Colorimetric Biosensors: Advancements in Nanomaterials and Cutting-Edge Detection Strategies
Abstract
1. Introduction
2. Principles of Colorimetric Sensing
2.1. LSPR-Based Colorimetric Biosensors
2.2. Redox Reaction-Based Colorimetric Biosensors
3. Nanomaterials-Based Colorimetric Biosensors
3.1. LSPR-Based Colorimetric Sensing
3.1.1. Noble Metal-Based Colorimetric Biosensors
3.1.2. Noble Metal-Decorated 2D Nanomaterial-Based Colorimetric Biosensors
3.2. Nanozyme-Based Colorimetric Sensing
3.2.1. Enzyme-Like Nanomaterial-Based Colorimetric Biosensors
3.2.2. Enzyme-Mimicking 2D Nanomaterial-Based Biosensors
4. The Fusion of Colorimetric and Other Analytical Techniques
4.1. Dual-Mode Sensing Technologies
4.2. AI and Machine Learning-Assisted Colorimetric Biosensors
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A.K.; Mittal, S.; Das, M.; Saharia, A.; Tiwari, M. Optical Biosensors: A Decade in Review. Alex. Eng. J. 2023, 67, 673–691. [Google Scholar] [CrossRef]
- Mohankumar, P.; Ajayan, J.; Mohanraj, T.; Yasodharan, R. Recent Developments in Biosensors for Healthcare and Biomedical Applications: A Review. Measurement 2021, 167, 108293. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent Progress and Growth in Biosensors Technology: A Critical Review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Lei, Z.; Guo, B. 2D Material-Based Optical Biosensor: Status and Prospect. Adv. Sci. 2022, 9, 2102924. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Tang, Q.; Ma, T.; Zhu, B.; Wang, L.; He, C.; Luo, X.; Cao, S.; Ma, L.; Cheng, C. Structures, Properties, and Challenges of Emerging 2D Materials in Bioelectronics and Biosensors. InfoMat 2022, 4, e12299. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Kim, M. Il Nanomaterial-Mediated Paper-Based Biosensors for Colorimetric Pathogen Detection. TrAC Trends Anal. Chem. 2020, 132, 116038. [Google Scholar] [CrossRef]
- Zhu, W.; Li, L.; Zhou, Z.; Yang, X.; Hao, N.; Guo, Y.; Wang, K. A Colorimetric Biosensor for Simultaneous Ochratoxin A and Aflatoxins B1 Detection in Agricultural Products. Food Chem. 2020, 319, 126544. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Wang, G.; Zu, B.; Dou, X. One-Step Instantaneous Detection of Multiple Military and Improvised Explosives Facilitated by Colorimetric Reagent Design. Anal. Chem. 2020, 92, 13980–13988. [Google Scholar] [CrossRef]
- Liu, X.; Mei, X.; Yang, J.; Li, Y. Hydrogel-Involved Colorimetric Platforms Based on Layered Double Oxide Nanozymes for Point-of-Care Detection of Liver-Related Biomarkers. ACS Appl. Mater. Interfaces 2022, 14, 6985–6993. [Google Scholar] [CrossRef]
- Yokobori, S.; Shimazaki, J.; Kaneko, H.; Asai, H.; Kanda, J.; Takauji, S.; Sato, E.; Ichibayashi, R.; Fujita, M.; Shiraishi, S.; et al. The Feasibility of Point-of-Care Testing for Initial Urinary Liver Fatty Acid-Binding Protein to Estimate Severity in Severe Heatstroke. Sci. Rep. 2025, 15, 5255. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, Q.; Ji, F.; Wu, H.; Ledesma-Amaro, R.; Wei, Q.; Yang, H.; Xia, X.; Ren, Y.; Mu, K.; et al. Precise In-Field Molecular Diagnostics of Crop Diseases by Smartphone-Based Mutation-Resolved Pathogenic RNA Analysis. Nat. Commun. 2023, 14, 4327. [Google Scholar] [CrossRef]
- Rhode, S.; Rogge, L.; Marthoenis, M.; Seuring, T.; Zufry, H.; Bärnighausen, T.; Sofyan, H.; Manne-Goehler, J.; Vollmer, S. Real-World Smartphone-Based Point-of-Care Diagnostics in Primary Health Care to Monitor HbA1c Levels in People with Diabetes. Commun. Med. 2025, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Abugalyon, Y.; Li, X. Multicolorimetric ELISA Biosensors on a Paper/Polymer Hybrid Analytical Device for Visual Point-of-Care Detection of Infection Diseases. Anal. Bioanal. Chem. 2021, 413, 4655–4663. [Google Scholar] [CrossRef] [PubMed]
- Fontes, C.M.; Lipes, B.D.; Liu, J.; Agans, K.N.; Yan, A.; Shi, P.; Cruz, D.F.; Kelly, G.; Luginbuhl, K.M.; Joh, D.Y.; et al. Ultrasensitive Point-of-Care Immunoassay for Secreted Glycoprotein Detects Ebola Infection Earlier than PCR. Sci. Transl. Med. 2021, 13, 9696. [Google Scholar] [CrossRef] [PubMed]
- Alafeef, M.; Moitra, P.; Dighe, K.; Pan, D. RNA-Extraction-Free Nano-Amplified Colorimetric Test for Point-of-Care Clinical Diagnosis of COVID-19. Nat. Protoc. 2021, 16, 3141–3162. [Google Scholar] [CrossRef]
- Kermanshahian, K.; Yadegar, A.; Ghourchian, H. Gold Nanorods Etching as a Powerful Signaling Process for Plasmonic Multicolorimetric Chemo-/Biosensors: Strategies and Applications. Coord. Chem. Rev. 2021, 442, 213934. [Google Scholar] [CrossRef]
- Chang, Q.; Wu, J.; Zhang, R.; Wang, S.; Zhu, X.; Xiang, H.; Wan, Y.; Cheng, Z.; Jin, M.; Li, X.; et al. Optimizing Single-Atom Cerium Nanozyme Activity to Function in a Sequential Catalytic System for Colorimetric Biosensing. Nano Today 2024, 56, 102236. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, R.; Wang, Y.; Wu, C.; Zhang, K.; Wang, C.; Gong, N.; Ledesma-Amaro, R.; Teng, X.; Yang, C.; et al. A Paper-Based Assay for the Colorimetric Detection of SARS-CoV-2 Variants at Single-Nucleotide Resolution. Nat. Biomed. Eng. 2022, 6, 957–967. [Google Scholar] [CrossRef]
- Min, J.; Chin, L.K.; Oh, J.; Landeros, C.; Vinegoni, C.; Lee, J.; Lee, S.J.; Park, J.Y.; Liu, A.-Q.; Castro, C.M.; et al. CytoPAN—Portable Cellular Analyses for Rapid Point-of-Care Cancer Diagnosis. Sci. Transl. Med. 2020, 12, 9746. [Google Scholar] [CrossRef]
- Luo, M.; Xue, X.; Rao, H.; Wang, H.; Liu, X.; Zhou, X.; Xue, Z.; Lu, X. Simply Converting Color Signal Readout into Thermal Signal Readout for Breaking the Color Resolution Limitation of Colorimetric Sensor. Sens. Actuators B Chem. 2020, 309, 127707. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, M.; Zhu, H.; Zhang, M.; Li, X.; Wang, M.; Liu, B.; Pan, J.; Niu, X. Dual-Mode Fluorescence and Colorimetric Detection of Pesticides Realized by Integrating Stimulus-Responsive Luminescence with Oxidase-Mimetic Activity into Cerium-Based Coordination Polymer Nanoparticles. J. Hazard. Mater. 2022, 423, 127077. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, M.; Liu, P.; Zhu, H.; Liu, B.; Hu, P.; Niu, X. Coupling Diazotization with Oxidase-Mimetic Catalysis to Realize Dual-Mode Double-Ratiometric Colorimetric and Electrochemical Sensing of Nitrite. Sens. Actuators B Chem. 2022, 355, 131308. [Google Scholar] [CrossRef]
- Huang, Y.; Gu, Y.; Liu, X.; Deng, T.; Dai, S.; Qu, J.; Yang, G.; Qu, L. Reusable Ring-like Fe3O4/Au Nanozymes with Enhanced Peroxidase-like Activities for Colorimetric-SERS Dual-Mode Sensing of Biomolecules in Human Blood. Biosens. Bioelectron. 2022, 209, 114253. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, X.; Hu, X.; Tong, W.; Leng, Y.; Xiong, Y. Recent Advances in Colorimetry/Fluorimetry-Based Dual-Modal Sensing Technologies. Biosens. Bioelectron. 2021, 190, 113386. [Google Scholar] [CrossRef]
