Cancer and Aging Biomarkers: Classification, Early Detection Technologies and Emerging Research Trends
Abstract
1. Introduction
2. Shared Biological Mechanisms Between Aging and Cancer
2.1. Genomic Instability
2.1.1. DNA Damage Accumulation
2.1.2. Chromosomal Aberrations
2.2. Cellular Senescence
2.2.1. Senescence-Associated Secretory Phenotype (SASP)
2.2.2. Tumor-Suppressive vs. Tumor-Promoting Roles
2.2.3. Senescent Cell Clearance Mechanisms
2.3. Telomere Dysfunction
2.4. Chronic Inflammation
2.5. Autophagy Dysregulation
3. Distinct Pathways: Where Aging and Cancer Diverge
3.1. Cellular Fate Decisions
3.2. Tissue-Level Manifestations
4. Biomarkers in Aging and Cancer
4.1. Genomic Biomarkers
4.2. Epigenetic Biomarkers
| Biomarker Class | Representative Molecules | Sample Type | Detection Platform | Evidence Level |
|---|---|---|---|---|
| Genomic | ERCC1 defect | Mouse VSMC | SMC-KO | accelerated, nonatherosclerotic vascular aging in mouse model [249] |
| PDE1 | upregulated in aorta | qRT-PCR | Decreased vasodilation function in aging mice [249,250] | |
| BRCA1, BRCA2, | Normal breast tissue carrying germline mutations (BRCA1, BRCA2) | IF, Flow Cytometry, RNA-seq | Clinical, accelerated biological aging phenotypes [252], increase susceptibility to breast cancer [252], | |
| ATM, ATR | Mouse Models | knockout, knockin, transgenic mouse models | Preclinical Data [253] | |
| mtDNA | mtDNA deletions Human tissues (skeletal muscle, brain, colonic crypts); Mouse tissues | NGS, ddPCR | Fundamental Phenotype of aging in mouse, fly, and worm models [254] | |
| mtDNA | Mouse tissues, mouse cells, blood | Histochemical Analysis, RT PCR, Oxygen Electrode | Respiration defects, development of B-cell lymphoma, in vivo and in vitro [255] | |
| Primary Mitochondrial Diseases | Blood, Muscle DNA, Uroepithelial cells | NGS, WGS, and RFLP testing | age-related neurogenetic disorders [257] | |
| Brain Age Gap | MRI data in UK biobank Tissues, blood | MRI, DL | Genetically Supported Druggable Genes, a large cohort [258] | |
| Epigenetic | DNMT3A mutations, TET2 mutations | Blood | Targeted deep exome sequencing (custom panel), Illumina NovaSeq 6000 platform | Clinical, Associated with higher average age and increased risk of CVD [264] |
| DNMT1, DNMT3a, DNMT3b | Cancer tissues | DNA methylation assays | Aberrant expression associated with tumor development [266], in vitro, in vivo | |
| LINE-1, IL22RA1, PRAME, PAX8, GAGE2A, B2M | Blood, Tumor samples | Pyrosequencing, Illumina array | phase 1 dose-escalation study (NCT02998567) [269] | |
| KDM1A | HCC, Xenografts in Nude Mice | Western blot, flow cytometry qRT-PCR | role of KDM1A in sorafenib resistance of HCC, in vitro, in vivo [273] | |
| TERT | TERT Hypermethylated Oncological Region | DNA methylation assays, NGS | Human Tumors, cell lines, normal tissue and cells [275] | |
| H3K4me3; H3K27me3 | Aged hematopoietic stem cells (HSCs) | RNA-seq, ChIP-seq | H3K4me3 levels increase in aged HSCs; In vitro, in vivo [279] | |
| H3K9me2; H3K27me2 Catalyzed by KDM7A | Brain Regions; Cell Lines | Western blot, ChIP-qPCR qRT-PCR | in vitro, in vivo [280]. | |
| H3K27ac (Catalyzed by EP300/CBP) | AD patient brains; iPSC-derived neurons (AD model) | ChIP-seq; RNA-seq, ELISA | In vitro iPSC-neuron model; Comparison to Human Brain Data [285] | |
| H3K36me3 | Mouse small intestine, Intestinal organoids | RNA-seq | in vitro and in vivo models [282] | |
| SWI/SNF mutations | Tumor tissue samples | CRISPR screening | in vitro and in vivo models [291] | |
| BRG1 (component of SWI/SNF) | PTEN-deficient PCa cells (PCa model) | ChIP-Seq; RNA-Seq | In vitro, in vivo [293] | |
| miR-21 | Blood, tissue (breast, colorectal, leukemia, lung, prostate | qRT-PCR or sequencing | Diagnostic and prognostic biomarker for CRC; biomarker for CVD [295,296] | |
| miR-455-3p | Tumor tissues (Osteosarcoma, HCC, Esophageal Squamous Cell Carcinoma, BC) | qRT-PCR | Functions as a tumor suppressor (HCC); potential target for diagnosis and prognosis in Osteosarcoma (OS) [297,298] | |
| PCA3 (PCa Antigen 3) | urine | Molecular urine analysis | First FDA-approved ncRNA cancer biomarker test; used for diagnosis of PCa [296,299] |
4.3. Inflammatory Biomarkers
4.4. Metabolomic Biomarkers
| Biomarker Class | Representative Molecules | Sample Type | Detection Platform | Evidence Level |
|---|---|---|---|---|
| Inflammatory | IL-6 | Blood/Serum/Plasma, Secreted media | Multiplex platforms, ELISA, Western Blot | Preclinical, clinical [96,102,319,322,324] |
| IL-1β | Blood/Serum/Plasma, Secreted media | Multiplex platforms, ELISA, Western Blot | Preclinical, clinical [96,99,319] | |
| TNF-α | Blood/Plasma, Serum | Multiplex platforms, ELISA | Preclinical, clinical [168,319,324] | |
| NF-κB | senescent cells | Western blot, Luciferase Assay | NF-κB activation has been observed in numerous age-related diseases [96,168] | |
| CD4+, CD8+ | T cell surface markers | RT-PCR, Flow Cytometry | in vivo mouse models, Elevated IL-6 in aged hosts impairs CD8+ T cell function, severely compromising CD4+ T cell-mediated antitumor responses [322] | |
| IL-10 | bone marrow cells, blood from mouse models | RT-PCR, ELISA, Microarray Analysis | age-related ineffective erythropoiesis animal models [324] | |
| CRP | Blood | ELISA | phase II clinical trial [325] | |
| CHI3L1(YKL-40) | Serum, CSF, tissues | ELISA | Preclinical, clinical [325,326] | |
| Metabolic | HbA1c | Blood | an immunoassay, HPLC | 6.5% for diabetes [331] |
| AGEs: CML, CEL, Glucosepane, N2-Carboxyethyl-2’-deoxyguanosine | Blood, tissue, urine, cell membranes | Electrophoresis, Spectroscopy, NMR, MS | In vitro, in vivo, clinical [327] | |
| sRAGE: esRAGE, cRAGE | plasma | ELISA | cohort study [332] | |
| HK2 | Lung and breast from Mouse models, human cancer cell lines | Immunoblot, IHC, PET, LC-MS/MS | In vitro, in vivo [335] | |
| Lactic acid, LDH | Blood, tumor tissues | Blood lactate test, MRS, MRI | Preclinical, Clinical [340] | |
| GSH | Blood, RBC, liver, muscle | HPLC, LC-MS | Rodent, human clinical trials [345] | |
| GLS1 | Tumor tissues, patients’ plasma, cell lines | The Cancer Genome Atlas (TCGA) database | Preclinical, bioinformatics analyses [348] | |
| IDO, TDO | Clinical samples, cell lines, animal models | IHC, HPLC, western blot, MRI | Preclinical, clinical [350] | |
| IGF-1, IGF-1R | Biopsy tissues, blood | IHC, genetic analysis | Preclinical, clinical [358,359] | |
| Adiponectin | Blood | ELISA | In vitro, in vivo [360] | |
| FASN | Tumor tissues, cell line | IHC, gene expression | Preclinical and clinical [364] |
4.5. Protein Biomarkers
| Test Name | Type | Components | FDA Clearance Year | Notes/Indications | SN | SP |
|---|---|---|---|---|---|---|
| ROMA (Risk of Ovarian Malignancy Algorithm) | Algorithm | CA125 + HE4 + menopausal status | 2011 | Preoperative risk stratification for epithelial ovarian cancer (EOC) in women with adnexal masses | ~94–95% | ~76–80% |
| OVA1 | Multivariate index assay | CA125-II + Transthyretin (TTR) + Apolipoprotein A-1 (ApoA-1) + Transferrin (TF) + β2-microglobulin | 2009 | Pre-surgical assessment of adnexal mass malignancy risk. | 96% (postmenopausal)/85% (premenopausal) | 28–40% |
| Overa (OVA2) | Second-generation OVA1 | CA125-II + HE4 + ApoA-1 + TF + Follicle-stimulating hormone (FSH) | 2016 | Improved version of OVA1 for adnexal mass risk assessment | 91% | 69% |
