Single-Cell Endoscopy for Multifunctional Live-Cell Molecular Analysis
Abstract
:1. Introduction
2. Fabrication and Characterization of Endoscopes
Type | Glass Pipettes | AFM Tips | Nanowires/ Nanotubes | Vertically Aligned Arrays |
---|---|---|---|---|
Dimension | micro: 0.5–5 µm nano: ~100 nm | ~200–400 nm | ~50–250 nm | diameter: ~150 nm height: 2–3 µm |
Modification | antibody/ nanoparticle | usually hollow | polymer/ nanoparticle | usually hollow |
Detection | fluorescence, Raman, electrochemical | fluorescence, ELISA, PCR | electrochemical, Raman | fluorescence, ELISA, PCR |
Sensing | DNA/RNA/protein/ion/pH/gas | mRNA/protein | protein/glucose/ion/gas | mRNA/protein/ion |
Advantages | assess heterogenous variants in RNA and mitochondrial DNA expression by precisely targeting organelles within cells | extract fl quantities of intracellular materials; accurately target organelles within cells | less invasive because of fine diameters and uniform geometry | high throughput |
Limitations | cellular damage due to the relatively larger dimensions and low throughput | cellular damage due to larger dimensions and incapable of continuous fluid handling | long insertion time (usually 20–30 min) and lack of temporal control over the delivery process | the accuracy of sampling is challenging |
Reference | [12,13,14] | [22,23,24] | [18,19,25] | [26,27,28] |
2.1. Conical Endoscopes
2.2. Cylindrical Endoscopes
2.3. Vertically Aligned Arrays
3. Biomedical Applications
3.1. Nucleic Acids
3.2. Proteins
3.3. Ions
3.4. Cellular Microenvironment Monitoring
4. Conclusions and Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bendall, S.C.; Nolan, G.P. From single cells to deep phenotypes in cancer. Nat. Biotechnol. 2012, 30, 639–647. [Google Scholar] [CrossRef]
- Zheng, X.T.; Li, C.M. Single cell analysis at the nanoscale. Chem. Soc. Rev. 2012, 41, 2061–2071. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E.K.; Do, T.D.; Comi, T.J.; Sweedler, J.V. Exploring the fundamental structures of life: Non-targeted, chemical analysis of single cells and subcellular structures. Angew. Chem. Int. Ed. 2019, 58, 9348–9364. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.F.; Gao, C.H.; Lu, Q.; Ma, S.Y.; Hang, W. Single-cell mass spectrometry imaging of multiple drugs and nanomaterials at organelle level. ACS Nano 2021, 15, 13220–13229. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, C.Y.J. Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis. Acc. Chem. Res. 2017, 50, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Zilionis, R.; Nainys, J.; Veres, A.; Savova, V.; Zemmour, D.; Klein, A.M.; Mazutis, L. Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 2017, 12, 44–73. [Google Scholar] [CrossRef]
- Han, Y.Y.; Gu, Y.; Zhang, A.C.; Lo, Y.H. Review: Imaging technologies for flow cytometry. Lab Chip 2016, 16, 4639–4647. [Google Scholar] [CrossRef]
- Hughes, A.J.; Spelke, D.P.; Xu, Z.C.; Kang, C.C.; Schaffer, D.V.; Herr, A.E. Single-cell western blotting. Nat. Methods 2014, 11, 749–755. [Google Scholar] [CrossRef]
- Yamauchi, K.A.; Herr, A.E. Subcellular western blotting of single cells. Microsyst. Nanoeng. 2017, 3, 16079. [Google Scholar] [CrossRef]
- Riera, R.; Hogervorst, T.P.; Doelman, W.; Ni, Y.; Pujals, S.; Bolli, E.; Codee, J.D.C.; Van Kasteren, S.I.; Albertazzi, L. Single-molecule imaging of glycan-lectin interactions on cells with Glyco-PAINT. Nat. Chem. Biol. 2021, 17, 1281–1288. [Google Scholar] [CrossRef]