- Ninwong, B.; Ratnarathorn, N.; Henry, C.S.; Mace, C.R.; Dungchai, W. Dual Sample Preconcentration for Simultaneous Quantification of Metal Ions Using Electrochemical and Colorimetric Assays. ACS Sens. 2020, 5, 3999–4008. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Gao, X.; Zhang, Y.; Chen, H.; Ye, Y.; Wu, Y. Polydopamine-Based Nanozyme with Dual-Recognition Strategy-Driven Fluorescence-Colorimetric Dual-Mode Platform for Listeria Monocytogenes Detection. J. Hazard. Mater. 2022, 439, 129582. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Su, Z.; Bu, X.; Shi, X.; Pang, B.; Zhang, L.; Li, J.; Zhao, C. On-Site Colorimetric Detection of Salmonella Typhimurium. npj Sci. Food 2022, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Aggarwal, K.; Vinitha, T.U.; Nguyen, T.; Han, J.; Ahn, C.H. A New Microchannel Capillary Flow Assay (MCFA) Platform with Lyophilized Chemiluminescence Reagents for a Smartphone-Based POCT Detecting Malaria. Microsyst. Nanoeng. 2020, 6, 5. [Google Scholar] [CrossRef]
- Lewińska, I.; Speichert, M.; Granica, M.; Tymecki, Ł. Colorimetric Point-of-Care Paper-Based Sensors for Urinary Creatinine with Smartphone Readout. Sens. Actuators B Chem. 2021, 340, 129915. [Google Scholar] [CrossRef]
- Cui, R.; Tang, H.; Huang, Q.; Ye, T.; Chen, J.; Huang, Y.; Hou, C.; Wang, S.; Ramadan, S.; Li, B.; et al. AI-Assisted Smartphone-Based Colorimetric Biosensor for Visualized, Rapid and Sensitive Detection of Pathogenic Bacteria. Biosens. Bioelectron. 2024, 259, 116369. [Google Scholar] [CrossRef]
- Verma, D.; Singh, K.R.; Yadav, A.K.; Nayak, V.; Singh, J.; Solanki, P.R.; Singh, R.P. Internet of Things (IoT) in Nano-Integrated Wearable Biosensor Devices for Healthcare Applications. Biosens. Bioelectron. X 2022, 11, 100153. [Google Scholar] [CrossRef]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing Biosensors with Machine Learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef]
- Xie, Y.; Li, K.; Liu, J.; Zhou, Y.; Zhang, C.; Yu, Y.; Wang, J.; Su, L.; Zhang, X. A Smart Lab on a Wearable Microneedle Patch with Convolutional Neural Network-enhanced Colorimetry for Early Warning of Syndrome of Inappropriate Antidiuretic Hormone Secretion. Aggregate 2025, 6, e671. [Google Scholar] [CrossRef]
- Zhu, D.D.; Zheng, L.W.; Duong, P.K.; Cheah, R.H.; Liu, X.Y.; Wong, J.R.; Wang, W.J.; Tien Guan, S.T.; Zheng, X.T.; Chen, P. Colorimetric Microneedle Patches for Multiplexed Transdermal Detection of Metabolites. Biosens. Bioelectron. 2022, 212, 114412. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Wang, J.; Chen, Z.; Chen, G.; Wen, D.; Chan, A.; Gu, Z. Transdermal Colorimetric Patch for Hyperglycemia Sensing in Diabetic Mice. Biomaterials 2020, 237, 119782. [Google Scholar] [CrossRef] [PubMed]
- Lino, C.; Barrias, S.; Chaves, R.; Adega, F.; Martins-Lopes, P.; Fernandes, J.R. Biosensors as Diagnostic Tools in Clinical Applications. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2022, 1877, 188726. [Google Scholar] [CrossRef] [PubMed]
- Haick, H.; Tang, N. Artificial Intelligence in Medical Sensors for Clinical Decisions. ACS Nano 2021, 15, 3557–3567. [Google Scholar] [CrossRef]
- Tian, H.; Huang, G.; Xie, F.; Fu, W.; Yang, X. THz Biosensing Applications for Clinical Laboratories: Bottlenecks and Strategies. TrAC Trends Anal. Chem. 2023, 163, 117057. [Google Scholar] [CrossRef]
- Mahmud, M.M.; Pandey, N.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Toward the Scale-up Production of Polymeric Nanotherapeutics for Cancer Clinical Trials. Nano Today 2024, 56, 102314. [Google Scholar] [CrossRef]
- Fruncillo, S.; Su, X.; Liu, H.; Wong, L.S. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens. 2021, 6, 2002–2024. [Google Scholar] [CrossRef]
- Kuiri, P.K. Tailoring Localized Surface Plasmons in Ag–Al Alloys’ Nanoparticles. J. Alloys Compd. 2020, 826, 154250. [Google Scholar] [CrossRef]
- Liang, A.; Liu, Q.; Wen, G.; Jiang, Z. The Surface-Plasmon-Resonance Effect of Nanogold/Silver and Its Analytical Applications. TrAC Trends Anal. Chem. 2012, 37, 32–47. [Google Scholar] [CrossRef]
- Minopoli, A.; Sakač, N.; Lenyk, B.; Campanile, R.; Mayer, D.; Offenhäusser, A.; Velotta, R.; Della Ventura, B. LSPR-Based Colorimetric Immunosensor for Rapid and Sensitive 17β-Estradiol Detection in Tap Water. Sens. Actuators B Chem. 2020, 308, 127699. [Google Scholar] [CrossRef]
- Biswas, A.; Lee, S.; Cencillo-Abad, P.; Karmakar, M.; Patel, J.; Soudi, M.; Chanda, D. Nanoplasmonic Aptasensor for Sensitive, Selective, and Real-Time Detection of Dopamine from Unprocessed Whole Blood. Sci. Adv. 2024, 10, 7460. [Google Scholar] [CrossRef]
- Wang, X.; Xu, D.; Jaquet, B.; Yang, Y.; Wang, J.; Huang, H.; Chen, Y.; Gerhard, C.; Zhang, K. Structural Colors by Synergistic Birefringence and Surface Plasmon Resonance. ACS Nano 2020, 14, 16832–16839. [Google Scholar] [CrossRef]
- Sepúlveda, B.; Angelomé, P.C.; Lechuga, L.M.; Liz-Marzán, L.M. LSPR-Based Nanobiosensors. Nano Today 2009, 4, 244–251. [Google Scholar] [CrossRef]
- Ding, S.; Barr, J.A.; Lyu, Z.; Zhang, F.; Wang, M.; Tieu, P.; Li, X.; Engelhard, M.H.; Feng, Z.; Beckman, S.P.; et al. Effect of Phosphorus Modulation in Iron Single-Atom Catalysts for Peroxidase Mimicking. Adv. Mater. 2024, 36, 2209633. [Google Scholar] [CrossRef] [PubMed]
- Keyvani, F.; GhavamiNejad, P.; Saleh, M.A.; Soltani, M.; Zhao, Y.; Sadeghzadeh, S.; Shakeri, A.; Chelle, P.; Zheng, H.; Rahman, F.A.; et al. Integrated Electrochemical Aptamer Biosensing and Colorimetric PH Monitoring via Hydrogel Microneedle Assays for Assessing Antibiotic Treatment. Adv. Sci. 2024, 11, 2309027. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Hu, H.; Jiang, X.; Zhang, X.; Wu, P. Selective Heavy Atom Effect-Promoted Photosensitization Colorimetric Detection of Ag+ in Silver Ore Samples. Anal. Chem. 2023, 95, 6501–6506. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Wang, W.; You, Y.; Gunasekaran, S. LSPR-based Colorimetric Biosensing for Food Quality and Safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5829–5855. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, I.; Miller, K.; Diepenheim, G.; Cantrell, K.; Hall, W.P. Nanoparticle Design Rules for Colorimetric Plasmonic Sensors. ACS Appl. Nano Mater. 2020, 3, 4342–4350. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, J.; Li, J.; Ju, H. A Plasmonic Colorimetric Strategy for Biosensing through Enzyme Guided Growth of Silver Nanoparticles on Gold Nanostars. Biosens. Bioelectron. 2016, 78, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, G.; Lu, Y.; Guan, Y.; Liu, Y. An Ultra-Sensitive Colorimetric Detection of Ag Ions Based on Etching AuNP@MnO2 Nanoparticles with Glutathione by Using Dark Field Optical Microscopy. Sens. Actuators B Chem. 2021, 330, 129382. [Google Scholar] [CrossRef]
- Su, Y.-C.; Lin, A.-Y.; Hu, C.-C.; Chiu, T.-C. Functionalized Silver Nanoparticles as Colorimetric Probes for Sensing Tricyclazole. Food Chem. 2021, 347, 129044. [Google Scholar] [CrossRef]
- He, Y.; Tian, F.; Zhou, J.; Zhao, Q.; Fu, R.; Jiao, B. Colorimetric Aptasensor for Ochratoxin A Detection Based on Enzyme-Induced Gold Nanoparticle Aggregation. J. Hazard. Mater. 2020, 388, 121758. [Google Scholar] [CrossRef]
- Wu, Y.-Y.; Huang, P.; Wu, F.-Y. A Label-Free Colorimetric Aptasensor Based on Controllable Aggregation of AuNPs for the Detection of Multiplex Antibiotics. Food Chem. 2020, 304, 125377. [Google Scholar] [CrossRef]
