Wearable Humidity Sensor Using Cs3Cu2I5 Metal Halides with Hydroxyl Selective Phase Transition for Breath Monitoring
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Mowla, M.N.; Mowla, N.; Shah, A.F.M.S.; Rabie, K.M.; Shongwe, T. Internet of Things and Wireless Sensor Networks for Smart Agriculture Applications: A Survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Gulati, K.; Kumar Boddu, R.S.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A Review Paper on Wireless Sensor Network Techniques in Internet of Things (IoT). Mater. Today Proc. 2022, 51, 161–165. [Google Scholar] [CrossRef]
- Morrar, R.; Arman, H.; Mousa, S. The Fourth Industrial Revolution (Industry 4.0): A Social Innovation Perspective. Technol. Innov. Manag. Rev. 2017, 7, 12–20. [Google Scholar] [CrossRef]
- Vijayan, V.; Connolly, J.; Condell, J.; McKelvey, N.; Gardiner, P. Review of Wearable Devices and Data Collection Considerations for Connected Health. Sensors 2021, 21, 5589. [Google Scholar] [CrossRef]
- Akter, R.; Lee, H.J.; Kim, T.; Choi, J.W.; Kim, H. A Review on Gold Nanowire Based SERS Sensors for Chemicals and Biological Molecules. Anal. Sci. Technol. 2024, 37, 201–210. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Rab, S.; Pratap Singh, R.; Suman, R. Sensors for Daily Life: A Review. Sens. Int. 2021, 2, 100121. [Google Scholar] [CrossRef]
- Kumar, R.; Rab, S.; Pant, B.D.; Maji, S. Design, Development and Characterization of MEMS Silicon Diaphragm Force Sensor. Vacuum 2018, 153, 211–216. [Google Scholar] [CrossRef]
- Luo, Y.; Abidian, M.R.; Ahn, J.-H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef]
- Banti, K.; Louta, M.; Baziana, P. Data Quality in Human-Centric Sensing-Based Next-Generation IoT Systems: A Comprehensive Survey of Models, Issues, and Challenges. IEEE Open J. Commun. Soc. 2023, 4, 2286–2317. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, H.; Wang, C.; Pan, S.; He, J.; Liu, A.; Wang, J.; Sun, P.; Liu, F.; Lu, G. Room Temperature Wearable Gas Sensors for Fabrication and Applications. Adv. Sens. Res. 2024, 3, 2300035. [Google Scholar] [CrossRef]
- Zong, B.; Wu, S.; Yang, Y.; Li, Q.; Tao, T.; Mao, S. Smart Gas Sensors: Recent Developments and Future Prospective. Nano Micro Lett. 2024, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Marín, D.; Llano-Viles, J.; Haddi, Z.; Perera-Lluna, A.; Fonollosa, J. Home Monitoring for Older Singles: A Gas Sensor Array System. Sens. Actuators B 2023, 393, 134036. [Google Scholar] [CrossRef]
- Delipinar, T.; Shafique, A.; Gohar, M.S.; Yapici, M.K. Fabrication and Materials Integration of Flexible Humidity Sensors for Emerging Applications. ACS Omega 2021, 6, 8744–8753. [Google Scholar] [CrossRef]
- Bao, W.; Chen, F.; Lai, H.; Liu, S.; Wang, Y. Wearable Breath Monitoring Based on a Flexible Fiber-Optic Humidity Sensor. Sens. Actuators B Chem. 2021, 349, 130794. [Google Scholar] [CrossRef]
- Freddi, S.; Sangaletti, L. Trends in the Development of Electronic Noses Based on Carbon Nanotubes Chemiresistors for Breathomics. Nanomaterials 2022, 12, 2992. [Google Scholar] [CrossRef]
- Mondal, I.; Zoabi, A.; Haick, H. Biodegradable, Humidity-Insensitive Mask-Integrated E-Nose for Sustainable and Non-Invasive Continuous Breath Analysis. Adv. Funct. Mater. 2025, 35, 2425193. [Google Scholar] [CrossRef]
- Obeidat, Y. The Most Common Methods for Breath Acetone Concentration Detection: A Review. IEEE Sens. J. 2021, 21, 14540–14558. [Google Scholar] [CrossRef]
- Bernas, B. New Method for Decomposition and Comprehensive Analysis of Silicates by Atomic Absorption Spectrometry. Anal. Chem. 1968, 40, 1682–1686. [Google Scholar] [CrossRef]