5. Early Detection Strategies for Cancer
5.1. Liquid Biopsy Approaches
5.1.1. ctDNA
5.1.2. CTCs
5.1.3. EVs and Plasma Proteomic Biomarkers
5.1.4. Non-Coding RNA
5.2. Advances in Diagnostic Technology
5.2.1. DNAm/Tumor DNA Detection Methods
5.2.2. RNA-seq in Liquid Biopsy
5.2.3. Microfluidic Devices (MDs)
5.2.4. Surface-Enhanced Raman Scattering (SERS) Biosensors
5.2.5. Surface Plasmon Resonance (SPR) Biosensors
5.2.6. Electrochemical Biosensors
5.3. AI and Machine Learning
5.3.1. Key Concepts of DL and Diagnostic Features
5.3.2. Convolutional Neural Networks (CNNs)
5.3.3. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
5.3.4. Others
5.3.5. AI-Based Early Cancer Diagnosis
Image-Based Diagnosis
Genomic and Molecular Diagnosis
Multi-Modal Data Integration
Topological Data Analysis
6. Early Detection Strategies for Aging
6.1. Key Biomarkers and Pathological Changes
6.1.1. Fluid-Based Biomarkers
6.1.2. Cell Aging and Neuroinflammation
6.1.3. Cognitive Function Assessment
6.2. Neuroimaging Techniques
6.2.1. T1-Weighted MRI and Structural Changes
6.2.2. White Matter Hyperintensity Lesions (WMH)
6.2.3. Other MRI Techniques
6.2.4. Other Neuroimaging Data
6.2.5. Key Datasets
6.3. Integration of AI
Various ML/DL Models and Performance
6.4. Brain Age Prediction and Brain Age Gap
6.4.1. Importance of BAP and BAG
6.4.2. Neuroimaging Techniques and Their Characteristics
6.4.3. ML/DL Performance of BAP
7. Point-of-Care Applications
7.1. Recent Developments for Enhancing Biosensor Performance
7.1.1. Nanotechnology (Nanomaterials and Nanostructures)
7.1.2. Wearable Sensors
7.1.3. Smartphone Integration
7.1.4. Integration of AI in POC Testing (POCT)
7.2. Microfluidics Systems and Chip-Based Devices
7.2.1. Concept and Features of Microfluidics Systems and Chip-Based Devices
7.2.2. Application of Microfluidic System for Cancer Diagnosis in POCT
7.2.3. Application of Microfluidic System for Age-Related/Chronic Diseases Diagnosis in POCT
7.3. Electrochemical Biosensors in POCT
7.3.1. Concept and Features of Electrochemical Biosensors
7.3.2. Application of Electrochemical Biosensors for Cancer Diagnosis in POCT
7.3.3. Application of Electrochemical Biosensors for Age-Related/Chronic Diseases Diagnosis in POCT
7.4. Optical Biosensors
7.4.1. Concept and Features of Optical Biosensors
7.4.2. Application of Optical Biosensors for Cancer Diagnosis in POCT
7.4.3. Application of Optical Biosensors for Age-Related/Chronic Diseases Diagnosis in POCT
7.5. Nucleic Acid Amplification Tests (NAATs)
7.5.1. Concept and Features of NAATs
7.5.2. Application of NAATs for Cancer Diagnosis in POCT
7.5.3. Application of NAATs for Age-Related/Chronic Diseases Diagnosis in POCT
7.6. FDA-Approved or Cleared POC Devices
7.7. Deployment Considerations of POC Versus Laboratory-Based Biosensing Platforms
7.7.1. Analytical Sensitivity
7.7.2. Robustness
7.7.3. Usability
8. From Discovery to Clinical Application
8.1. Historical Development of Biomarkers
8.2. Regulatory Frameworks
8.2.1. United States (FDA)
8.2.2. Europe
8.3. Regulatory, Validation, and Cost-Effectiveness for New Biomarkers
8.3.1. CLIA/LDT Considerations in the U.S.
8.3.2. Multi-Center Validation Pathways and Evidentiary Standards
8.3.3. Cost-Effectiveness and Implementation
8.3.4. FDA-Recognized Examples
9. Current Limitations and Future Directions for Early Diagnosis of Cancer and Aging
9.1. Current Limitations in Early Diagnosis of Cancer and Aging
9.1.1. Biomarker-Related Limitations
9.1.2. Technological and Analytical Limitations
| Category | Key Limitations | Improved Strategy/Future Directions | Ref. |
|---|---|---|---|
| Dataset Bias and Representativeness | Many AI/ML models are trained on single-center or demographically narrow datasets, resulting in poor generalizability across populations. Imbalanced datasets (e.g., underrepresentation of minority groups, rare cancer subtypes) cause biased model predictions and reduced diagnostic fairness. | Implement fairness-aware training algorithms to ensure demographic balance. Employ FL to enable data diversity without centralizing sensitive data. Adopt model cards to disclose dataset composition, bias sources, and subgroup performance. | [849,850] |
| Lack of Cross-Cohort Validation and Overfitting | Many models perform well in internal validation but fail in external datasets due to overfitting. Lack of multi-institutional testing limits generalization. Medical data drift over time reduces algorithmic robustness. | Conduct multi-site, prospective validation and external benchmarking. Apply TL and domain adaptation to enhance robustness across cohorts. Establish continuous model monitoring and recalibration pipelines in clinical use. | [851,852] |
| Interpretability and Black-Box Barriers | DL models often act as “black boxes,” providing limited insight into decision-making. Lack of interpretability decreases clinician trust and impedes regulatory approval. | Develop XAI frameworks (e.g., SHAP, LIME, integrated gradients) to visualize key features influencing model outputs. Combine interpretable hybrid architectures (e.g., attention-based + explainability layers). Include clinician-in-the-loop validation for model reasoning. | [853] |