- Jo, S.; Lee, W.; Park, J.; Kim, W.; Kim, W.; Lee, G.; Lee, H.-J.; Hong, J.; Park, J. Localized Surface Plasmon Resonance Aptasensor for the Highly Sensitive Direct Detection of Cortisol in Human Saliva. Sens. Actuators B Chem. 2020, 304, 127424. [Google Scholar] [CrossRef]
- Hong, Y.; Huh, Y.-M.; Yoon, D.S.; Yang, J. Nanobiosensors Based on Localized Surface Plasmon Resonance for Biomarker Detection. J. Nanomater. 2012, 2012, 759830. [Google Scholar] [CrossRef]
- Jeon, J.; Uthaman, S.; Lee, J.; Hwang, H.; Kim, G.; Yoo, P.J.; Hammock, B.D.; Kim, C.S.; Park, Y.S.; Park, I.K. In-Direct Localized Surface Plasmon Resonance (LSPR)-Based Nanosensors for Highly Sensitive and Rapid Detection of Cortisol. Sens. Actuators B Chem. 2018, 266, 710–716. [Google Scholar] [CrossRef]
- Cottat, M.; Thioune, N.; Gabudean, A.M.; Lidgi-Guigui, N.; Focsan, M.; Astilean, S.; Lamy de la Chapelle, M. Localized Surface Plasmon Resonance (LSPR) Biosensor for the Protein Detection. Plasmonics 2013, 8, 699–704. [Google Scholar] [CrossRef]
- Meira, D.I.; Barbosa, A.I.; Borges, J.; Reis, R.L.; Correlo, V.M.; Vaz, F. Label-Free Localized Surface Plasmon Resonance (LSPR) Biosensor, Based on Au-Ag NPs Embedded in TiO2 Matrix, for Detection of Ochratoxin-A (OTA) in Wine. Talanta 2025, 284, 127238. [Google Scholar] [CrossRef] [PubMed]
- Ghodselahi, T.; Neishaboorynejad, T.; Arsalani, S. Fabrication LSPR Sensor Chip of Ag NPs and Their Biosensor Application Based on Interparticle Coupling. Appl. Surf. Sci. 2015, 343, 194–201. [Google Scholar] [CrossRef]
- Lim, W.Q.; Gao, Z. Plasmonic Nanoparticles in Biomedicine. Nano Today 2016, 11, 168–188. [Google Scholar] [CrossRef]
- Cortie, M.B.; McDonagh, A.M. Synthesis and Optical Properties of Hybrid and Alloy Plasmonic Nanoparticles. Chem. Rev. 2011, 111, 3713–3735. [Google Scholar] [CrossRef]
- Sui, M.; Kunwar, S.; Pandey, P.; Lee, J. Strongly Confined Localized Surface Plasmon Resonance (LSPR) Bands of Pt, AgPt, AgAuPt Nanoparticles. Sci. Rep. 2019, 9, 16582. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Hu, Y.; Wang, M.; Chi, M.; Yin, Y. Fully Alloyed Ag/Au Nanospheres: Combining the Plasmonic Property of Ag with the Stability of Au. J. Am. Chem. Soc. 2014, 136, 7474–7479. [Google Scholar] [CrossRef]
- Li, S.; Miao, P.; Zhang, Y.; Wu, J.; Zhang, B.; Du, Y.; Han, X.; Sun, J.; Xu, P. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Adv. Mater. 2021, 33, 2000086. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, X.; Zhang, H.; Bai, X.; Ai, R.; Shao, L.; Wang, J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem. Rev. 2021, 121, 13342–13453. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Li, J. Construction of Plasmonic Nano-Biosensor-Based Devices for Point-of-Care Testing. Small Methods 2017, 1, 1700197. [Google Scholar] [CrossRef]
- Chow, T.H.; Li, N.; Bai, X.; Zhuo, X.; Shao, L.; Wang, J. Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles. Acc. Chem. Res. 2019, 52, 2136–2146. [Google Scholar] [CrossRef] [PubMed]
- Palani, S.; Kenison, J.P.; Sabuncu, S.; Huang, T.; Civitci, F.; Esener, S.; Nan, X. Multispectral Localized Surface Plasmon Resonance (MsLSPR) Reveals and Overcomes Spectral and Sensing Heterogeneities of Single Gold Nanoparticles. ACS Nano 2023, 17, 2266–2278. [Google Scholar] [CrossRef] [PubMed]
- Liebtrau, M.; Sivis, M.; Feist, A.; Lourenço-Martins, H.; Pazos-Pérez, N.; Alvarez-Puebla, R.A.; de Abajo, F.J.G.; Polman, A.; Ropers, C. Spontaneous and Stimulated Electron–Photon Interactions in Nanoscale Plasmonic near Fields. Light. Sci. Appl. 2021, 10, 82. [Google Scholar] [CrossRef]
- Illath, K.; Shinde, A.; Paremmal, P.; Gupta, P.; Nagai, M.; Santra, T.S. Surface Plasmon Resonance Tunable Gold Nanostar Synthesis in a Symmetric Flow-Focusing Droplet Device. Surf. Interfaces 2023, 36, 102478. [Google Scholar] [CrossRef]
- Butet, J.; Martin, O.J.F. Refractive Index Sensing with Fano Resonant Plasmonic Nanostructures: A Symmetry Based Nonlinear Approach. Nanoscale 2014, 6, 15262–15270. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Woessner, Z.J.; Skrabalak, S.E. Branched Plasmonic Nanoparticles with High Symmetry. J. Phys. Chem. C 2019, 123, 18113–18123. [Google Scholar] [CrossRef]
- Cobley, C.M.; Skrabalak, S.E.; Campbell, D.J.; Xia, Y. Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications. Plasmonics 2009, 4, 171–179. [Google Scholar] [CrossRef]
- Atta, S.; Zhao, Y.; Sanchez, S.; Seedial, D.; Devadhasan, J.P.; Summers, A.J.; Gates-Hollingsworth, M.A.; Pflughoeft, K.J.; Gu, J.; Montgomery, D.C.; et al. Plasmonic-Enhanced Colorimetric Lateral Flow Immunoassays Using Bimetallic Silver-Coated Gold Nanostars. ACS Appl. Mater. Interfaces 2024, 16, 54907–54918. [Google Scholar] [CrossRef]
- Takahata, R.; Yamazoe, S.; Koyasu, K.; Imura, K.; Tsukuda, T. Gold Ultrathin Nanorods with Controlled Aspect Ratios and Surface Modifications: Formation Mechanism and Localized Surface Plasmon Resonance. J. Am. Chem. Soc. 2018, 140, 6640–6647. [Google Scholar] [CrossRef]
- Toh, Y.-R.; Yu, P.; Wen, X.; Tang, J.; Hsieh, T. Induced PH-Dependent Shift by Local Surface Plasmon Resonance in Functionalized Gold Nanorods. Nanoscale Res. Lett. 2013, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ding, C.; Zhang, D.; Chen, W.; Yan, Z.; Chen, Z.; Guo, Z.; Guo, L.; Huang, Y. Distinguishable Colorimetric Biosensor for Diagnosis of Prostate Cancer Bone Metastases. Adv. Sci. 2023, 10, 2303159. [Google Scholar] [CrossRef] [PubMed]
- Panferov, V.G.; Liu, J. Optical and Catalytic Properties of Nanozymes for Colorimetric Biosensors: Advantages, Limitations, and Perspectives. Adv. Opt. Mater. 2024, 12, 2401318. [Google Scholar] [CrossRef]
- Lin, L.; Luo, Y.; Chen, Q.; Lai, Q.; Zheng, Q. Redox-modulated Colorimetric Detection of Ascorbic Acid and Alkaline Phosphatase Activity with Gold Nanoparticles. Luminescence 2020, 35, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Yuan, J.; Niu, L.; Zhang, Y.; Zhang, X.; Wang, M.; Cai, Y.; Bian, Z.; Yang, S.; Liu, A. Oxidase Mimicking Nanozyme: Classification, Catalytic Mechanisms and Sensing Applications. Coord. Chem. Rev. 2024, 520, 216166. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Z.; Gao, X.J.; Gao, X. Reaction Mechanisms and Kinetics of Nanozymes: Insights from Theory and Computation. Adv. Mater. 2024, 36, 2211151. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Zhao, X.; Xu, Z. Plasmonic Colorimetric Biosensor for Visual Detection of Telomerase Activity Based on Horseradish Peroxidase-Encapsulated Liposomes and Etching of Au Nanobipyramids. Sens. Actuators B Chem. 2019, 296, 126646. [Google Scholar] [CrossRef]
- Behrouzifar, F.; Shahidi, S.-A.; Chekin, F.; Hosseini, S.; Ghorbani-HasanSaraei, A. Colorimetric Assay Based on Horseradish Peroxidase/Reduced Graphene Oxide Hybrid for Sensitive Detection of Hydrogen Peroxide in Beverages. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 257, 119761. [Google Scholar] [CrossRef]
- Neptuno Rodríguez-López, J.; Lowe, D.J.; Hernández-Ruiz, J.; Hiner, A.N.P.; García-Cánovas, F.; Thorneley, R.N.F. Mechanism of Reaction of Hydrogen Peroxide with Horseradish Peroxidase: Identification of Intermediates in the Catalytic Cycle. Am. Chem. Soc. 2001, 123, 11838–11847. [Google Scholar] [CrossRef]