- Iitani, K.; Ishizuki, N.; Matsuhashi, Y.; Yokota, K.; Ichikawa, K.; Toma, K.; Arakawa, T.; Iwasaki, Y.; Mitsubayashi, K. Biofluorometric Acetone Gas Sensor of Sub-Ppbv Level Sensitivity. Anal. Chem. 2024, 96, 20197–20203. [Google Scholar] [CrossRef]
- Sun, X.; Hu, J.; Yan, X.; Li, T.; Chang, Y.; Qu, H.; Pang, W.; Duan, X. On-Chip Monolithic Integrated Multimode Carbon Nanotube Sensor for a Gas Chromatography Detector. ACS Sens. 2022, 7, 3049–3056. [Google Scholar] [CrossRef]
- Abdelkarem, K.; Saad, R.; El Sayed, A.M.; Fathy, M.I.; Shaban, M.; Hamdy, H. Design of High-Sensitivity La-Doped ZnO Sensors for CO2 Gas Detection at Room Temperature. Sci. Rep. 2023, 13, 18398. [Google Scholar] [CrossRef]
- Salimi, M.; Milani Hosseini, S.M.R. Smartphone-Based Detection of Lung Cancer-Related Volatile Organic Compounds (VOCs) Using Rapid Synthesized ZnO Nanosheet. Sens. Actuators B Chem. 2021, 344, 130127. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, W.; Li, Q. SnO2 as a Gas Sensor in Detection of Volatile Organic Compounds: A Review. Sens. Actuators A Phys. 2022, 346, 113845. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Y.; Li, K.; Liu, B.; Gao, L.; Duan, G. Porous α-Fe2O3 Gas Sensor with Instantaneous Attenuated Response toward Triethylamine and Its Reaction Kinetics. Chem. Eng. J. 2022, 427, 131631. [Google Scholar] [CrossRef]
- Bhusari, R.; Thomann, J.S.; Guillot, J.; Leturcq, R. Oxygen Adsorption and Desorption Kinetics in CuO Nanowire Bundle Networks: Implications for MOx-Based Gas Sensors. ACS Appl. Nano Mater. 2022, 5, 10248–10257. [Google Scholar] [CrossRef]
- Yuan, C.; Ma, J.; Zou, Y.; Li, G.; Xu, H.; Sysoev, V.V.; Cheng, X.; Deng, Y. Modeling Interfacial Interaction between Gas Molecules and Semiconductor Metal Oxides: A New View Angle on Gas Sensing. Adv. Sci. 2022, 9, 2203594. [Google Scholar] [CrossRef] [PubMed]
- Afzal, A. β-Ga2O3 Nanowires and Thin Films for Metal Oxide Semiconductor Gas Sensors: Sensing Mechanisms and Performance Enhancement Strategies. J. Mater. 2019, 5, 542–557. [Google Scholar] [CrossRef]
- Shen, Y.; Yuan, P.; Yuan, Z.; Cui, Z.; Ma, D.; Cheng, F.; Qin, K.; Wang, H.; Li, E. The O-Defective g-ZnO Sensor for VOC Gases: The Adsorption-Desorption, Electronic, and Sensitivity Properties. Langmuir 2024, 40, 17396–17404. [Google Scholar] [CrossRef]
- Goel, N.; Kunal, K.; Kushwaha, A.; Kumar, M. Metal Oxide Semiconductors for Gas Sensing. Eng. Rep. 2023, 5, e12604. [Google Scholar] [CrossRef]
- Fei, H.; Wu, G.; Cheng, W.Y.; Yan, W.; Xu, H.; Zhang, D.; Zhao, Y.; Lv, Y.; Chen, Y.; Zhang, L.; et al. Enhanced NO2 Sensing at Room Temperature with Graphene via Monodisperse Polystyrene Bead Decoration. ACS Omega 2019, 4, 3812–3819. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, N.; Lu, J.; Fauzi, F.B.; Imaizumi, R.; Tsukahara, T.; Mogari, S.; Iida, S.; Matsukura, Y.; Teramoto, S.; Yokoi, K.; et al. Basic Characteristics of Ionic Liquid-Gated Graphene FET Sensors for Nitrogen Cycle Monitoring in Agricultural Soil. Biosensors 2025, 15, 55. [Google Scholar] [CrossRef]
- Wang, M.; Pei, X.; Zhao, D. A Review on Recent Research Progress in Perovskite-Based Gas Sensors. J. Mater. Chem. C 2024, 12, 18972–18990. [Google Scholar] [CrossRef]
- Singh, P.; Bansal, N.K.; Dey, S.; Singh, R.; Singh, T. Recent Progress on Perovskite Materials for VOC Gas Sensing. Langmuir 2024, 40, 21931–21956. [Google Scholar] [CrossRef]
- Wei, C.; Guo, Z.; Wang, H.; Zhang, S.; Hao, D.; Huang, J. Recent Progress of Gas Sensors Based on Perovskites. Mater. Horiz. 2024, 12, 317–342. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Chafer, J.; Garcia-Aboal, R.; Atienzar, P.; Llobet, E. Unraveling the Gas-Sensing Mechanisms of Lead-Free Perovskites Supported on Graphene. ACS Sens. 2022, 7, 3753–3763. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, S.J.; Kim, J.H.; Park, J.; Kang, Y.C.; Song, M.; Lee, H.W.; Kim, H.S.; Choi, J.W. Multimodal Gas Sensor Detecting Hydroxyl Groups with Phase Transition Based on Eco-Friendly Lead-Free Metal Halides. Adv. Funct. Mater. 2022, 32, 2202207. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmü, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef]