| FL and Distributed Model Deployment | Despite privacy advantages, FL faces challenges with data heterogeneity, communication overhead, and explanation consistency across institutions. Lack of harmonization hinders reproducibility. | Use FED-XAI frameworks integrating explainability with FL. Standardize communication protocols and ontology alignment among institutions. Implement federated evaluation benchmarks to harmonize model performance reporting. | [854] |
| Clinical Integration and Regulatory Adoption | Limited clinical trial evidence for efficacy and safety. Absence of standardized regulatory pathways and real-time post-market surveillance for AI tools. | Conduct prospective clinical trials aligned with FDA/EMA digital health guidelines. Establish AI-QMS for traceability and auditability. Encourage regulator–developer collaboration for explainability and patient safety. | [855] |
9.2. Future Directions for Early Diagnosis of Cancer and Aging
9.2.1. Multi-Omics Integration and Personalized Biomarker Panels
9.2.2. AI/ML Advancement
9.2.3. Ultra-Sensitive Detection Technologies
9.2.4. Miniaturized and Portable Diagnostic Platforms
9.2.5. Organ-on-Chip Systems for Dynamic Disease Modeling
9.2.6. Longitudinal Monitoring and Digital Integration
9.2.7. Manufacturing and Quality Assurance
9.2.8. Paradigm Shift Toward Preventive Medicine
9.2.9. Clinical Translation Framework
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Abbreviation | Full Term | Category/Context |
| AD | Alzheimer’s Disease | Neurodegenerative disorder/aging research |
| AFP | Alpha-Fetoprotein | Clinical protein biomarker (HCC, germ cell tumors) |
| AGEs | Advanced Glycation End Products | Metabolic/oxidative stress biomarkers |
| AI | Artificial Intelligence | Computational analysis/biosensing |
| ATM | Ataxia Telangiectasia Mutated | DNA damage response/telomere dysfunction |
| ATR | ATM and Rad3-Related | DNA damage response/telomere dysfunction |
| AUC | Area Under the Curve | Diagnostic performance metric |
| AuNPs | Gold Nanoparticles | Probe for biosensing |
| Aβ | Amyloid Beta Protein | Neurodegeneration/Alzheimer’s biomarker |
| BAG | Brain Age Gap | Neuroimaging biomarker for biological aging |
| BAP | Brain Age Prediction | AI-based neuroaging estimation |
| BC | Breast Cancer | Solid tumor type |
| BRCA | Breast Cancer Gene (BRCA1/2) | Tumor suppressor genes |
| CA125 | Cancer Antigen 125 | Clinical protein biomarker (Ovarian cancer) |
| CA19-9 | Carbohydrate Antigen 19-9 | Clinical protein biomarker (Pancreatic cancer) |
| CAD | Computer-Aided Detection | AI-assisted image analysis |
| CD4 | Cluster of Differentiation 4 | Immune cell surface marker (T-helper cells) |
| CD8 | Cluster of Differentiation 8 | Cytotoxic T-cell surface glycoprotein |
| CDK | Cyclin-Dependent Kinase | Cell cycle regulation |
| CCL | Chemokine (C–C Motif) Ligand | Inflammatory/immune signaling |
| CEA | Carcinoembryonic Antigen | Clinical tumor biomarker (CRC, BC) |
| cfDNA | Cell-Free DNA | Liquid biopsy/genetic biomarker |
| cfRNA | Cell-Free RNA | Liquid biopsy/transcriptional biomarker |
| CLIA | Clinical Laboratory Improvement Amendments | a U.S. law that sets quality standards |
| ChIP-seq | Chromatin immunoprecipitation sequencing | Analysis of Protein-DNA interactions |
| CK | Cytokeratin | Structural epithelial protein |
| CKD | Chronic Kidney Disease | Metabolic/renal disorder |
| CNN | Convolutional Neural Network | Deep learning model architecture |
| CRC | Colorectal Cancer | Solid tumor type |
| CRP | C-Reactive Protein | Inflammatory/cardiovascular biomarker |
| CT | Computed Tomography | Diagnostic imaging modality |
| CTCs | Circulating Tumor Cells | Liquid biopsy/cancer detection |
| ctDNA | Circulating Tumor DNA | Liquid biopsy/genetic biomarker |
| cTnI | Cardiac Troponin I | Cardiac injury biomarker |
| CVD | Cardiovascular Disease | Chronic disease/heart pathology |
| CXCL | Chemokine (C–X–C Motif) Ligand | Immune/inflammatory signaling |
| CXCR | Chemokine (C–X–C Motif) Receptor | Immune/inflammatory signaling |
| ddPCR | Droplet Digital Polymerase Chain Reaction | Genomic detection platform |
| DL | Deep Learning | Subfield of AI for data modeling |
| DNAm | DNA Methylation | Epigenetic biomarker |
| DNMT3A | DNA (Cytosine-5)-Methyltransferase 3A | Epigenetic modification enzyme |
| ECM | Extracellular Matrix | Tumor microenvironment structure |
| EGFR | Epidermal Growth Factor Receptor | Oncogenic driver/therapeutic target |
| ELISA | Enzyme-Linked Immunosorbent Assay | Protein quantification assay |
| EMT | Epithelial-to-Mesenchymal Transition | Cancer invasion/metastasis mechanism |
| EpCAM | Epithelial Cell Adhesion Molecule | Diagnostic and prognostic marker |
| ER | Estrogen Receptor | Hormone signaling/BC subtype |
| ERCC1 | Excision Repair Cross-Complementation Group 1 | DNA repair enzyme |