- Chen, J.; Ma, Q.; Li, M.; Chao, D.; Huang, L.; Wu, W.; Fang, Y.; Dong, S. Glucose-Oxidase like Catalytic Mechanism of Noble Metal Nanozymes. Nat. Commun. 2021, 12, 3375. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Li, M.; Qin, S.; Zhao, Z.; Lin, B.; Ding, Y.; Xiang, Y.; Li, C. Horseradish Peroxidase (HRP) and Glucose Oxidase (GOX) Based Dual-Enzyme System: Sustainable Release of H2O2 and Its Effect on the Desirable Ping Pong Bibi Degradation Mechanism. Env. Res. 2023, 229, 115979. [Google Scholar] [CrossRef]
- Liang, M.; Yan, X. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Iyer, P.V.; Ananthanarayan, L. Enzyme Stability and Stabilization—Aqueous and Non-Aqueous Environment. Process Biochem. 2008, 43, 1019–1032. [Google Scholar] [CrossRef]
- Yu, T.; Xu, H.; Zhao, Y.; Han, Y.; Zhang, Y.; Zhang, J.; Xu, C.; Wang, W.; Guo, Q.; Ge, J. Aptamer Based High Throughput Colorimetric Biosensor for Detection of Staphylococcus Aureus. Sci. Rep. 2020, 10, 9190. [Google Scholar] [CrossRef] [PubMed]
- Ornelas-González, A.; Rito-Palomares, M.; González-González, M. TMB vs ABTS: Comparison of Multi-Enzyme-Based Approaches for the Colorimetric Quantification of Salivary Glucose. J. Chem. Technol. Biotechnol. 2022, 97, 2720–2727. [Google Scholar] [CrossRef]
- Gu, S.; Risse, S.; Lu, Y.; Ballauff, M. Mechanism of the Oxidation of 3,3′,5,5′-Tetramethylbenzidine Catalyzed by Peroxidase-Like Pt Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes: A Kinetic Study. ChemPhysChem 2020, 21, 450–458. [Google Scholar] [CrossRef]
- Ma, X.; Lin, Y.; Guo, L.; Qiu, B.; Chen, G.; Yang, H.; Lin, Z. A Universal Multicolor Immunosensor for Semiquantitative Visual Detection of Biomarkers with the Naked Eyes. Biosens. Bioelectron. 2017, 87, 122–128. [Google Scholar] [CrossRef]
- Feng, C.; Liang, W.; Liu, F.; Xiong, Y.; Chen, M.; Feng, P.; Guo, M.; Wang, Y.; Li, Z.; Zhang, L. A Simple and Highly Sensitive Naked-Eye Analysis of EGFR 19del via CRISPR/Cas12a Triggered No-Nonspecific Nucleic Acid Amplification. ACS Synth. Biol. 2022, 11, 867–876. [Google Scholar] [CrossRef]
- Zeng, R.; Wang, J.; Wang, Q.; Tang, D.; Lin, Y. Horseradish Peroxidase-Encapsulated DNA Nanoflowers: An Innovative Signal-Generation Tag for Colorimetric Biosensor. Talanta 2021, 221, 121600. [Google Scholar] [CrossRef]
- Deshmukh, A.R.; Aloui, H.; Kim, B.S. Novel Biogenic Gold Nanoparticles Catalyzing Multienzyme Cascade Reaction: Glucose Oxidase and Peroxidase Mimicking Activity. Chem. Eng. J. 2021, 421, 127859. [Google Scholar] [CrossRef]
- Bai, Y.; Li, H.; Xu, J.; Huang, Y.; Zhang, X.; Weng, J.; Li, Z.; Sun, L. Ultrasensitive Colorimetric Biosensor for BRCA1 Mutation Based on Multiple Signal Amplification Strategy. Biosens. Bioelectron. 2020, 166, 112424. [Google Scholar] [CrossRef]
- Wu, J.; Liang, L.; Li, S.; Qin, Y.; Zhao, S.; Ye, F. Rational Design of Nanozyme with Integrated Sample Pretreatment for Colorimetric Biosensing. Biosens. Bioelectron. 2024, 257, 116310. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cho, A.; Jia, G.; Cui, X.; Shin, J.; Nam, I.; Noh, K.; Park, B.J.; Huang, R.; Han, J.W. Tuning Local Coordination Environments of Manganese Single-Atom Nanozymes with Multi-Enzyme Properties for Selective Colorimetric Biosensing. Angew. Chem. Int. Ed. 2023, 62, e202300119. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, X.; Song, Y.; Huang, J.; Xu, H. Research Progress of Nanozymes in Colorimetric Biosensing: Classification, Activity and Application. Chem. Eng. J. 2024, 487, 150612. [Google Scholar] [CrossRef]
- Yang, W.; Yang, X.; Zhu, L.; Chu, H.; Li, X.; Xu, W. Nanozymes: Activity Origin, Catalytic Mechanism, and Biological Application. Coord. Chem. Rev. 2021, 448, 214170. [Google Scholar] [CrossRef]
- Wang, M.; Liu, H.; Fan, K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. Small Methods 2023, 7, 2301049. [Google Scholar] [CrossRef]
- Choi, C.-K.; Shaban, S.M.; Moon, B.-S.; Pyun, D.-G.; Kim, D.-H. Smartphone-Assisted Point-of-Care Colorimetric Biosensor for the Detection of Urea via PH-Mediated AgNPs Growth. Anal. Chim. Acta 2021, 1170, 338630. [Google Scholar] [CrossRef]
- Jang, W.; Yoo, H.; Shin, D.; Noh, S.; Kim, J.Y. Colorimetric Identification of Colorless Acid Vapors Using a Metal-Organic Framework-Based Sensor. Nat. Commun. 2025, 16, 385. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xianyu, Y. Colorimetric Sensing Strategy through the Coordination Chemistry between Ascorbic Acid 2-Phosphate and Copper Ions. Anal. Chem. 2023, 95, 7202–7211. [Google Scholar] [CrossRef]
- Miao, X.; Zhu, Z.; Jia, H.; Lu, C.; Liu, X.; Mao, D.; Chen, G. Colorimetric Detection of Cancer Biomarker Based on Enzyme Enrichment and PH Sensing. Sens. Actuators B Chem. 2020, 320, 128435. [Google Scholar] [CrossRef]
- Ki, J.; Na, H.-K.; Yoon, S.W.; Le, V.P.; Lee, T.G.; Lim, E.-K. CRISPR/Cas-Assisted Colorimetric Biosensor for Point-of-Use Testing for African Swine Fever Virus. ACS Sens. 2022, 7, 3940–3946. [Google Scholar] [CrossRef]
- Szobi, A.; Buranovská, K.; Vojtaššáková, N.; Lovíšek, D.; Özbaşak, H.Ö.; Szeibeczederová, S.; Kapustian, L.; Hudáčová, Z.; Kováčová, V.; Drobná, D.; et al. Vivid COVID-19 LAMP Is an Ultrasensitive, Quadruplexed Test Using LNA-Modified Primers and a Zinc Ion and 5-Br-PAPS Colorimetric Detection System. Commun. Biol. 2023, 6, 233. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Lee, B.; Park, C.; Kim, Y. A Colorimetric Detection of Polystyrene Nanoplastics with Gold Nanoparticles in the Aqueous Phase. Sci. Total Environ. 2022, 850, 158058. [Google Scholar] [CrossRef]
- Li, J.; Duan, Y.; Wang, L.; Ma, J. Preparation of Core-Shell Structure Ag@TiO2 Plasma Photocatalysts and Reduction of Cr(VI): Size Dependent and LSPR Effect. Env. Res. 2024, 248, 118265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chai, F.; Li, J.; Wang, S.; Zhang, S.; Li, F.; Liang, A.; Luo, A.; Wang, D.; Jiang, X. Weakly Ionized Gold Nanoparticles Amplify Immunoassays for Ultrasensitive Point-of-Care Sensors. Sci. Adv. 2024, 10, eadn5698. [Google Scholar] [CrossRef]
- Ménard-Moyon, C.; Bianco, A.; Kalantar-Zadeh, K. Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sens. 2020, 5, 3739–3769. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, J.; Wei, Y.; Wang, D.; Yang, C.; Xu, Z. Plasmonic Colorimetric Biosensor for Sensitive Exosome Detection via Enzyme-Induced Etching of Gold Nanobipyramid@MnO2 Nanosheet Nanostructures. Anal. Chem. 2020, 92, 15244–15252. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R.; Sharma, P.; Pilloton, R.; Khanuja, M.; Narang, J. Colorimetric Biosensor for the Naked-Eye Detection of Ovarian Cancer Biomarker PDGF Using Citrate Modified Gold Nanoparticles. Biosens. Bioelectron. X 2022, 11, 100142. [Google Scholar] [CrossRef]
- Li, J.; Khan, S.; Gu, J.; Filipe, C.D.M.; Didar, T.F.; Li, Y. A Simple Colorimetric Au-on-Au Tip Sensor with a New Functional Nucleic Acid Probe for Food-borne Pathogen Salmonella typhimurium. Angew. Chem. Int. Ed. 2023, 62, e202300828. [Google Scholar] [CrossRef]
- Montaño-Priede, J.L.; Sanromán-Iglesias, M.; Zabala, N.; Grzelczak, M.; Aizpurua, J. Robust Rules for Optimal Colorimetric Sensing Based on Gold Nanoparticle Aggregation. ACS Sens. 2023, 8, 1827–1834. [Google Scholar] [CrossRef]