- Ghaemmaghami, S.; Huh, W.; Howson, R.W.; Belle, A.; Dephoure, N.; O’Shea, E.K.; Weissman, J.S. Global analysis of protein expression in yeast. Nature 2003, 425, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.J.; Ying, Y.L.; Gao, R.; Long, Y.T. Confined nanopipette sensing: From single molecules, single nanoparticles, to single cells. Angew. Chem. Int. Ed. 2019, 58, 3706–3714. [Google Scholar] [CrossRef]
- Zhang, S.D.; Li, M.Z.; Su, B.; Shao, Y.H. Fabrication and use of nanopipettes in chemical analysis. Annu. Rev. Anal. Chem. 2018, 11, 265–286. [Google Scholar] [CrossRef]
- Yi, W.; Xiao, J.X.; Shi, Z.Y.; Zhang, C.B.; Yi, L.H.; Lu, Y.B.; Wang, X.Z. Glass nano/micron pipette-based ion current rectification sensing technology for single cell/in vivo analysis. Analyst 2024, 149, 4981–4996. [Google Scholar] [CrossRef]
- Li, M.; Dang, D.; Xi, N.; Wang, Y.C.; Liu, L.Q. Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: From single molecules to living cells. Nanoscale 2017, 9, 17643–17666. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Park, I.; Lee, Y.; Kim, H.J.; Jung, J.H.; Lee, J.H.; Kim, Y.; Kim, J.H.; Park, J.W. Visualization and quantification of MicroRNA in a single cell using atomic force microscopy. J. Am. Chem. Soc. 2016, 138, 11664–11671. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Chien, C.C.; Maroulis, B.; Bei, J.N.; Gaitas, A.; Gong, B. Extending applications of AFM to fluidic AFM in single living cell studies. J. Cell. Physiol. 2022, 237, 3222–3238. [Google Scholar] [CrossRef]
- Yan, R.X.; Park, J.H.; Choi, Y.; Heo, C.J.; Yang, S.M.; Lee, L.P.; Yang, P.D. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 2012, 7, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Singhal, R.; Orynbayeva, Z.; Sundaram, R.V.K.; Niu, J.J.; Bhattacharyya, S.; Vitol, E.A.; Schrlau, M.G.; Papazoglou, E.S.; Friedman, G.; Gogotsi, Y. Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotechnol. 2011, 6, 57–64. [Google Scholar] [CrossRef]
- Liu, J.; Yin, D.Y.; Wang, S.S.; Chen, H.Y.; Liu, Z. Probing low-copy-number proteins in a single living cell. Angew. Chem. Int. Ed. 2016, 55, 13215–13218. [Google Scholar] [CrossRef]
- Cao, Y.H.; Hjort, M.; Chen, H.D.; Birey, F.; Leal-Ortiz, S.A.; Han, C.M.; Santiago, J.G.; Pasca, S.P.; Wu, J.C.; Melosh, N.A. Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. Proc. Natl. Acad. Sci. USA 2017, 114, e1866–e1874. [Google Scholar] [CrossRef]
- Mieda, S.; Amemiya, Y.; Kihara, T.; Okada, T.; Sato, T.; Fukazawa, K.; Ishihara, K.; Nakamura, N.; Miyake, J.; Nakamura, C. Mechanical force-based probing of intracellular proteins from living cells using antibody-immobilized nanoneedles. Biosens. Bioelectron. 2012, 31, 323–329. [Google Scholar] [CrossRef]
- Li, M.; Xi, N.; Wang, Y.C.; Liu, L.Q. Advances in atomic force microscopy for single-cell analysis. Nano Res. 2019, 12, 703–718. [Google Scholar] [CrossRef]
- Silberberg, Y.R.; Kawamura, R.; Nakamura, C. Detection of microtubules in vivo using antibody-immobilized nanoneedles. J. Biosci. Bioeng. 2014, 117, 107–112. [Google Scholar] [CrossRef]