| EVs | Extracellular Vesicles | Intercellular communication/biomarker source |
| FDA | U.S. Food and Drug Administration | Regulatory agency |
| FET | Field-Effect Transistor | Electronic biosensing platform |
| GFAP | Glial Fibrillary Acidic Protein | Neurodegeneration biomarker |
| GDF15 | Growth Differentiation Factor 15 | Aging/metabolic biomarker |
| HbA1c | Hemoglobin A1c | Glycemic control/diabetes biomarker |
| HCC | Hepatocellular Carcinoma | Solid tumor type |
| HER2 | Human Epidermal Growth Factor Receptor 2 | Breast/gastric cancer biomarker |
| HK2 | Hexokinase 2 | Glycolytic enzyme/metabolic marker |
| HPV | Human Papillomavirus | Viral oncogenic infection |
| HSCs | Hematopoietic Stem Cells | Aging and regeneration biology |
| IDO | Indoleamine 2,3-Dioxygenase | Immune-metabolic enzyme |
| IFN | Interferon | Immune signaling cytokine |
| IGF | Insulin-Like Growth Factor | Growth/metabolic regulation |
| IL | Interleukin | Inflammatory cytokine family |
| IVD | In Vitro Diagnostic | Regulatory classification |
| KRAS | Kirsten Rat Sarcoma Viral Oncogene Homolog | Oncogenic mutation marker |
| LAMP | Loop-Mediated Isothermal Amplification | Rapid nucleic acid detection |
| LC | Lung Cancer | Solid tumor type |
| LC–MS/MS | Liquid Chromatography–Tandem Mass Spectrometry | Proteomic/metabolomic detection |
| LDHA | Lactate Dehydrogenase A | Metabolic enzyme/hypoxia biomarker |
| LDTs | Laboratory-developed tests | Diagnostic tests |
| lncRNAs | long non-coding RNA | Non coding RNA |
| LoD | Limit of Detection | Analytical sensitivity parameter |
| MAE | Mean Absolute Error | Statistical model evaluation metric |
| MAPK | Mitogen-Activated Protein Kinase | Signal transduction pathway |
| MCED | Multi-Cancer Early Detection | Blood-based screening assay |
| MD | Microfluidics Device | Technology used in POCT |
| miRNA | MicroRNA | Post-transcriptional regulatory molecule |
| ML | Machine Learning | AI method for pattern recognition |
| MMP | Matrix Metalloproteinase | Proteolytic/tumor invasion enzyme |
| MRI | Magnetic Resonance Imaging | Diagnostic imaging technique |
| MRS | Magnetic Resonance Spectroscopy | Detecting tool |
| mTOR | Mechanistic Target of Rapamycin | Nutrient-sensing/autophagy regulation |
| mtDNA | Mitochondrial DNA | Oxidative stress/aging biomarker |
| NF-κB | Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells | Inflammatory transcription factor |
| NGS | Next-Generation Sequencing | Genomic profiling platform |
| NSCLC | Non-Small Cell Lung Cancer | Solid tumor type |
| NT-proBNP | N-terminal Pro-B-type Natriuretic Peptide | Heart failure biomarker |
| OC | Ovarian Cancer | Gynecologic malignancy |
| PC | Pancreatic Cancer | Solid tumor type |
| PCa | Prostate Cancer | Solid tumor type/biomarker target |
| PDAC | Pancreatic Ductal Adenocarcinoma | Pancreatic cancer subtype |
| PD-L1 | Programmed Death Ligand-1 | Immune checkpoint biomarker |
| PET | Positron Emission Tomography | Functional imaging technique |
| PI3K | Phosphoinositide 3-Kinase | Cell survival/growth signaling |
| PMA | Premarket Approval | FDA regulatory pathway |
| POC | Point-of-Care | Decentralized diagnostic setting |
| POCT | Point-of-Care Testing | Decentralized diagnostic setting |
| PSA | Prostate-Specific Antigen | FDA-approved diagnostic biomarker |
| PTEN | Phosphatase and Tensin Homolog | Tumor suppressor gene |
| qRT-PCR | Quantitative Real-Time Polymerase Chain Reaction | Gene expression quantification |
| RAGE | Receptor for Advanced Glycation End Products | Oxidative stress/aging biomarker |
| RB | Retinoblastoma Protein | Tumor suppressor/cell cycle control |
| SASP | Senescence-Associated Secretory Phenotype | Aging/inflammatory response |
| SCL | Smart Contact Lens | Glucose sensing |
| SCLC | Small Cell Lung Cancer | Pulmonary malignancy subtype |
| SCs | Stem Cells | Regenerative medicine context |
| SERS | Surface-Enhanced Raman Spectroscopy | Plasmonic biosensing method |
| SN | Sensitivity | Diagnostic performance metric |
| SP | Specificity | Diagnostic performance metric |
| SPR | Surface Plasmon Resonance | Optical biosensing platform |
| STAT | Signal Transducer and Activator of Transcription | Cytokine/growth factor signaling |
| T2D | Type 2 Diabetes | Metabolic disease |
| TCGA | The Cancer Genome Atlas | Genomic data resource |
| TERT | Telomerase Reverse Transcriptase | Telomere maintenance enzyme |
| TF | Transcription Factor | Gene expression regulator |
| TG | Tear Glucose | Glucose sensing |
| TME | Tumor Microenvironment | Cancer biology/pathology |
| TNF-α | Tumor Necrosis Factor Alpha | Inflammatory cytokine |
| VEGF | Vascular Endothelial Growth Factor | Angiogenesis/vascular signaling |
| WGS | Whole Genome Sequencing | Genomic profiling platform |
References
- Jones, C.H.; Dolsten, M. Healthcare on the brink: Navigating the challenges of an aging society in the United States. NPJ Aging 2024, 10, 22. [Google Scholar] [CrossRef]