- Li, P.; Lee, S.M.; Kim, H.Y.; Kim, S.; Park, S.; Park, K.S.; Park, H.G. Colorimetric Detection of Individual Biothiols by Tailor Made Reactions with Silver Nanoprisms. Sci. Rep. 2021, 11, 3937. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, P.-J.J.; Liu, J. Sensing Adenosine and ATP by Aptamers and Gold Nanoparticles: Opposite Trends of Color Change from Domination of Target Adsorption Instead of Aptamer Binding. ACS Sens. 2020, 5, 2885–2893. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Khan, J.; LaGasse, M.K.; Suslick, K.S. Ultrasensitive Monitoring of Museum Airborne Pollutants Using a Silver Nanoparticle Sensor Array. ACS Sens. 2020, 5, 2783–2791. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Cui, C.; Bai, W.; Wang, W.; Ren, E.; Xiao, H.; Zhou, M.; Cheng, C.; Guo, R. Shape-Controlled Silver Nanoplates Colored Fabric with Tunable Colors, Photothermal Antibacterial and Colorimetric Detection of Hydrogen Sulfide. J. Colloid. Interface Sci. 2022, 626, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, B.; Engstrom, A.M.; Harper, B.J.; Harper, S.L.; Mackiewicz, M.R. Silver Nanoparticles Stable to Oxidation and Silver Ion Release Show Size-Dependent Toxicity In Vivo. Nanomaterials 2021, 11, 1516. [Google Scholar] [CrossRef]
- Qiu, Z.; Xue, Y.; Li, J.; Zhang, Y.; Liang, X.; Wen, C.; Gong, H.; Zeng, J. Highly Sensitive Colorimetric Detection of NH3 Based on Au@Ag@AgCl Core-Shell Nanoparticles. Chin. Chem. Lett. 2021, 32, 2807–2811. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, H.; Deng, S.; Xiao, X.; Xiong, Y.; Peng, J.; Lai, W. An Integrated Colorimetric and Photothermal Lateral Flow Immunoassay Based on Bimetallic Ag–Au Urchin-like Hollow Structures for the Sensitive Detection of E. coli O157:H7. Biosens. Bioelectron. 2023, 225, 115090. [Google Scholar] [CrossRef]
- Su, H.; Li, X.; Huang, L.; Cao, J.; Zhang, M.; Vedarethinam, V.; Di, W.; Hu, Z.; Qian, K. Plasmonic Alloys Reveal a Distinct Metabolic Phenotype of Early Gastric Cancer. Adv. Mater. 2021, 33, 2007978. [Google Scholar] [CrossRef]
- Alex, A.V.; Deosarkar, T.; Chandrasekaran, N.; Mukherjee, A. An Ultra-Sensitive and Selective AChE Based Colorimetric Detection of Malathion Using Silver Nanoparticle-Graphene Oxide (Ag-GO) Nanocomposite. Anal. Chim. Acta 2021, 1142, 73–83. [Google Scholar] [CrossRef]
- Huang, C.-C.; Chen, H.-J.; Leong, Q.L.; Lai, W.K.; Hsu, C.-Y.; Chen, J.-C.; Huang, C.-L. Synthesis of Silver Nanoplates with a Narrow LSPR Band for Chemical Sensing through a Plasmon-Mediated Process Using Photochemical Seeds. Materialia 2022, 21, 101279. [Google Scholar] [CrossRef]
- Deepa, C.; Rajeshkumar, L.; Ramesh, M. Preparation, Synthesis, Properties and Characterization of Graphene-Based 2D Nano-Materials for Biosensors and Bioelectronics. J. Mater. Res. Technol. 2022, 19, 2657–2694. [Google Scholar] [CrossRef]
- El barghouti, M.; Akjouj, A.; Mir, A. Effect of Graphene Layer on the Localized Surface Plasmon Resonance (LSPR) and the Sensitivity in Periodic Nanostructure. Photonics Nanostruct 2018, 31, 107–114. [Google Scholar] [CrossRef]
- Rostami, S.; Mehdinia, A.; Niroumand, R.; Jabbari, A. Enhanced LSPR Performance of Graphene Nanoribbons-Silver Nanoparticles Hybrid as a Colorimetric Sensor for Sequential Detection of Dopamine and Glutathione. Anal. Chim. Acta 2020, 1120, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Fu, R.; Zhou, J.; Cui, Y.; Zhang, Y.; Jiao, B.; He, Y. Manganese Dioxide Nanosheet-Mediated Etching of Gold Nanorods for a Multicolor Colorimetric Assay of Total Antioxidant Capacity. Sens. Actuators B Chem. 2020, 321, 128604. [Google Scholar] [CrossRef]
- Gao, M.; Song, Y.; Liu, Y.; Jiang, W.; Peng, J.; Shi, L.; Jia, R.; Muhammad, Y.; Huang, L. Controlled Fabrication of Au@MnO2 Core/Shell Assembled Nanosheets by Localized Surface Plasmon Resonance. Appl. Surf. Sci. 2021, 537, 147912. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, H.; Yuan, X.; Mao, G.; Wei, L. Single Particle Detection Based Colorimetric Melamine Assay with MnO2-Modified Gold Nanoparticles. Microchem. J. 2023, 184, 108133. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Cheng, Y.; Xiao, Y.; Li, R.; Wu, Q.; Lin, H.; Xu, J.; Wang, G.; Lin, C.; et al. Plasmon-Driven N2 Photofixation in Pure Water over MoO3−x Nanosheets under Visible to NIR Excitation. J. Mater. Chem. A Mater. 2020, 8, 2827–2835. [Google Scholar] [CrossRef]
- Zeng, Q.; Ruan, L.; Che, X.; Shu, X.; Jin, J.; Lv, Z.; Luo, Z.; Zhang, W. Synthesis of MoO3−x Nanosheets and Its Application in Ascorbic Acid Detection of Fruit and Vegetables. J. Food Sci. 2023, 88, 837–847. [Google Scholar] [CrossRef]
- Li, M.; Huang, X.; Yu, H. A Colorimetric Assay for Ultrasensitive Detection of Copper (II) Ions Based on PH-Dependent Formation of Heavily Doped Molybdenum Oxide Nanosheets. Mater. Sci. Eng. C 2019, 101, 614–618. [Google Scholar] [CrossRef]
- Ahmadzadeh, Z.; Ranjbar, M. Plasmonic MoO3−x Nanosheets by Anodic Oxidation of Molybdenum for Colorimetric Sensing of Hydrogen Peroxide. Anal. Chim. Acta 2022, 1198, 339529. [Google Scholar] [CrossRef]
- Yu, H.; Dong, F.; Li, B. Highly Sensitive Colorimetric Detection of Atmospheric Sulfate Formation-Involved Substances Using Plasmonic Molybdenum Trioxide Nanosheets. Sens. Actuators B Chem. 2020, 320, 128368. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Z.; Wu, S.; Pan, J.; Xu, X.; Niu, X. A Peroxidase-Mimicking Zr-Based MOF Colorimetric Sensing Array to Quantify and Discriminate Phosphorylated Proteins. Anal. Chim. Acta 2020, 1121, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; He, Y.; Li, X.; Zhao, H.; Pan, J.; Qiu, F.; Lan, M. A Peroxidase-Mimicking Nanosensor with Hg2+-Triggered Enzymatic Activity of Cysteine-Decorated Ferromagnetic Particles for Ultrasensitive Hg2+ Detection in Environmental and Biological Fluids. Sens. Actuators B Chem. 2019, 281, 445–452. [Google Scholar] [CrossRef]
- Fan, K.; Xi, J.; Fan, L.; Wang, P.; Zhu, C.; Tang, Y.; Xu, X.; Liang, M.; Jiang, B.; Yan, X.; et al. In Vivo Guiding Nitrogen-Doped Carbon Nanozyme for Tumor Catalytic Therapy. Nat. Commun. 2018, 9, 1440. [Google Scholar] [CrossRef]
- Peng, Z.; Xiong, Y.; Liao, Z.; Zeng, M.; Zhong, J.; Tang, X.; Qiu, P. Rapid Colorimetric Detection of H2O2 in Living Cells and Its Upstream Series of Molecules Based on Oxidase-like Activity of CoMnO3 Nanofibers. Sens. Actuators B Chem. 2023, 382, 133540. [Google Scholar] [CrossRef]
- Naveen Prasad, S.; Bansal, V.; Ramanathan, R. Detection of Pesticides Using Nanozymes: Trends, Challenges and Outlook. TrAC Trends Anal. Chem. 2021, 144, 116429. [Google Scholar] [CrossRef]
- Rao, H.; Xue, X.; Luo, M.; Liu, H.; Xue, Z. Recent Advances in the Development of Colorimetric Analysis and Testing Based on Aggregation-Induced Nanozymes. Chin. Chem. Lett. 2021, 32, 25–32. [Google Scholar] [CrossRef]
- Miranda, O.R.; Chen, H.T.; You, C.C.; Mortenson, D.E.; Yang, X.C.; Bunz, U.H.F.; Rotello, V.M. Enzyme-Amplified Array Sensing of Proteins in Solution and in Biofluids. J. Am. Chem. Soc. 2010, 132, 5285–5289. [Google Scholar] [CrossRef]
