. Spherical Harmonic Analysis
2.3. Metrics
2.4. Spatial Nyquist Limit on Triangular Meshes
3. Simulation Setup
3.1. Spherical Model
- 1.
- The l-th term of this series contains the l-th degree Legendre polynomial or the l-th degree associated Legendre polynomial ; compare Equations (14)–(16). By means of the degree l and the radius of the outer spherical surface, one can determine the spatial wavelength with respect to the spatial frequency of the l-th term of the series expansion, to which this term contributes exclusively; see also Equation (9).
- 2.
- Therefore, by calculating the surface integral of the squared l-th term of the series expansion, the energy contribution of the spatial frequency specified by the degree l and the radius to the potential on the outer surface can be determined. Due to this approach, the energy contribution can be determined independently of a triangulation of the model, defining surfaces and without discrete sampling of the potential on the outer surface.
3.2. Realistic Head Model Based on BEM
4. Results
4.1. Validation Using a Spherical Head Model
4.1.1. Analysis of Spectral Properties of the Sphara Basis Functions
4.1.2. Analysis Using the Semi-Analytical Solution of the Spherical Forward Model
4.1.3. Analysis of the Spatial Frequency Response of the Spherical Head Model Using Discrete Spherical Harmonics
4.1.4. Analysis of the Spatial Frequency Response of the Spherical Head Model Using Sphara
4.2. Application to Realistic Head Model
5. Discussion
5.1. Verification of Sphara Wavelength Estimates
5.2. Validation of Sphara Energy Estimates and Spatial Power Spectra
5.3. Comparison of the Spatial-Frequency Response Obtained with Discrete Spherical Harmonics and Sphara
5.4. Estimation of the Spatial-Frequency Response of a Realistic Head Model with Sphara
5.5. Comparative Evaluation with Existing Methods
- Discrete Spherical Harmonics
- 1D Contour/Slice Fourier
- Sphara
5.6. Practical Implications for Sensor System Design and Analysis Pipelines
5.7. Limitations and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. More Comprehensive, Quantitative Results
l | /mm | ΔλSphara,43/mm | ΔλSphara,104/mm | ΔλSphara,232/mm | ΔλSphara,462/mm | ΔλSphara,938/mm | ΔλSphara,4000/mm |
---|---|---|---|---|---|---|---|
1 | 408.7 | 22.2 ± 0.1 (5.4%) | 7.2 ± 0.0 (1.8%) | 3.2 ± 0.0 (0.8%) | 1.6 ± 0.0 (0.4%) | 0.8 ± 0.0 (0.2%) | 0.2 ± 0.0 (0.0%) |
2 | 236.0 | 25.0 ± 1.4 (10.6%) | 8.3 ± 0.3 (3.5%) | 3.8 ± 0.1 (1.6%) | 1.9 ± 0.0 (0.8%) | 0.9 ± 0.0 (0.4%) | 0.2 ± 0.0 (0.1%) |
3 | 166.9 | 28.3 ± 1.7 (17.0%) | 10.2 ± 0.4 (6.1%) | 4.6 ± 0.1 (2.8%) | 2.3 ± 0.0 (1.4%) | 1.2 ± 0.0 (0.7%) | 0.3 ± 0.0 (0.2%) |
4 | 129.3 | 27.8 ± 2.1 (21.5%) | 12.0 ± 0.5 (9.3%) | 5.6 ± 0.2 (4.3%) | 2.8 ± 0.1 (2.2%) | 1.4 ± 0.0 (1.1%) | 0.3 ± 0.0 (0.3%) |
5 | 105.5 | 23.9 ± 6.1 (22.7%) | 13.6 ± 0.6 (12.9%) | 6.5 ± 0.2 (6.2%) | 3.3 ± 0.1 (3.2%) | 1.7 ± 0.0 (1.6%) | 0.4 ± 0.0 (0.4%) |
6 | 89.2 | 14.6 ± 0.6 (16.3%) | 7.4 ± 0.3 (8.3%) | 3.8 ± 0.1 (4.3%) | 1.9 ± 0.0 (2.2%) | 0.5 ± 0.0 (0.5%) | |