- Pais-Magalhães, V.; Moutinho, V.; Robaina, M. Is an ageing population impacting energy use in the European Union? Drivers, lifestyles, and consumption patterns of elderly households. Energy Res. Soc. Sci. 2022, 85, 102443. [Google Scholar] [CrossRef]
- Jarzebski, M.P.; Elmqvist, T.; Gasparatos, A.; Fukushi, K.; Eckersten, S.; Haase, D.; Goodness, J.; Khoshkar, S.; Saito, O.; Takeuchi, K.; et al. Ageing and population shrinking: Implications for sustainability in the urban century. NPJ Urban Sustain. 2021, 1, 17. [Google Scholar] [CrossRef]
- Furrer, R.; Handschin, C. Biomarkers of aging: From molecules and surrogates to physiology and function. Physiol. Rev. 2025, 105, 1609–1694. [Google Scholar] [CrossRef]
- Chatsirisupachai, K.; Lesluyes, T.; Paraoan, L.; Van Loo, P.; de Magalhaes, J.P. An integrative analysis of the age-associated multi-omic landscape across cancers. Nat. Commun. 2021, 12, 2345. [Google Scholar] [CrossRef]
- Ki, M.R.; Youn, S.; Kim, D.H.; Pack, S.P. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int. J. Mol. Sci. 2024, 25, 7530. [Google Scholar] [CrossRef]
- Marosi, C.; Köller, M. Challenge of cancer in the elderly. ESMO Open 2016, 1, e000020. [Google Scholar] [CrossRef]
- Guo, S.; Zhu, X.; Huang, Z.; Wei, C.; Yu, J.; Zhang, L.; Feng, J.; Li, M.; Li, Z. Genomic instability drives tumorigenesis and metastasis and its implications for cancer therapy. Biomed. Pharmacother. 2023, 157, 114036. [Google Scholar] [CrossRef]
- Lopez-Gil, L.; Pascual-Ahuir, A.; Proft, M. Genomic Instability and Epigenetic Changes during Aging. Int. J. Mol. Sci. 2023, 24, 14279. [Google Scholar] [CrossRef]
- Schmitt, C.A.; Wang, B.; Demaria, M. Senescence and cancer—Role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 619–636. [Google Scholar] [CrossRef]
- Zhang, L.; Pitcher, L.E.; Yousefzadeh, M.J.; Niedernhofer, L.J.; Robbins, P.D.; Zhu, Y. Cellular senescence: A key therapeutic target in aging and diseases. J. Clin. Investig. 2022, 132, e158450. [Google Scholar] [CrossRef]
- Gao, J.; Pickett, H.A. Targeting telomeres: Advances in telomere maintenance mechanism-specific cancer therapies. Nat. Rev. Cancer 2022, 22, 515–532. [Google Scholar] [CrossRef]
- Rossiello, F.; Jurk, D.; Passos, J.F.; d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 2022, 24, 135–147. [Google Scholar] [CrossRef]
- Baechle, J.J.; Chen, N.; Makhijani, P.; Winer, S.; Furman, D.; Winer, D.A. Chronic inflammation and the hallmarks of aging. Mol. Metab. 2023, 74, 101755. [Google Scholar] [CrossRef]
- Fernandes, Q.; Inchakalody, V.P.; Bedhiafi, T.; Mestiri, S.; Taib, N.; Uddin, S.; Merhi, M.; Dermime, S. Chronic inflammation and cancer; the two sides of a coin. Life Sci. 2024, 338, 122390. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, L.D.; Narita, M. Autophagy at the intersection of aging, senescence, and cancer. Mol. Oncol. 2022, 16, 3259–3275. [Google Scholar] [CrossRef] [PubMed]
- Zapateria, B.; Arias, E. Aging, cancer, and autophagy: Connections and therapeutic perspectives. Front. Mol. Biosci. 2024, 11, 1516789. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, C.; Qin, Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics 2021, 11, 8322–8336. [Google Scholar] [CrossRef]
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 124. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Pietrocola, F.; Roiz-Valle, D.; Galluzzi, L.; Kroemer, G. Meta-hallmarks of aging and cancer. Cell Metab. 2023, 35, 12–35. [Google Scholar] [CrossRef]
- DeGregori, J.; Seidl, K.J.; Montano, M. Aging and Cancer-Inextricably Linked Across the Lifespan. Aging Cell 2025, 24, e14483. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H. Epigenetic Clocks and EpiScore for Preventive Medicine: Risk Stratification and Intervention Models for Age-Related Diseases. J. Clin. Med. 2025, 14, 3604. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Garrett, J.W.; Liu, D.; Pickhardt, P.J. CT Biomarkers for Phenotypic Biological Aging: Emerging Concepts and Advantages. RadioGraphics 2025, 45, e250007. [Google Scholar] [CrossRef] [PubMed]
- Ahadi, S.; Zhou, W.; Schüssler-Fiorenza Rose, S.M.; Sailani, M.R.; Contrepois, K.; Avina, M.; Ashland, M.; Brunet, A.; Snyder, M. Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat. Med. 2020, 26, 83–90. [Google Scholar] [CrossRef]
- Tenchov, R.; Sapra, A.K.; Sasso, J.; Ralhan, K.; Tummala, A.; Azoulay, N.; Zhou, Q.A. Biomarkers for Early Cancer Detection: A Landscape View of Recent Advancements, Spotlighting Pancreatic and Liver Cancers. ACS Pharmacol. Transl. Sci. 2024, 7, 586–613. [Google Scholar] [CrossRef]
- Ren, F.; Wei, J.; Chen, Q.; Hu, M.; Yu, L.; Mi, J.; Zhou, X.; Qin, D.; Wu, J.; Wu, A. Artificial intelligence-driven multi-omics approaches in Alzheimer’s disease: Progress, challenges, and future directions. Acta Pharm. Sin. B 2025, 15, 4327–4385. [Google Scholar] [CrossRef]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef]
- Cancer Research UK. Why is Early Cancer Diagnosis Important? Available online: https://www.cancerresearchuk.org/about-cancer/spot-cancer-early/why-is-early-diagnosis-important (accessed on 23 July 2025).