- Curey, T.E.; Goodey, A.; Tsao, A.; Lavigne, J.; Sohn, Y.; McDevitt, J.T.; Anslyn, E.V.; Neikirk, D.; Shear, J.B. Characterization of Multicomponent Monosaccharide Solutions Using an Enzyme-Based Sensor Array. Anal. Biochem. 2001, 293, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Cao, M.; Cheng, H.; Wang, Y.; He, C.; Shi, X.; Li, T.; Li, Z. Plasmon-Stimulated Colorimetry Biosensor Array for the Identification of Multiple Metabolites. ACS Appl. Mater. Interfaces 2024, 16, 6849–6858. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Zhou, X.; Sun, H.; Su, X. Fluorescence Sensing Strategy for Xanthine Assay Based on Gold Nanoclusters and Nanozyme. Sens. Actuators B Chem. 2022, 358, 131488. [Google Scholar] [CrossRef]
- Yang, W.; Fei, J.; Xu, W.; Jiang, H.; Sakran, M.; Hong, J.; Zhu, W.; Zhou, X. A Biosensor Based on the Biomimetic Oxidase Fe3O4@MnO2 for Colorimetric Determination of Uric Acid. Colloids Surf. B Biointerfaces 2022, 212, 112347. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Ding, W.; Zhao, W.; Liu, H.; Wang, J.; Yao, Y.; Yao, C. High Peroxidase-like Activity Realized by Facile Synthesis of FeS2 Nanoparticles for Sensitive Colorimetric Detection of H2O2 and Glutathione. Biosens. Bioelectron. 2020, 151, 111983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Lu, N.; Zhang, J.; Yan, R.; Li, J.; Wang, L.; Wang, N.; Lv, M.; Zhang, M. Ultrasensitive Aptamer-Based Protein Assays Based on One-Dimensional Core-Shell Nanozymes. Biosens. Bioelectron. 2020, 150, 111881. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Huang, C.; Li, J.; Shen, X. Artificial Cytochrome c Mimics: Graphene Oxide–Fe(III) Complex-Coated Molecularly Imprinted Colloidosomes for Selective Photoreduction of Highly Toxic Pollutants. ACS Appl. Mater. Interfaces 2020, 12, 6615–6626. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ren, G.; Yuan, B.; Zhang, W.; Lu, M.; Liu, J.; Li, K.; Lin, Y. Enhancing Enzyme-like Activities of Prussian Blue Analog Nanocages by Molybdenum Doping: Toward Cytoprotecting and Online Optical Hydrogen Sulfide Monitoring. Anal. Chem. 2020, 92, 7822–7830. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, M.; Luo, X.; Zhang, L.; He, Y.; Xue, F.; Su, X. High-Performance Colorimetric Sensor Based on PtRu Bimetallic Nanozyme for Xanthine Analysis. Food Chem. X 2024, 23, 101588. [Google Scholar] [CrossRef]
- Pedone, D.; Moglianetti, M.; Lettieri, M.; Marrazza, G.; Pompa, P.P. Platinum Nanozyme-Enabled Colorimetric Determination of Total Antioxidant Level in Saliva. Anal. Chem. 2020, 92, 8660–8664. [Google Scholar] [CrossRef]
- Fu, Z.; Zeng, W.; Cai, S.; Li, H.; Ding, J.; Wang, C.; Chen, Y.; Han, N.; Yang, R. Porous Au@Pt Nanoparticles with Superior Peroxidase-like Activity for Colorimetric Detection of Spike Protein of SARS-CoV-2. J. Colloid. Interface Sci. 2021, 604, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Tang, L.; Gao, F.; Li, Y.; Liu, J.; Zheng, J. DNA-Encoded Bimetallic Au-Pt Dumbbell Nanozyme for High-Performance Detection and Eradication of Escherichia Coli O157:H7. Biosens. Bioelectron. 2021, 187, 113327. [Google Scholar] [CrossRef]
- Yang, W.; Weng, C.; Li, X.; He, H.; Fei, J.; Xu, W.; Yan, X.; Zhu, W.; Zhang, H.; Zhou, X. A Sensitive Colorimetric Sensor Based on One-Pot Preparation of h-Fe3O4@ppy with High Peroxidase-like Activity for Determination of Glutathione and H2O2. Sens. Actuators B Chem. 2021, 338, 129844. [Google Scholar] [CrossRef]
- Ju, J.; Chen, Y.; Liu, Z.; Huang, C.; Li, Y.; Kong, D.; Shen, W.; Tang, S. Modification and Application of Fe3O4 Nanozymes in Analytical Chemistry: A Review. Chin. Chem. Lett. 2023, 34, 107820. [Google Scholar] [CrossRef]
- Duan, W.; Qiu, Z.; Cao, S.; Guo, Q.; Huang, J.; Xing, J.; Lu, X.; Zeng, J. Pd–Fe3O4 Janus Nanozyme with Rational Design for Ultrasensitive Colorimetric Detection of Biothiols. Biosens. Bioelectron. 2022, 196, 113724. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Li, S.; Gao, X.; Yuan, S.; Dong, G.; Tang, G.; Song, D.; Bu, L.; Zhou, Q. Sensitive Visual Detection of Norfloxacin in Water by Smartphone Assisted Colorimetric Method Based on Peroxidase-like Active Cobalt-Doped Fe3O4 Nanozyme. J. Environ. Sci. 2025, 148, 198–209. [Google Scholar] [CrossRef]
- Ouyang, Y.; O’Hagan, M.P.; Willner, I. Functional Catalytic Nanoparticles (Nanozymes) for Sensing. Biosens. Bioelectron. 2022, 218, 114768. [Google Scholar] [CrossRef]
- Liu, W.; Huang, Y.; Ji, C.; Grimes, C.A.; Liang, Z.; Hu, H.; Kang, Q.; Yan, H.; Cai, Q.-Y.; Zhou, Y.-G. Eu3+-Doped Anionic Zinc-Based Organic Framework Ratio Fluorescence Sensing Platform: Supersensitive Visual Identification of Prescription Drugs. ACS Sens. 2024, 9, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Sun, Y.; Yue, T.; Yuan, Y. Facile Fabrication of Metal-organic Frameworks with Peroxidase-like Activity for the Colorimetric Detection of Alicyclobacillus acidoterrestris. Food Front. 2023, 4, 308–317. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, X.; Wang, X.; Wang, C.; Tao, H.; Wu, Y. G-Quadruplex DNAzyme as Peroxidase Mimetic in a Colorimetric Biosensor for Ultrasensitive and Selective Detection of Trace Tetracyclines in Foods. Food Chem. 2022, 366, 130560. [Google Scholar] [CrossRef]
- Wang, J.; Tang, Y.; Zheng, J.; Xie, Z.; Zhou, J.; Wu, Y. DNAzyme-Based and Smartphone-Assisted Colorimetric Biosensor for Ultrasensitive and Highly Selective Detection of Histamine in Meats. Food Chem. 2024, 435, 137526. [Google Scholar] [CrossRef]
- Cao, Y.; Ding, P.; Yang, L.; Li, W.; Luo, Y.; Wang, J.; Pei, R. Investigation and Improvement of Catalytic Activity of G-Quadruplex/Hemin DNAzymes Using Designed Terminal G-Tetrads with Deoxyadenosine Caps. Chem. Sci. 2020, 11, 6896–6906. [Google Scholar] [CrossRef]
- Dang, Y.; Wang, G.; Su, G.; Lu, Z.; Wang, Y.; Liu, T.; Pu, X.; Wang, X.; Wu, C.; Song, C.; et al. Rational Construction of a Ni/CoMoO4 Heterostructure with Strong Ni–O–Co Bonds for Improving Multifunctional Nanozyme Activity. ACS Nano 2022, 16, 4536–4550. [Google Scholar] [CrossRef]
- Vinita; Nirala, N.R.; Prakash, R. Facile and Selective Colorimetric Assay of Choline Based on AuNPs-WS2QDs as a Peroxidase Mimic. Microchem. J. 2021, 167, 106312. [Google Scholar] [CrossRef]
- Choi, J.-H.; Haizan, I.; Choi, J.-W. Recent Advances in Two-Dimensional Materials for the Diagnosis and Treatment of Neurodegenerative Diseases. Discov. Nano 2024, 19, 151. [Google Scholar] [CrossRef]
- Cheng, Y.; Shen, P.; Li, X.; Li, X.; Chu, K.; Guo, Y. Synergistically Enhanced Peroxidase-like Activity of Fe3O4/Ti3C2 MXene Quantum Dots and Its Application in Colorimetric Determination of Cr (VI). Sens. Actuators B Chem. 2023, 376, 132979. [Google Scholar] [CrossRef]
- Wang, W.; Yin, Y.; Gunasekaran, S. Oxygen-Terminated Few-Layered Ti3C2Tx MXene Nanosheets as Peroxidase-Mimic Nanozyme for Colorimetric Detection of Kanamycin. Biosens. Bioelectron. 2022, 218, 114774. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, J.; Liao, D.; Wu, K.; Liu, H.; Zhu, G.; Yi, Y. Self-Reduce Gold Nanoparticles on Ti3C2Tx MXene Nanoribbons to Highly Sensitive Colorimetric Determination of Mercury Ion and Cysteine Based on the Mercury-Motivated Peroxidase Mimetic Activity. Sens. Actuators B Chem. 2023, 379, 133271. [Google Scholar] [CrossRef]