- Lin, Z.L.C.; Xie, C.; Osakada, Y.; Cui, Y.; Cui, B.X. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 2014, 5, 3206. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.E.; Kim, I.; Karam, P.; Choi, H.J.; Yang, P.D. Bacterial recognition of silicon nanowire arrays. Nano Lett. 2013, 13, 2864–2869. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Ko, S.; Lee, J.; Na, J.; Sung, J.; Lee, H.J.; Lee, S.; Chung, S.; Choi, H.J. Nanoelectrode-mediated single neuron activation. Nanoscale 2020, 12, 4709–4718. [Google Scholar] [CrossRef]
- Xu, A.M.; Aalipour, A.; Leal-Ortiz, S.; Mekhdjian, A.H.; Xie, X.; Dunn, A.R.; Garner, C.C.; Melosh, N.A. Quantification of nanowire penetration into living cells. Nat. Commun. 2014, 5, 3613. [Google Scholar] [CrossRef]
- Vo-Dinh, T.; Alarie, J.P.; Cullum, B.M.; Griffin, G.D. Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. Nat. Biotechnol. 2000, 18, 764–767. [Google Scholar] [CrossRef]
- Zheng, X.T.; Li, C.M. Single living cell detection of telomerase over-expression for cancer detection by an optical fiber nanobiosensor. Biosens. Bioelectron. 2010, 25, 1548–1552. [Google Scholar] [CrossRef]
- Liu, J.; Xie, D.; Liu, Z. Probing nucleus-enriched proteins in single living cells via a subcellular-resolved plasmonic immunosandwich assay. Analyst 2021, 146, 2878–2885. [Google Scholar] [CrossRef]
- Masson, J.F.; Breault-Turcot, J.; Faid, R.; Poirier-Richard, H.P.; Yockell-Lelièvre, H.; Lussier, F.; Spatz, J.P. Plasmonic nanopipette biosensor. Anal. Chem. 2014, 86, 8998–9005. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Song, M.S.; Ly, N.H.; Lee, S.Y.; Joo, S.W. Nanostars on nanopipette tips: A Raman probe for quantifying oxygen levels in hypoxic single cells and tumours. Angew. Chem. Int. Ed. 2019, 58, 2710–2714. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wen, Y.R.; He, H.; Chen, H.Y.; Liu, Z. Probing cytoplasmic and nuclear microRNAs in single living cells via plasmonic affinity sandwich assay. Chem. Sci. 2018, 9, 7241–7246. [Google Scholar] [CrossRef]
- Liu, J.; He, H.; Xie, D.; Wen, Y.R.; Liu, Z. Probing low-copy-number proteins in single living cells using single-cell plasmonic immunosandwich assays. Nat. Protoc. 2021, 16, 3522–3546. [Google Scholar] [CrossRef] [PubMed]
- Guillaume-Gentil, O.; Grindberg, R.V.; Kooger, R.; Dorwling-Carter, L.; Martinez, V.; Ossola, D.; Pilhofer, M.; Zambelli, T.; Vorholt, J.A. Tunable single-cell extraction for molecular analyses. Cell 2016, 166, 506–516. [Google Scholar] [CrossRef]
- Galvanetto, N.; Ye, Z.J.; Marchesi, A.; Mortal, S.; Maity, S.; Laio, A.; Torre, V. Unfolding and identification of membrane proteins in situ. elife 2022, 11, e77427. [Google Scholar] [CrossRef]
- Lostao, A.; Lim, K.; Pallarés, M.C.; Ptak, A.; Marcuello, C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale-A comprehensive review of AFM-based force spectroscopy. Int. J. Biol. Macromol. 2023, 238, 124089. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, Y.Z.; Li, M. Automated high-throughput atomic force microscopy single-cell nanomechanical assay enabled by deep learning-based optical image recognition. Nano Lett. 2024, 24, 12323–12332. [Google Scholar] [CrossRef]
- Guillaume-Gentil, O.; Potthoff, E.; Ossola, D.; Franz, C.M.; Zambelli, T.; Vorholt, J.A. Force-controlled manipulation of single cells: From AFM to FluidFM. Trends Biotechnol. 2014, 32, 381–388. [Google Scholar] [CrossRef]
- Amarouch, M.Y.; El Hilaly, J.; Mazouzi, D. AFM and FluidFM Technologies: Recent applications in molecular and cellular biology. Scanning 2018, 7801274. [Google Scholar] [CrossRef] [PubMed]