7 | 77.2 | 14.6 ± 0.7 (18.9%) | 8.2 ± 0.3 (10.6%) | 4.3 ± 0.1 (5.6%) | 2.2 ± 0.1 (2.8%) | 0.5 ± 0.0 (0.7%) | |
8 | 68.1 | 13.2 ± 1.1 (19.4%) | 8.9 ± 0.4 (13.0%) | 4.8 ± 0.2 (7.1%) | 2.4 ± 0.1 (3.6%) | 0.6 ± 0.0 (0.9%) | |
9 | 60.9 | 12.8 ± 2.5 (21.0%) | 9.4 ± 0.4 (15.4%) | 5.3 ± 0.2 (8.6%) | 2.7 ± 0.1 (4.4%) | 0.6 ± 0.0 (1.1%) | |
10 | 55.1 | 11.8 ± 0.6 (21.5%) | 9.6 ± 0.4 (17.4%) | 5.7 ± 0.2 (10.3%) | 2.9 ± 0.1 (5.4%) | 0.7 ± 0.0 (1.3%) | |
11 | 50.3 | 9.4 ± 0.5 (18.7%) | 6.0 ± 0.2 (12.0%) | 3.2 ± 0.1 (6.3%) | 0.8 ± 0.0 (1.5%) | ||
12 | 46.3 | 8.7 ± 0.5 (18.9%) | 6.3 ± 0.2 (13.7%) | 3.4 ± 0.1 (7.4%) | 0.8 ± 0.0 (1.8%) | ||
13 | 42.8 | 7.8 ± 0.9 (18.3%) | 6.6 ± 0.2 (15.3%) | 3.6 ± 0.1 (8.5%) | 0.9 ± 0.0 (2.1%) |
λSphara/mm | ∞ | 486.8 | 317.3 | 273.0 | 221.8 | 190.2 | 146.2 | 100.0 | 75.4 | 50.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Depth Range/mm | #Sources | Gain/% | |||||||||
13–20 | 1591 | 43.82 | 169.07 | 165.26 | 86.43 | 60.86 | 23.90 | 12.08 | 4.27 | 0.62 | 0.32 |
20–30 | 7942 | 47.61 | 218.76 | 181.30 | 52.82 | 101.83 | 18.06 | 7.98 | 3.20 | 0.38 | 0.07 |
30–40 | 5086 | 64.05 | 214.32 | 136.44 | 34.81 | 78.07 | 9.67 | 4.08 | 1.25 | 0.13 | 0.01 |
40–50 | 3140 | 52.67 | 331.58 | 106.53 | 24.64 | 53.50 | 5.31 | 1.03 | 0.38 | 0.03 | 0.00 |
50–60 | 1474 | 65.79 | 181.91 | 118.46 | 23.87 | 32.08 | 2.48 | 0.34 | 0.13 | 0.01 | 0.00 |
60–80 | 769 | 57.05 | 216.31 | 108.37 | 9.50 | 14.56 | 0.70 | 0.10 | 0.03 | 0.00 | 0.00 |
References
- Srinivasan, R.; Tucker, D.M.; Murias, M. Estimating the spatial Nyquist of the human EEG. Behav. Res. Methods Instrum. Comput. 1998, 30, 8–19. [Google Scholar] [CrossRef]
- Srinivasan, R.; Nunez, P.L.; Tucker, D.M.; Silberstein, R.B.; Cadusch, P.J. Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials. Brain Topogr. 1996, 8, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar] [CrossRef]
- Grover, P.; Venkatesh, P. An Information-Theoretic View of EEG Sensing. Proc. IEEE 2017, 105, 367–384. [Google Scholar] [CrossRef]
- Freeman, W.J.; Holmes, M.D.; Burke, B.C.; Vanhatalo, S. Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 2003, 114, 1053–1068. [Google Scholar] [CrossRef]
- Ramon, C.; Freeman, W.J.; Holmes, M.; Ishimaru, A.; Haueisen, J.; Schimpf, P.H.; Rezvanian, E. Similarities Between Simulated Spatial Spectra of Scalp EEG, MEG and Structural MRI. Brain Topogr. 2009, 22, 191–196. [Google Scholar] [CrossRef]
- Iivanainen, J.; Mäkinen, A.J.; Zetter, R.; Stenroos, M.; Ilmoniemi, R.J.; Parkkonen, L. Spatial sampling of MEG and EEG based on generalized spatial-frequency analysis and optimal design. NeuroImage 2021, 245, 118747. [Google Scholar] [CrossRef]
- Asayesh, A.; Vanhatalo, S.; Tokariev, A. The impact of EEG electrode density on the mapping of cortical activity networks in infants. NeuroImage 2024, 303, 120932. [Google Scholar] [CrossRef]
- Giri, A.; Kumar, L.; Kurwale, N.; Gandhi, T.K. Anatomical Harmonics Basis Based Brain Source Localization with Application to Epilepsy. Sci. Rep. 2022, 12, 11240. [Google Scholar] [CrossRef]