- Alum, E.U. AI-driven biomarker discovery: Enhancing precision in cancer diagnosis and prognosis. Discov. Oncol. 2025, 16, 313. [Google Scholar] [CrossRef]
- Imai, M.; Nakamura, Y.; Yoshino, T. Transforming cancer screening: The potential of multi-cancer early detection (MCED) technologies. Int. J. Clin. Oncol. 2025, 30, 180–193. [Google Scholar] [CrossRef]
- Eledkawy, A.; Hamza, T.; El-Metwally, S. Precision cancer classification using liquid biopsy and advanced machine learning techniques. Sci. Rep. 2024, 14, 5841. [Google Scholar] [CrossRef]
- Kedzierska, M.; Bankosz, M. Role of Proteins in Oncology: Advances in Cancer Diagnosis, Prognosis, and Targeted Therapy—A Narrative Review. J. Clin. Med. 2024, 13, 7131. [Google Scholar] [CrossRef]
- National Cancer Institute. Age and Cancer Risk. National Cancer Institute. Updated: 2 May 2025. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/age (accessed on 23 July 2025).
- Montegut, L.; Lopez-Otin, C.; Kroemer, G. Aging and cancer. Mol. Cancer 2024, 23, 106. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Wang, J.; Shao, F.; Yu, Q.X.; Ye, L.; Wusiman, D.; Wu, R.; Tuo, Z.; Wang, Z.; Li, D.; Cho, W.C.; et al. The Common Hallmarks and Interconnected Pathways of Aging, Circadian Rhythms, and Cancer: Implications for Therapeutic Strategies. Research 2025, 8, 612. [Google Scholar] [CrossRef]
- Hoeijmakers, J.H. DNA damage, aging, and cancer. N. Engl. J. Med. 2009, 361, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Vijg, J.; Montagna, C. Genome instability and aging: Cause or effect? Transl. Med. Aging 2017, 1, 5–11. [Google Scholar] [CrossRef]
- Schumacher, B.; Pothof, J.; Vijg, J.; Hoeijmakers, J.H.J. The central role of DNA damage in the ageing process. Nature 2021, 592, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadeh, M.; Henpita, C.; Vyas, R.; Soto-Palma, C.; Robbins, P.; Niedernhofer, L. DNA damage-how and why we age? Elife 2021, 10, e62852. [Google Scholar] [CrossRef]
- Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability—An evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 2010, 11, 220–228. [Google Scholar] [CrossRef]
- Sherr, C.J.; McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2002, 2, 103–112. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, X.; Yi, Y.; Wang, X.; Zhu, L.; Shen, Y.; Lin, D.; Wu, C. Tumor initiation and early tumorigenesis: Molecular mechanisms and interventional targets. Signal Transduct. Target. Ther. 2024, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Salavoura, A. Mechanisms of Aging and Cancer. In Chemical Environmental Pollutants and Their Effect on Health; Springer: Berlin/Heidelberg, Germany, 2025; pp. 311–328. [Google Scholar]
- Abubakar, M.; Hameed, Y.; Kiani, M.N.; Aftab, A. Common features between aging and cancer: A narrative review. Aging Adv. 2024, 1, 118–134. [Google Scholar] [CrossRef]
- Trastus, L.A.; d’Adda di Fagagna, F. The complex interplay between aging and cancer. Nat. Aging 2025, 5, 350–365. [Google Scholar] [CrossRef] [PubMed]
- d’Adda di Fagagna, F. Living on a break: Cellular senescence as a DNA-damage response. Nat. Rev. Cancer 2008, 8, 512–522. [Google Scholar] [CrossRef]
- Roos, W.P.; Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 2006, 12, 440–450. [Google Scholar] [CrossRef]
- O’Hagan, H.M.; Wang, W.; Sen, S.; Shields, C.D.; Lee, S.S.; Zhang, Y.W.; Clements, E.G.; Cai, Y.; Van Neste, L.; Easwaran, H.; et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 2011, 20, 606–619. [Google Scholar] [CrossRef]
- Goriuc, A.; Cojocaru, K.-A.; Luchian, I.; Ursu, R.-G.; Butnaru, O.; Foia, L. Using 8-Hydroxy-2′-Deoxiguanosine (8-OHdG) as a Reliable Biomarker for Assessing Periodontal Disease Associated with Diabetes. Int. J. Mol. Sci. 2024, 25, 1425. [Google Scholar] [CrossRef]
- Lee, J.W.; Ong, E.B.B. Genomic Instability and Cellular Senescence: Lessons From the Budding Yeast. Front. Cell Dev. Biol. 2020, 8, 619126. [Google Scholar] [CrossRef]
- Sasaki, M.; Kobayashi, T. Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes. Nucleic Acids Res. 2025, 53, gkaf014. [Google Scholar] [CrossRef]
- Kasselimi, E.; Pefani, D.-E.; Taraviras, S.; Lygerou, Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem. Sci. 2022, 47, 328–341. [Google Scholar] [CrossRef]
- Rysz, J.; Franczyk, B.; Rysz-Górzyńska, M.; Gluba-Brzózka, A. Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int. J. Mol. Sci. 2021, 23, 183. [Google Scholar] [CrossRef]
- Miklikova, S.; Trnkova, L.; Plava, J.; Bohac, M.; Kuniakova, M.; Cihova, M. The Role of BRCA1/2-Mutated Tumor Microenvironment in Breast Cancer. Cancers 2021, 13, 575. [Google Scholar] [CrossRef]
- Pietragalla, A.; Arcieri, M.; Marchetti, C.; Scambia, G.; Fagotti, A. Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes. Int. J. Gynecol. Cancer 2020, 30, 1803–1810. [Google Scholar] [CrossRef]
- Wang, S.; Min, Z.; Ji, Q.; Geng, L.; Su, Y.; Liu, Z.; Hu, H.; Wang, L.; Zhang, W.; Suzuiki, K.; et al. Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction. Protein Cell 2020, 11, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Pekhale, K.; Tiwari, V.; Hussain, M.; Bridges, C.C.; Croteau, D.L.; Levi, M.; Rosenberg, A.Z.; Santo, B.; Yang, X.; Kulikowicz, T.; et al. Cockayne syndrome mice reflect human kidney disease and are defective in de novo NAD biosynthesis. Cell Death Differ. 2025. [Google Scholar] [CrossRef] [PubMed]