- Quek, Y.J.; Tay, A. Nanoscale methods for longitudinal extraction of intracellular contents. Adv. Mater. 2024, 36, e2314184. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Jeon, J.; Kang, J.K.; Song, S.H.; Kim, T.Y.; Ban, C.; Choi, H.; Kim, Y.; Kim, M.; Park, J.W. Direct detection of low abundance genes of single point mutation. Nano Lett. 2021, 21, 9061–9068. [Google Scholar] [CrossRef]
- Asif, M.H.; Danielsson, B.; Willander, M. ZnO nanostructure-based intracellular sensor. Sensors 2015, 15, 11787–11804. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; De Keersmaecker, H.; Su, L.; Kenens, B.; Rocha, S.; Fron, E.; Chen, C.; Van Dorpe, P.; Mizuno, H.; Hofkens, J.; et al. Live-cell SERS endoscopy using plasmonic nanowire waveguides. Adv. Mater. 2014, 26, 5124–5128. [Google Scholar] [CrossRef]
- Kang, M.; Yoo, S.M.; Gwak, R.; Eom, G.; Kim, J.; Lee, S.Y.; Kim, B. Electro-triggering and electrochemical monitoring of dopamine exocytosis from a single cell by using ultrathin electrodes based on Au nanowires. Nanoscale 2016, 8, 214–218. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Qiu, X.; Chen, X.H.; Huang, M.M.; Li, Y.X. Single gold nanowire-based nanosensor for adenosine triphosphate sensing by using in-situ surface-enhanced Raman scattering technique. Talanta 2022, 249, 123675. [Google Scholar] [CrossRef]
- Jin, X.K.; Jin, K.Q.; Yang, X.K.; Wen, M.Y.; Liu, Y.L.; Huang, W.H. Real-time monitoring of intracellular biochemical response in locally stretched single cell by a nanosensor. Anal. Bioanal. Chem. 2024, 416, 4779–4787. [Google Scholar] [CrossRef]
- Niu, J.J.; Schrlau, M.G.; Friedman, G.; Gogotsi, Y. Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy. Small 2011, 7, 540–545. [Google Scholar] [CrossRef]
- Korneva, G.; Ye, H.H.; Gogotsi, Y.; Halverson, D.; Friedman, G.; Bradley, J.C.; Kornev, K.G. Carbon nanotubes loaded with magnetic particles. Nano Lett. 2005, 5, 879–884. [Google Scholar] [CrossRef]
- Berthing, T.; Bonde, S.; Sorensen, C.B.; Utko, P.; Nygard, J.; Martinez, K.L. Intact mammalian cell function on semiconductor nanowire arrays: New perspectives for cell-based biosensing. Small 2011, 7, 640–647. [Google Scholar] [CrossRef]
- Jahed, Z.; Zareian, R.; Chau, Y.Y.; Seo, B.B.; West, M.; Tsui, T.Y.; Wen, W.J.; Mofrad, M.R.K. Differential collective- and single-cell behaviors on silicon micropillar arrays. ACS Appl. Mater. Interfaces 2016, 8, 23604–23613. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y.P.; Meyyappan, M. Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor. Nano Lett. 2004, 4, 1247–1252. [Google Scholar] [CrossRef]
- Fan, H.J.; Lee, W.; Scholz, R.; Dadgar, A.; Krost, A.; Nielsch, K.; Zacharias, M. Arrays of Vertically Aligned and Hexagonally Arranged ZnO Nanowires. Nanotechnology 2005, 16, 913–917. [Google Scholar] [CrossRef]
- Actis, P.; Maalouf, M.M.; Kim, H.J.; Lohith, A.; Vilozny, B.; Seger, R.A.; Pourmand, N. Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano 2014, 8, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Wen, Y.R.; Chen, J.R.; Lu, H.F.; He, H.; Liu, Z. Probing queuosine modifications of transfer RNA in single living cells via plasmonic affinity sandwich assay. Anal. Chem. 2022, 94, 12828–12835. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.R.; Pyo, J. Quantitative probing of Cu (2+) ions naturally present in single living cells. Adv. Mater. 2016, 28, 4071–4076. [Google Scholar] [CrossRef]