- Jun, T.; Sim, K.; Iimura, S.; Sasase, M.; Kamioka, H.; Kim, J.; Hosono, H. Lead-Free Highly Efficient Blue-Emitting Cs₃Cu₂I₅ with 0D Electronic Structure. Adv. Mater. 2018, 30, 1804547. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.A.; Khodair, Z.T.; Khadom, A.A. Preparation and Investigation of the Structural Properties of α-Al2O3 Nanoparticles Using the Sol-Gel Method. Chem. Data Collect. 2020, 29, 100531. [Google Scholar] [CrossRef]
- Vaghela, N.R.; Nath, K. Reduced Graphene Oxide Coated Graphite Electrodes for Treating Reactive Turquoise Blue 21 Rinse Water Using an Indirect Electro-Oxidation Process. SN Appl. Sci. 2020, 2, 1839. [Google Scholar] [CrossRef]
- Yin, Z.; Yang, Y.; Hu, C.; Li, J.; Qin, B.; Yang, X. Wearable Respiratory Sensors for Health Monitoring. NPG Asia Mater. 2024, 16, 8. [Google Scholar] [CrossRef]
- Tachibana, S.; Wang, Y.-F.; Sekine, T.; Takeda, Y.; Hong, J.; Yoshida, A.; Abe, M.; Miura, R.; Watanabe, Y.; Kumaki, D.; et al. A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite. ACS Appl. Mater. Interfaces 2022, 14, 5721–5728. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, T.; Qi, R.; Dai, J.; Liu, S.; Fei, T. Drawn on Paper: A Reproducible Humidity Sensitive Device by Handwriting. ACS Appl. Mater. Interfaces 2017, 9, 28002–28009. [Google Scholar] [CrossRef]
- Chen, X.; Ma, K.; Ou, J.; Mo, D.; Lian, H.; Li, X.; Cui, Z.; Luo, Y. Fast-Response Non-Contact Flexible Humidity Sensor Based on Direct-Writing Printing for Respiration Monitoring. Biosensors 2023, 13, 792. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Zhao, L.; Wang, D.; Xu, H.; Wang, K.; Han, W. A Flexible Humidity Sensor Based on Natural Biocompatible Silk Fibroin Films. Adv. Mater. Technol. 2021, 6, 2001053. [Google Scholar] [CrossRef]
- Tang, Q.-Y.; Chan, Y.C.; Zhang, K. Fast Response Resistive Humidity Sensitivity of Polyi-mide/Multiwall Carbon Nanotube Composite Films. Sens. Actuators B Chem. 2011, 152, 99–106. [Google Scholar] [CrossRef]
- Su, C.-H.; Chiu, H.-L.; Chen, Y.-C.; Yesilmen, M.; Schulz, F.; Ketelsen, B.; Vossmeyer, T.; Liao, Y.-C. Highly Responsive PEG/Gold Nanoparticle Thin-Film Humidity Sensor via Inkjet Printing Technology. Langmuir 2019, 35, 3256–3264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.H.; Oh, L.K.; Lee, D.H.; Gwak, D.; Song, N.; Oh, B.; Lee, N.Y.; Kim, H.; Kim, H.S.; Choi, J.W. Wearable Humidity Sensor Using Cs3Cu2I5 Metal Halides with Hydroxyl Selective Phase Transition for Breath Monitoring. Biosensors 2025, 15, 311. https://doi.org/10.3390/bios15050311
Yang SH, Oh LK, Lee DH, Gwak D, Song N, Oh B, Lee NY, Kim H, Kim HS, Choi JW. Wearable Humidity Sensor Using Cs3Cu2I5 Metal Halides with Hydroxyl Selective Phase Transition for Breath Monitoring. Biosensors. 2025; 15(5):311. https://doi.org/10.3390/bios15050311
Chicago/Turabian StyleYang, Si Hyeok, Lim Kyung Oh, Dong Ho Lee, Donghoon Gwak, Nara Song, Bowon Oh, Na Young Lee, Hongki Kim, Han Seul Kim, and Jin Woo Choi. 2025. "Wearable Humidity Sensor Using Cs3Cu2I5 Metal Halides with Hydroxyl Selective Phase Transition for Breath Monitoring" Biosensors 15, no. 5: 311. https://doi.org/10.3390/bios15050311
APA StyleYang, S. H., Oh, L. K., Lee, D. H., Gwak, D., Song, N., Oh, B., Lee, N. Y., Kim, H., Kim, H. S., & Choi, J. W. (2025). Wearable Humidity Sensor Using Cs3Cu2I5 Metal Halides with Hydroxyl Selective Phase Transition for Breath Monitoring. Biosensors, 15(5), 311. https://doi.org/10.3390/bios15050311