- Qu, F.; Li, T.; Yang, M. Colorimetric Platform for Visual Detection of Cancer Biomarker Based on Intrinsic Peroxidase Activity of Graphene Oxide. Biosens. Bioelectron. 2011, 26, 3927–3931. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Li, J.; Chen, L.; Wang, N.; Yu, S.; Li, G.; Xiong, L.; Ju, H. Colorimetric Detection of Nucleic Acids through Triplex-Hybridization Chain Reaction and DNA-Controlled Growth of Platinum Nanoparticles on Graphene Oxide. Anal. Chem. 2020, 92, 2714–2721. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Y.; Lv, X.; Jia, J.; Du, X.; He, J.; Xie, F.; Din, Z.; Cai, J. Aptamers Adsorbed on WSe2 Nanosheets in a Label-Free Colorimetric Aptasensor for Ochratoxin A. ACS Appl. Nano Mater. 2024, 7, 4835–4842. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, Y.; Zhou, P.; Wang, C.; Tao, H.; Wu, Y. Colorimetric Detection of Kanamycin Residue in Foods Based on the Aptamer-Enhanced Peroxidase-Mimicking Activity of Layered WS 2 Nanosheets. J. Agric. Food Chem. 2021, 69, 2884–2893. [Google Scholar] [CrossRef]
- Celik, C.; Kalin, G.; Cetinkaya, Z.; Ildiz, N.; Ocsoy, I. Recent Advances in Colorimetric Tests for the Detection of Infectious Diseases and Antimicrobial Resistance. Diagnostics 2023, 13, 2427. [Google Scholar] [CrossRef]
- Fan, Y.J.; Wang, Z.G.; Su, M.; Liu, X.T.; Shen, S.G.; Dong, J.X. A Dual-Signal Fluorescent Colorimetric Tetracyclines Sensor Based on Multicolor Carbon Dots as Probes and Smartphone-Assisted Visual Assay. Anal. Chim. Acta 2023, 1247, 340843. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, L.; Mei, X.; Liu, J.; Yao, Z.; Li, Y. Dual-Mode Sensing Platform for Electrochemiluminescence and Colorimetry Detection Based on a Closed Bipolar Electrode. Anal. Chem. 2021, 93, 12367–12373. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Li, J.; Sun, Y.; Jiang, X.; Zhang, J.; Dong, C.; Wang, L. Colorimetric/SERS Dual-Mode Detection of Mercury Ion via SERS-Active Peroxidase-like Au@AgPt NPs. Sens. Actuators B Chem. 2020, 310, 127849. [Google Scholar] [CrossRef]
- Xu, W.; He, Y.; Li, J.; Deng, Y.; Xu, E.; Feng, J.; Ding, T.; Liu, D.; Wang, W. Non-Destructive Determination of Beef Freshness Based on Colorimetric Sensor Array and Multivariate Analysis. Sens. Actuators B Chem. 2022, 369, 132282. [Google Scholar] [CrossRef]
- Mei, X.; Yang, J.; Liu, J.; Li, Y. Wearable, Nanofiber-Based Microfluidic Systems with Integrated Electrochemical and Colorimetric Sensing Arrays for Multiplex Sweat Analysis. Chem. Eng. J. 2023, 454, 140248. [Google Scholar] [CrossRef]
- Zhuang, X.; Hu, Y.; Wang, J.; Hu, J.; Wang, Q.; Yu, X. A Colorimetric and SERS Dual-Readout Sensor for Sensitive Detection of Tyrosinase Activity Based on 4-Mercaptophenyl Boronic Acid Modified AuNPs. Anal. Chim. Acta 2021, 1188, 339172. [Google Scholar] [CrossRef]
- Bai, C.-B.; Zhang, J.; Qiao, R.; Zhang, Q.-Y.; Mei, M.-Y.; Chen, M.-Y.; Wei, B.; Wang, C.; Qu, C.-Q. Reversible and Selective Turn-on Fluorescent and Naked-Eye Colorimetric Sensor to Detect Cyanide in Tap Water, Food Samples, and Living Systems. Ind. Eng. Chem. Res. 2020, 59, 8125–8135. [Google Scholar] [CrossRef]
- Son, M.H.; Park, S.W.; Sagong, H.Y.; Jung, Y.K. Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. Biochip J. 2023, 17, 44–67. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, L.; Yu, Y.; Lin, B.; Wang, Y.; Guo, M.; Cao, Y. Dual-Mode of Electrochemical-Colorimetric Imprinted Sensing Strategy Based on Self-Sacrifice Beacon for Diversified Determination of Cardiac Troponin I in Serum. Biosens. Bioelectron. 2020, 167, 112502. [Google Scholar] [CrossRef]
- Zhan, X.; Ding, Z.; Shang, S.; Chu, K.; Guo, Y. MXene Quantum Dot-Modified Flower-Like FeOOH for Dual-Mode Nitrite Sensing. ACS Appl. Nano Mater. 2024, 7, 24914–24924. [Google Scholar] [CrossRef]
- Sim, S.B.; Haizan, I.; Choi, M.Y.; Lee, Y.; Choi, J.-H. Recent Strategies for MicroRNA Detection: A Comprehensive Review of SERS-Based Nanobiosensors. Chemosensors 2024, 12, 154. [Google Scholar] [CrossRef]
- Haiyang, L.; Guantong, L.; Nan, Z.; Zhanye, Y.; Xinge, J.; Bing, Z.; Tian, Y. Ag-Carbon Dots with Peroxidase-like Activity for Colorimetric and SERS Dual Mode Detection of Glucose and Glutathione. Talanta 2024, 273, 125898. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Li, J.; Zheng, S.; Xia, X.; Xu, C.; Wang, C.; Wang, C.; Gu, B. Molybdenum Disulfide-Loaded Multilayer AuNPs with Colorimetric-SERS Dual-Signal Enhancement Activities for Flexible Immunochromatographic Diagnosis of Monkeypox Virus. J. Hazard. Mater. 2023, 459, 132136. [Google Scholar] [CrossRef]
- Sun, K.; Liu, C.; Cao, Y.; Zhu, J.; Li, J.; Huang, Q. Colorimetric and SERS Dual-Mode Detection of GSH in Human Serum Based on AuNPs@Cu-Porphyrin MOF Nanozyme. Anal. Chim. Acta 2024, 1304, 342552. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Cai, Y.; Zhang, J.; Zhao, Y. Fluorescent Sensor Arrays for Metal Ions Detection: A Review. Measurement 2022, 187, 110355. [Google Scholar] [CrossRef]
- Junaid, H.M.; Waseem, M.T.; Khan, Z.A.; Gul, H.; Yu, C.; Shaikh, A.J.; Shahzad, S.A. Fluorescent and Colorimetric Sensors for Selective Detection of TNT and TNP Explosives in Aqueous Medium through Fluorescence Emission Enhancement Mechanism. J. Photochem. Photobiol. A Chem. 2022, 428, 113865. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Q.; Li, J.; Zheng, S.; Wang, S.; Gu, B. Colorimetric–Fluorescent Dual-Signal Enhancement Immunochromatographic Assay Based on Molybdenum Disulfide-Supported Quantum Dot Nanosheets for the Point-of-Care Testing of Monkeypox Virus. Chem. Eng. J. 2023, 472, 144889. [Google Scholar] [CrossRef]
- Li, J.; Cao, C.; Li, H.; Chen, S.; Gong, X.; Wang, S. Highly Sensitive Quantitative Detection of Glutathione Based on a Fluorescence-Colorimetric Dual Signal Recognition Strategy. Sens. Actuators B Chem. 2024, 409, 135597. [Google Scholar] [CrossRef]
- Wu, S.; Khan, M.A.; Huang, T.; Liu, X.; Kang, R.; Zhao, H.; Cao, H.; Ye, D. Smartphone-Assisted Colorimetric Sensor Arrays Based on Nanozymes for High Throughput Identification of Heavy Metal Ions in Salmon. J. Hazard. Mater. 2024, 480, 135887. [Google Scholar] [CrossRef]
- Monisha; Shrivas, K.; Kant, T.; Patel, S.; Devi, R.; Dahariya, N.S.; Pervez, S.; Deb, M.K.; Rai, M.K.; Rai, J. Inkjet-Printed Paper-Based Colorimetric Sensor Coupled with Smartphone for Determination of Mercury (Hg2+). J. Hazard. Mater. 2021, 414, 125440. [Google Scholar] [CrossRef]
- Balbach, S.; Jiang, N.; Moreddu, R.; Dong, X.; Kurz, W.; Wang, C.; Dong, J.; Yin, Y.; Butt, H.; Brischwein, M.; et al. Smartphone-Based Colorimetric Detection System for Portable Health Tracking. Anal. Methods 2021, 13, 4361–4369. [Google Scholar] [CrossRef] [PubMed]
- Mastnak, T.; Mohr, G.J.; Finšgar, M. The Use of a Novel Smartphone Testing Platform for the Development of Colorimetric Sensor Receptors for Food Spoilage. Anal. Methods 2023, 15, 1700–1712. [Google Scholar] [CrossRef]
- Zhao, T.; Liang, X.; Guo, X.; Yang, X.; Guo, J.; Zhou, X.; Huang, X.; Zhang, W.; Wang, Y.; Liu, Z.; et al. Smartphone-Based Colorimetric Sensor Array Using Gold Nanoparticles for Rapid Distinguishment of Multiple Pesticides in Real Samples. Food Chem. 2023, 404, 134768. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, T.; Zhang, X. Empowerment of AI Algorithms in Biochemical Sensors. TrAC Trends Anal. Chem. 2024, 173, 117613. [Google Scholar] [CrossRef]