- Rizza, E.R.H.; DiGiovanna, J.J.; Khan, S.G.; Tamura, D.; Jeskey, J.D.; Kraemer, K.H. Xeroderma Pigmentosum: A Model for Human Premature Aging. J. Investig. Dermatol. 2021, 141, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Danter, W.R. Age-Dependent Effects of UV Exposure and Xeroderma Pigmentosum Group A on DNA Damage, Repair Mechanisms, Genomic Instability, Cancer Risk, and Neurological Disorders. medRxiv 2024. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, J.; Flanagan, M.; Martinez, J.A.; Cunniff, C.; Kucine, N.; Lu, A.T.; Haghani, A.; Gordevičius, J.; Horvath, S.; et al. Bloom syndrome patients and mice display accelerated epigenetic aging. Aging Cell 2023, 22, e13964. [Google Scholar] [CrossRef]
- Aguado, J.; Gómez-Inclán, C.; Leeson, H.C.; Lavin, M.F.; Shiloh, Y.; Wolvetang, E.J. The hallmarks of aging in Ataxia-Telangiectasia. Ageing Res. Rev. 2022, 79, 101653. [Google Scholar] [CrossRef]
- Agrelo, R.; Cheng, W.-H.; Setien, F.; Ropero, S.; Espada, J.; Fraga, M.F.; Herranz, M.; Paz, M.F.; Sanchez-Cespedes, M.; Artiga, M.J.; et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc. Natl. Acad. Sci. USA 2006, 103, 8822–8827. [Google Scholar] [CrossRef]
- Velleuer, E.; Carlberg, C. A Nutrigenomic View on the Premature-Aging Disease Fanconi Anemia. Nutrients 2024, 16, 2271. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, X.; Li, M.; Yu, X.; Huang, F.; Wang, Y.; Yan, Y.; Zhang, H.; Shi, Y.; He, X. The role of mitochondrial quality surveillance in skin aging: Focus on mitochondrial dynamics, biogenesis and mitophagy. Ageing Res. Rev. 2023, 87, 101917. [Google Scholar] [CrossRef] [PubMed]
- Tamashiro, H.; Ishikawa, K.; Sadotomo, K.; Ogasawara, E.; Nakada, K. Mitochondrial Respiratory Dysfunction Is Not Correlated With Mitochondrial Genotype in Premature Aging Mice. Aging Cell 2025, 24, e70085. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, H.; Liang, R.; Huang, Y.; Tang, Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology 2025, 26, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Vodicka, P.; Vodenkova, S.; Danesova, N.; Vodickova, L.; Zobalova, R.; Tomasova, K.; Boukalova, S.; Berridge, M.V.; Neuzil, J. Mitochondrial DNA damage, repair, and replacement in cancer. Trends Cancer 2025, 11, 62–73. [Google Scholar] [CrossRef]
- Nguyen, B.; Fong, C.; Luthra, A.; Smith, S.A.; DiNatale, R.G.; Nandakumar, S.; Walch, H.; Chatila, W.K.; Madupuri, R.; Kundra, R. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 2022, 185, 563–575.e11. [Google Scholar] [CrossRef]
- van Dijk, E.; van den Bosch, T.; Lenos, K.J.; El Makrini, K.; Nijman, L.E.; van Essen, H.F.B.; Lansu, N.; Boekhout, M.; Hageman, J.H.; Fitzgerald, R.C.; et al. Chromosomal copy number heterogeneity predicts survival rates across cancers. Nat. Commun. 2021, 12, 3188. [Google Scholar] [CrossRef]
- Ippolito, M.R.; Martis, V.; Martin, S.; Tijhuis, A.E.; Hong, C.; Wardenaar, R.; Dumont, M.; Zerbib, J.; Spierings, D.C.; Fachinetti, D. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Dev. Cell 2021, 56, 2440–2454.e6. [Google Scholar] [CrossRef]
- Lukow, D.A.; Sausville, E.L.; Suri, P.; Chunduri, N.K.; Wieland, A.; Leu, J.; Smith, J.C.; Girish, V.; Kumar, A.A.; Kendall, J. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev. Cell 2021, 56, 2427–2439.e4. [Google Scholar] [CrossRef]
- Boccardi, V.; Marano, L. The telomere connection between aging and cancer: The burden of replication stress and dysfunction. Mech. Ageing Dev. 2025, 223, 112026. [Google Scholar] [CrossRef]
- Milán, M. Chromosomal instability in development and disease: Beyond cancer evolution. Curr. Opin. Cell Biol. 2025, 95, 102537. [Google Scholar] [CrossRef]
- Santaguida, S.; Richardson, A.; Iyer, D.R.; M’Saad, O.; Zasadil, L.; Knouse, K.A.; Wong, Y.L.; Rhind, N.; Desai, A.; Amon, A. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev. Cell 2017, 41, 638–651.e5. [Google Scholar] [CrossRef]
- Macedo, J.C.; Vaz, S.; Bakker, B.; Ribeiro, R.; Bakker, P.L.; Escandell, J.M.; Ferreira, M.G.; Medema, R.; Foijer, F.; Logarinho, E. FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence. Nat. Commun. 2018, 9, 2834. [Google Scholar] [CrossRef]
- Barroso-Vilares, M.; Macedo, J.C.; Reis, M.; Warren, J.D.; Compton, D.; Logarinho, E. Small-molecule inhibition of aging-associated chromosomal instability delays cellular senescence. EMBO Rep. 2020, 21, e49248. [Google Scholar] [CrossRef]
- Clemente-Ruiz, M.; Murillo-Maldonado, J.M.; Benhra, N.; Barrio, L.; Perez, L.; Quiroga, G.; Nebreda, A.R.; Milán, M. Gene dosage imbalance contributes to chromosomal instability-induced tumorigenesis. Dev. Cell 2016, 36, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Dekanty, A.; Barrio, L.; Muzzopappa, M.; Auer, H.; Milán, M. Aneuploidy-induced delaminating cells drive tumorigenesis in Drosophila epithelia. Proc. Natl. Acad. Sci. USA 2012, 109, 20549–20554. [Google Scholar] [CrossRef] [PubMed]
- Benhra, N.; Barrio, L.; Muzzopappa, M.; Milán, M. Chromosomal instability induces cellular invasion in epithelial tissues. Dev. Cell 2018, 47, 161–174.e4. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Linstra, R.; van Vugt, M.A. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2022, 1877, 188661. [Google Scholar] [CrossRef]