- Li, D.; Zeng, Z.; Wang, Z.; Yang, H. ESTformer: Transformer utilising spatiotemporal dependencies for electroencephalogram super-resolution. Knowl.-Based Syst. 2025, 317, 113345. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, T.; Shen, Y.; Li, Y.; Huang, G.; Hu, Y. Generative AI Enables EEG Super-Resolution via Spatio-Temporal Adaptive Diffusion Learning. IEEE Trans. Consum. Electron. 2025, 71, 1034–1045. [Google Scholar] [CrossRef]
- Graichen, U.; Eichardt, R.; Fiedler, P.; Strohmeier, D.; Zanow, F.; Haueisen, J. SPHARA—A Generalized Spatial Fourier Analysis for Multi-Sensor Systems with Non-Uniformly Arranged Sensors: Application to EEG. PLoS ONE 2015, 10, e0121741. [Google Scholar] [CrossRef]
- Fiedler, P.; Graichen, U.; Zimmer, E.; Haueisen, J. Simultaneous Dry and Gel-Based High-Density Electroencephalography Recordings. Sensors 2023, 23, 9745. [Google Scholar] [CrossRef]
- Hildebrandt, K.; Polthier, K.; Wardetzky, M. On the convergence of metric and geometric properties of polyhedral surfaces. Geom. Dedicata 2006, 123, 89–112. [Google Scholar] [CrossRef]
- Wardetzky, M.; Mathur, S.; Kälberer, F.; Grinspun, E. Discrete laplace operators: No free lunch. In Proceedings of the SGP07: Eurographics Symposium on Geometry Processing, Barcelona, Spain, 4–6 July 2007; Belyaev, A., Garland, M., Eds.; Eurographics Association: Aire-la-Ville, Switzerland, 2007; pp. 33–37. [Google Scholar]
- Vallet, B.; Levy, B. Spectral Geometry Processing with Manifold Harmonics; Technical Report inria-00186931; Université Nancy, Institut National Polytechnique de Lorraine: Nancy, France, 2007. [Google Scholar]
- Dyer, R.; Zhang, R.H.; Möller, T.; Clements, A. An Investigation of the Spectral Robustness of Mesh Laplacians; Technical report; Simon Fraser University, GrUVi Lab: Burnaby, BC, Canada, 2007. [Google Scholar]
- Zhang, H.; van Kaick, O.; Dyer, R. Spectral Methods for Mesh Processing and Analysis. In Proceedings of the STAR Proceedings of Eurographics, Prague, Czech Republic, 3–7 September 2007; Schmalstieg, D., Bittner, J., Eds.; Volume 92, pp. 1–22. [Google Scholar] [CrossRef]
- Graichen, U.; Eichardt, R.; Haueisen, J. SpharaPy: A Python toolbox for spatial harmonic analysis of non-uniformly sampled data. SoftwareX 2019, 10. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Meschede, M. SHTools: Tools for Working with Spherical Harmonics. Geochem. Geophys. Geosyst. 2018, 19, 2574–2592. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication in the presence of noise. Proc. IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Shukowsky, A. A quadrature formula over the sphere with application to high resolution spherical harmonic analysis. Bull. Géodésique 1986, 60, 1–14. [Google Scholar] [CrossRef]
- Driscoll, J.R.; Healy, D.M. Computing Fourier Transforms and Convolutions on the 2-Sphere. Adv. Appl. Math. 1994, 15, 202–250. [Google Scholar] [CrossRef]
- Folland, G. Fourier Analysis and Its Applications; Wadsworth & Brooks/Cole Advanced Books & Software: Pacific Grove, CA, USA, 1992. [Google Scholar]