- Ahmed, Z.; Timsah, Z.; Suen, K.M.; Cook, N.P.; Lee, G.R.; Lin, C.C.; Gagea, M.; Marti, A.A.; Ladbury, J.E. Grb2 monomer-dimer equilibrium determines normal versus oncogenic function. Nat. Commun. 2015, 6, 7354. [Google Scholar] [CrossRef]
- Timsah, Z.; Ahmed, Z.; Lin, C.C.; Melo, F.A.; Stagg, L.J.; Leonard, P.G.; Jeyabal, P.; Berrout, J.; O’Neil, R.G.; Bogdanov, M.; et al. Competition between Grb2 and Plc gamma 1 for FGFR2 regulates basal phospholipase activity and invasion. Nat. Struct. Mol. Boil. 2014, 21, 180–188. [Google Scholar] [CrossRef]
- Wen, Y.R.; Liu, J.; He, H.; Li, S.S.C.; Liu, Z. Single cell analysis of signaling proteins provides insights into pro-apoptotic properties of anti-cancer drugs. Anal. Chem. 2020, 92, 12498–12508. [Google Scholar] [CrossRef]
- Wen, Y.R.; Zhao, J.L.; He, H.; Zhao, Q.; Liu, Z. Multiplexed single-cell plasmonic immunoassay of intracellular signaling proteins enables non-destructive monitoring of cell fate. Anal. Chem. 2021, 93, 14204–14213. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, P.; Wang, Z.; Ma, X. A DNAzyme-gold nanostar probe for SERS-fluorescence dual-mode detection and imaging of calcium ions in living cells. Sens. Actuators B Chem. 2021, 347, 130596. [Google Scholar] [CrossRef]
- Hanif, S.; Liu, H.L.; Chen, M.; Muhammad, P.; Zhou, Y.; Cao, J.; Ahmed, S.A.; Xu, J.J.; Xia, X.H.; Chen, H.Y.; et al. Organic cyanide decorated SERS active nanopipettes for quantitative detection of hemeproteins and Fe3+ in single cells. Anal. Chem. 2017, 89, 2522–2530. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Jiang, Q.C.; Pang, J.; Jiang, Z.Y.; Cao, J.; Ji, L.N.; Xia, X.H.; Wang, K. A multiparameter pH-sensitive nanodevice based on plasmonic nanopores. Adv. Funct. Mater. 2018, 28, 1703847. [Google Scholar] [CrossRef]
- Guo, J.; Rubfiaro, A.S.; Lai, Y.H.; Moscoso, J.; Chen, F.; Liu, Y.; Wang, X.W.; He, J. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette. Analyst 2020, 145, 4852–4859. [Google Scholar] [CrossRef]
- Zhang, X.W.; Qiu, Q.F.; Jiang, H.; Zhang, F.L.; Liu, Y.L.; Amatore, C.; Huang, W.H. Real-time intracellular measurements of ROS and RNS in living cells with single core-shell nanowire electrodes. Angew. Chem. Int. Ed. 2017, 56, 12997–13000. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Wang, L.; Yao, H.; Shen, S.; Zhao, X.; Yuan, C.; Yu, L.; Chen, G.; Liu, J. Single-Cell Endoscopy for Multifunctional Live-Cell Molecular Analysis. Biosensors 2025, 15, 244. https://doi.org/10.3390/bios15040244
Xue H, Wang L, Yao H, Shen S, Zhao X, Yuan C, Yu L, Chen G, Liu J. Single-Cell Endoscopy for Multifunctional Live-Cell Molecular Analysis. Biosensors. 2025; 15(4):244. https://doi.org/10.3390/bios15040244
Chicago/Turabian StyleXue, Haoze, Li Wang, Han Yao, Shuwei Shen, Xu Zhao, Chenxi Yuan, Luting Yu, Guoguang Chen, and Jia Liu. 2025. "Single-Cell Endoscopy for Multifunctional Live-Cell Molecular Analysis" Biosensors 15, no. 4: 244. https://doi.org/10.3390/bios15040244
APA StyleXue, H., Wang, L., Yao, H., Shen, S., Zhao, X., Yuan, C., Yu, L., Chen, G., & Liu, J. (2025). Single-Cell Endoscopy for Multifunctional Live-Cell Molecular Analysis. Biosensors, 15(4), 244. https://doi.org/10.3390/bios15040244