- Schackart, K.E.; Yoon, J.-Y. Machine Learning Enhances the Performance of Bioreceptor-Free Biosensors. Sensors 2021, 21, 5519. [Google Scholar] [CrossRef]
- Yang, J.; Li, G.; Chen, S.; Su, X.; Xu, D.; Zhai, Y.; Liu, Y.; Hu, G.; Guo, C.; Yang, H.B.; et al. Machine Learning-Assistant Colorimetric Sensor Arrays for Intelligent and Rapid Diagnosis of Urinary Tract Infection. ACS Sens. 2024, 9, 1945–1956. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, Y.; Sui, X.; Shao, X.; Li, K.; Zhang, H.; Xu, Z.; Zhang, D. An Artificial Intelligence-Assisted Microfluidic Colorimetric Wearable Sensor System for Monitoring of Key Tear Biomarkers. NPJ Flex. Electron. 2024, 8, 35. [Google Scholar] [CrossRef]
- Ouyang, Q.; Rong, Y.; Xia, G.; Chen, Q.; Ma, Y.; Liu, Z. Integrating Humidity-Resistant and Colorimetric COF-on-MOF Sensors with Artificial Intelligence Assisted Data Analysis for Visualization of Volatile Organic Compounds Sensing. Adv. Sci. 2025, 12, 2411621. [Google Scholar] [CrossRef]
- Tong, H.; Cao, C.; You, M.; Han, S.; Liu, Z.; Xiao, Y.; He, W.; Liu, C.; Peng, P.; Xue, Z.; et al. Artificial Intelligence-Assisted Colorimetric Lateral Flow Immunoassay for Sensitive and Quantitative Detection of COVID-19 Neutralizing Antibody. Biosens. Bioelectron. 2022, 213, 114449. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, M.; Liu, T.; Wu, C.; Sun, M.; Su, G.; Wang, X.; Wang, Y.; Yin, H.; Zhou, X.; et al. Machine Learning System To Monitor Hg2+ and Sulfide Using a Polychromatic Fluorescence-Colorimetric Paper Sensor. ACS Appl. Mater. Interfaces 2023, 15, 9800–9812. [Google Scholar] [CrossRef]
- Mann, H.; Khan, S.; Prasad, A.; Bayat, F.; Gu, J.; Jackson, K.; Li, Y.; Hosseinidoust, Z.; Didar, T.F.; Filipe, C.D.M. Bacteriophage-Activated DNAzyme Hydrogels Combined with Machine Learning Enable Point-of-Use Colorimetric Detection of Escherichia Coli. Adv. Mater. 2024, 37, 2411173. [Google Scholar] [CrossRef] [PubMed]
- Hassani-Marand, M.; Fahimi-Kashani, N.; Hormozi-Nezhad, M.R. Machine-Learning Assisted Multiplex Detection of Catecholamine Neurotransmitters with a Colorimetric Sensor Array. Anal. Methods 2023, 15, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.S.; Dias, S.B.; Jelinek, H.F.; Hadjileontiadis, L.J.; Pappa, A.M. The Convergence of Traditional and Digital Biomarkers through AI-Assisted Biosensing: A New Era in Translational Diagnostics? Biosens. Bioelectron. 2023, 235, 115387. [Google Scholar] [CrossRef] [PubMed]
Principles | Key Influencing Factors |
---|---|
LSPR-based
|
|
Redox-based
|
|
Principle | Strategy | Target | Probe | LOD | Mechanism | Reference |
---|---|---|---|---|---|---|
LSPR | Noble metal-based nanoparticles | Salmonella typhimurium | Au | 3.2 × 103 CFU/mL | LSPR effect by Au aggregation | [118] |
biothiol | AgNPR | 0.041 µM | LSPR effect by AgNPR aggregation | [120] | ||
NH3 | Au@Ag@AgCl core–shell nanoparticles | 6.4 µM | LSPR effect by noble metal-core exposure | [125] | ||
Escherichia coli O157:H7 | BUHNPs | 2.48 × 103 CFU/mL | LSPR effect by changes in size and shape | [126] |
Principle | Strategy | Target | Probe | LOD | Mechanism | Reference |
---|---|---|---|---|---|---|
LSPR | 2D materials-based nanoparticles | DA GSH | GNR/AgNP | 0.46 μM 1.2 μM | LSPR effect by changes in AgNPs | [132] |
Mel | Au@MnO2 NPs | 16.7 nM | LSPR effect by local environment | [135] | ||
Exosomes | AuNBP@MnO2 NSs | 1.35 × 102 particles/μL | LSPR effect by local environment | [116] | ||
Cu2+ | MoO3−x nanosheet | 0.8 nM | LSPR effect by local environment | [138] | ||
H2O2 Fe2+ Fe3+ HSO3− SO2 | MoO3−x nanosheet | 60 nM 50 nM 400 nM 1 μM 50 ppb | LSPR effect by local environment | [140] |
Principle | Strategy | Target | Probe | LOD | Mechanism | Reference |
---|---|---|---|---|---|---|
Redox | Nanozymes | SARS-CoV-2 | Au@Pt core–shell NPs | 11 ng/mL | Enzyme activity of Au@Pt NPs | [158] |
Escherichia coli O157:H7 | Au@Pt dumbbell NPs | 2 CFU/mL | Enzyme activity of Au and Pt | [159] | ||
biothiol | Janus Pd–Fe3O4 dumbbell NPs | 3.1 nM | Enzyme activity of Janus Pd-Fe3O4 | [162] | ||
NOR | Co-Fe3O4 MNP | 0.08 µM | Enzyme activity of Co-Fe3O4 MNP | [163] | ||
Alicyclobacillus acidoterrestris | Cu-MOF | 0.003 mM | Enzyme activity of Cu-MOF | [166] | ||
α-CS | Zr-MOF | 0.16 µg/mL | Enzyme activity of Zr-MOF | [141] | ||
histamine | DNAzyme | 38 µg/L | Enzyme activity of DNAzyme | [168] | ||
Cys AA GSH | CuS/ZnS | 1 µM (each) | Enzyme activity of CuS/ZnS | [149] |
Principle | Strategy | Target | Probe | LOD | Mechanism | Reference |
---|---|---|---|---|---|---|
Redox | 2D materials-based nanozymes | KAN | OFL-Ti-MN | 15.3 nM | Changes in substrate concentrations | [174] |
Hg2+ | Ti3C2TxNR@AuNPs nanohybrids | 0.054 nM | Changes in substrate concentrations | [175] | ||
KRAS DNA let-7a | GO-PtNP | 14.6 pM 21.7 pM | Enzyme activity of GO-PtNP | [177] | ||
KAN | aptamer- enhanced WS2 nanosheets | 0.06 µM | Presence of redox mediator | [179] | ||
OTA | aptamer- enhanced WSe2 nanosheets | 0.16 ng/mL | Presence of redox mediator | [178] | ||
UA | Fe3O4@MnO2 nanosheets | 0.27 µM | Enzyme activity of Fe3O4@MnO2 | [151] |
Dual Mode | Target | Probe | LOD | Reference |
---|---|---|---|---|
Colorimetric–electrochemical | cTnI | Apt@Fe3+-PDA | 7.4 pg/mL (colorimetric) 3.2 pg/mL (electrochemical) | [189] |
NO2− | MQDs@FeOOH | 1.58 μM (colorimetric) 2.99 μM (electrochemical) | [190] | |
Colorimetric–SERS | MPXV | MoS2@Au–Au | 0.2 ng/mL (colorimetric) 0.002 ng/mL (SERS) | [193] |
GSH | AuNPs@Cu-porphyrin MOF | 1 μM (colorimetric) 5 nM (SERS) | [194] | |
Colorimetric–fluorescence | MPXV | MoS2-TQD | 0.1 ng/mL (colorimetric) 0.00024 pg/mL (fluorescence) | [197] |
GSH | CQDs@MSN-Cu | 7 μM (colorimetric) 1.6 μM (fluorescence) | [198] |
Sensing Platform | Target | Probe | LOD | Reference |
---|---|---|---|---|
Smartphone-assisted | Urea | AgNPs | 0.58 mM | [106] |
Glyphosate Thiram Imidacloprid Tribenuron methyl Nicosulfuron Thifensulfuron methyl Dichlorprop Fenoprop | AuNPs | 1.5 × 10−7 M (each) | [203] | |
AI-assisted | VOCs | Dye@ZIF-8@COF | <1 ppm | [208] |
COVID-19 neutralizing antibodies | PDA@polymer3@SiO2@PEG-RBD | 160 ng/mL | [209] | |
Escherichia coli | DNAzyme | 101 CFU/mL | [211] | |
DA EP NEP LD | AuNPs | 0.3 μM 0.5 μM 0.2 μM 1.9 μM | [212] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Haizan, I.; Sim, S.B.; Choi, J.-H. Colorimetric Biosensors: Advancements in Nanomaterials and Cutting-Edge Detection Strategies. Biosensors 2025, 15, 362. https://doi.org/10.3390/bios15060362
Lee Y, Haizan I, Sim SB, Choi J-H. Colorimetric Biosensors: Advancements in Nanomaterials and Cutting-Edge Detection Strategies. Biosensors. 2025; 15(6):362. https://doi.org/10.3390/bios15060362
Chicago/Turabian StyleLee, Yubeen, Izzati Haizan, Sang Baek Sim, and Jin-Ha Choi. 2025. "Colorimetric Biosensors: Advancements in Nanomaterials and Cutting-Edge Detection Strategies" Biosensors 15, no. 6: 362. https://doi.org/10.3390/bios15060362
APA StyleLee, Y., Haizan, I., Sim, S. B., & Choi, J.-H. (2025). Colorimetric Biosensors: Advancements in Nanomaterials and Cutting-Edge Detection Strategies. Biosensors, 15(6), 362. https://doi.org/10.3390/bios15060362