- Stenroos, M.; Nummenmaa, A. Incorporating and Compensating Cerebrospinal Fluid in Surface-Based Forward Models of Magneto- and Electroencephalography. PLoS ONE 2016, 11, e0159595. [Google Scholar] [CrossRef]
- Geddes, L.A.; Baker, L.E. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 1967, 5, 271–293. [Google Scholar] [CrossRef]
- Rush, S.; Driscoll, D.A. Current Distribution in Brain from Surface Electrodes. Anesth. Analg. Curr. Res. 1968, 47, 717–723. [Google Scholar] [CrossRef]
- Baumann, S.B.; Wozny, D.R.; Kelly, S.K.; Meno, F.M. The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans. Biomed. Eng. 1997, 44, 220–223. [Google Scholar] [CrossRef]
- Wolters, C.H.; Anwander, A.; Tricoche, X.; Weinstein, D.; Koch, M.A.; MacLeod, R.S. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling. Neuroimage 2006, 30, 813–826. [Google Scholar] [CrossRef]
- Lütkenhöner, B. Möglichkeiten und Grenzen der Neuromagnetischen Quellenanalyse; Habilitation, Westfälischen Wilhelms-Universität Münster: Münster, Germany, 1992. [Google Scholar]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011, 156869. [Google Scholar] [CrossRef]
- Cuffin, B.N.; Cohen, D. Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 1979, 47, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Persson, P.O.; Strang, G. A simple mesh generator in MATLAB. SIAM Rev. 2004, 46, 329–345. [Google Scholar] [CrossRef]
- Ryynanen, O.R.M.; Hyttinen, J.A.K.; Laarne, P.H.; Malmivuo, J.A. Effect of electrode density and measurement noise on the spatial resolution of cortical potential distribution. IEEE Trans. Biomed. Eng. 2004, 51, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Gevins, A.; Le, J.; Martin, N.K.; Brickett, P.; Desmond, J.; Reutter, B. High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods. Electroencephalogr. Clin. Neurophysiol. 1994, 90, 337–358. [Google Scholar] [CrossRef]
- Thielscher, A.; Antunes, A.; Saturnino, G.B. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 222–225. [Google Scholar] [CrossRef]
- Haueisen, J.; Funke, M.; Güllmar, D.; Eichardt, R. Tangential and Radial Epileptic Spike Activity: Different Sensitivity in EEG and MEG. J. Clin. Neurophysiol. 2012, 29, 327–332. [Google Scholar] [CrossRef]
- Stenroos, M.; Sarvas, J. Bioelectromagnetic forward problem: Isolated source approach revis(it)ed. Phys. Med. Biol. 2012, 57, 3517–3535. [Google Scholar] [CrossRef]
- Mosher, J.C.; Leahy, R.; Lewis, P.S. EEG and MEG: Forward solutions for inverse methods. IEEE Trans. Biomed. Eng. 1999, 46, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Stenroos, M.; Mantynen, V.; Nenonen, J. A Matlab library for solving quasi-static volume conduction problems using the boundary element method. Comput. Methods Programs Biomed. 2007, 88, 256–263. [Google Scholar] [CrossRef]
- Stenroos, M.; Hunold, A.; Haueisen, J. Comparison of three-shell and simplified volume conductor models in magnetoencephalography. Neuroimage. 2014, 94, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Hunold, A.; Funke, M.; Eichardt, R.; Stenroos, M.; Haueisen, J. EEG and MEG: Sensitivity to epileptic spike activity as function of source orientation and depth. Physiol. Meas. 2016, 37, 1146–1162. [Google Scholar] [CrossRef] [PubMed]
- Goldenholz, D.M.; Ahlfors, S.P.; Haemaelaeinen, M.S.; Sharon, D.; Ishitobi, M.; Vaina, L.M.; Stufflebeam, S.M. Mapping the Signal-to-Noise-Ratios of Cortical Sources in Magnetoencephalography and Electroencephalography. Hum. Brain Mapp. 2009, 30, 1077–1086. [Google Scholar] [CrossRef]
- Robinson, A.K.; Venkatesh, P.; Boring, M.J.; Tarr, M.J.; Grover, P.; Behrmann, M. Very high density EEG elucidates spatiotemporal aspects of early visual processing. Sci. Rep. 2017, 7, 16248. [Google Scholar] [CrossRef]
- Petrov, Y. Harmony: EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of Spherical Harmonics. PLoS ONE 2012, 7, e44439. [Google Scholar] [CrossRef]
- Kwon, M.; Han, S.; Kim, K.; Jun, S.C. Super-Resolution for Improving EEG Spatial Resolution using Deep Convolutional Neural Network–Feasibility Study. Sensors 2019, 19, 5317. [Google Scholar] [CrossRef]
- Nuñez Ponasso, G.; Wartman, W.A.; McSweeney, R.C.; Lai, P.; Haueisen, J.; Maess, B.; Knösche, T.R.; Weise, K.; Noetscher, G.M.; Raij, T.; et al. Improving EEG Forward Modeling Using High-Resolution Five-Layer BEM-FMM Head Models: Effect on Source Reconstruction Accuracy. Bioengineering 2024, 11, 1071. [Google Scholar] [CrossRef]
Real | Electrodes | Side Length | Nyquist Limit | |||
---|---|---|---|---|---|---|
Electrode | on Spherical | Triangles, | ||||
System, No. | Surface, No. | No. | mm | mm | mm | mm−1 |
21 | 34 | 64 | 71.52 | 143.03 | 0.007 | |
64 | 104 | 204 | 40.52 | 81.05 | 0.012 | |
128 | 232 | 460 | 27.66 | 55.33 | 0.018 | |
256 | 462 | 920 | 19.56 | 39.12 | 0.026 | |
512 | 938 | 1872 | 13.83 | 27.66 | 0.036 | |
– | 4000 | 7996 | 6.69 | 13.39 | 0.075 |
Surface | No. Vertices | No. Triangles | Side Length Triangles/mm |
---|---|---|---|
Pial | 12,501 | 24,998 | 4.0 ± 1.0 |
Cerebellum | 999 | 1998 | 5.0 ± 1.0 |
Inner Skull | 3801 | 7598 | 5.0 ± 1.0 |
Outer Skull | 2901 | 5798 | 6.0 ± 1.2 |
Skin | 3296 | 6600 | 7.0 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graichen, U.; Klee, S.; Fiedler, P.; Hofmann, L.; Haueisen, J. Head-Specific Spatial Spectra of Electroencephalography Explained: A Sphara and BEM Investigation. Biosensors 2025, 15, 585. https://doi.org/10.3390/bios15090585
Graichen U, Klee S, Fiedler P, Hofmann L, Haueisen J. Head-Specific Spatial Spectra of Electroencephalography Explained: A Sphara and BEM Investigation. Biosensors. 2025; 15(9):585. https://doi.org/10.3390/bios15090585
Chicago/Turabian StyleGraichen, Uwe, Sascha Klee, Patrique Fiedler, Lydia Hofmann, and Jens Haueisen. 2025. "Head-Specific Spatial Spectra of Electroencephalography Explained: A Sphara and BEM Investigation" Biosensors 15, no. 9: 585. https://doi.org/10.3390/bios15090585
APA StyleGraichen, U., Klee, S., Fiedler, P., Hofmann, L., & Haueisen, J. (2025). Head-Specific Spatial Spectra of Electroencephalography Explained: A Sphara and BEM Investigation. Biosensors, 15(9), 585. https://doi.org/10.3390/bios15090585