- Tsantoulis, P.; Kotsinas, A.; Sfikakis, P.; Evangelou, K.; Sideridou, M.; Levy, B.; Mo, L.; Kittas, C.; Wu, X.; Papavassiliou, A. Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene 2008, 27, 3256–3264. [Google Scholar] [CrossRef]
- Liao, P.; Yan, B.; Wang, C.; Lei, P. Telomeres: Dysfunction, maintenance, aging and cancer. Aging Dis. 2023, 15, 2595. [Google Scholar] [CrossRef]
- Yang, L.; Huang, M.; Chen, Y.; Wu, Y. Philadelphia chromosome-positive mixed-phenotype acute leukemia: A case report and literature review. Front. Oncol. 2025, 15, 1623528. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, D.; Eladl, E.; Capo-Chichi, J.-M.; Kim, D.D.H.; Chang, H. Molecular genetic characterization of Philadelphia chromosome-positive acute myeloid leukemia. Leuk. Res. 2023, 124, 107002. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.H.; Stiller, C.A.; Walker, L.; Rahman, N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J. Med. Genet. 2006, 43, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Aschero, R.; Francis, J.H.; Ganiewich, D.; Gomez-Gonzalez, S.; Sampor, C.; Zugbi, S.; Ottaviani, D.; Lemelle, L.; Mena, M.; Winter, U.; et al. Recurrent Somatic Chromosomal Abnormalities in Relapsed Extraocular Retinoblastoma. Cancers 2021, 13, 673. [Google Scholar] [CrossRef] [PubMed]
- Alimbetov, D.; Davis, T.; Brook, A.J.C.; Cox, L.S.; Faragher, R.G.A.; Nurgozhin, T.; Zhumadilov, Z.; Kipling, D. Suppression of the senescence-associated secretory phenotype (SASP) in human fibroblasts using small molecule inhibitors of p38 MAP kinase and MK2. Biogerontology 2016, 17, 305–315. [Google Scholar] [CrossRef]
- Dierick, J.-F.; Eliaers, F.; Remacle, J.; Raes, M.; Fey, S.J.; Larsen, P.M.; Toussaint, O. Stress-induced premature senescence and replicative senescence are different phenotypes, proteomic evidence. Biochem. Pharmacol. 2002, 64, 1011–1017. [Google Scholar] [CrossRef]
- Fang, Y.; Gong, A.Y.; Haller, S.T.; Dworkin, L.D.; Liu, Z.; Gong, R. The ageing kidney: Molecular mechanisms and clinical implications. Ageing Res. Rev. 2020, 63, 101151. [Google Scholar] [CrossRef]
- Kim, K.W.; Ha, K.Y.; Lee, J.S.; Na, K.H.; Kim, Y.Y.; Woo, Y.K. Senescence of nucleus pulposus chondrocytes in human intervertebral discs. Asian Spine J. 2008, 2, 1–8. [Google Scholar] [CrossRef]
- Pizzul, P.; Rinaldi, C.; Bonetti, D. The multistep path to replicative senescence onset: Zooming on triggering and inhibitory events at telomeric DNA. Front. Cell Dev. Biol. 2023, 11, 1250264. [Google Scholar] [CrossRef]
- Muthamil, S.; Kim, H.-Y.; Jang, H.-J.; Lyu, J.-H.; Shin, U.C.; Go, Y.; Park, S.-H.; Lee, H.G.; Park, J.H. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv. Biol. 2024, 8, 2400079. [Google Scholar] [CrossRef]
- Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 2013, 75, 685–705. [Google Scholar] [CrossRef]
- Ohtani, N. The roles and mechanisms of senescence-associated secretory phenotype (SASP): Can it be controlled by senolysis? Inflamm. Regen. 2022, 42, 11. [Google Scholar] [CrossRef] [PubMed]
- Herbstein, F.; Sapochnik, M.; Attorresi, A.; Pollak, C.; Senin, S.; Gonilski-Pacin, D.; Giudice, N.C.D.; Fiz, M.; Elguero, B.; Fuertes, M.; et al. The SASP factor IL-6 sustains cell-autonomous senescent cells via a cGAS-STING-NFκB intracrine senescent noncanonical pathway. Aging Cell 2024, 23, e14258. [Google Scholar] [CrossRef] [PubMed]
- Özcan, S.; Alessio, N.; Acar, M.B.; Mert, E.; Omerli, F.; Peluso, G.; Galderisi, U. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging 2016, 8, 1316–1329. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Luo, Y.; Yuan, Z.; Tian, Y.; Jin, T.; Xu, F. Cellular senescence and SASP in tumor progression and therapeutic opportunities. Mol. Cancer 2024, 23, 181. [Google Scholar] [CrossRef]
- Lau, L.; Porciuncula, A.; Yu, A.; Iwakura, Y.; David, G. Uncoupling the Senescence-Associated Secretory Phenotype from Cell Cycle Exit via Interleukin-1 Inactivation Unveils Its Protumorigenic Role. Mol. Cell. Biol. 2019, 39, e00586-18. [Google Scholar] [CrossRef]
- Leon, K.E.; Buj, R.; Lesko, E.; Dahl, E.S.; Chen, C.W.; Tangudu, N.K.; Imamura-Kawasawa, Y.; Kossenkov, A.V.; Hobbs, R.P.; Aird, K.M. DOT1L modulates the senescence-associated secretory phenotype through epigenetic regulation of IL1A. J. Cell Biol. 2021, 220, 8101. [Google Scholar] [CrossRef]
- Giuliani, K.T.K.; Nag, P.; Adams, B.C.; Wang, X.; Hong, S.; Grivei, A.; Johnston, R.L.; Waddell, N.; Ho, K.K.C.; Tian, Y.; et al. Human proximal tubular epithelial cell interleukin-1 receptor signalling triggers G2/M arrest and cellular senescence during hypoxic kidney injury. Cell Death Dis. 2025, 16, 61. [Google Scholar] [CrossRef]
- Wang, S.-T.; Huang, S.-W.; Liu, K.-T.; Lee, T.-Y.; Shieh, J.-J.; Wu, C.-Y. Atorvastatin-induced senescence of hepatocellular carcinoma is mediated by downregulation of hTERT through the suppression of the IL-6/STAT3 pathway. Cell Death Discov. 2020, 6, 17. [Google Scholar] [CrossRef]
- Shriki, A.; Lanton, T.; Sonnenblick, A.; Levkovitch-Siany, O.; Eidelshtein, D.; Abramovitch, R.; Rosenberg, N.; Pappo, O.; Elgavish, S.; Nevo, Y.; et al. Multiple Roles of IL6 in Hepatic Injury, Steatosis, and Senescence Aggregate to Suppress Tumorigenesis. Cancer Res. 2021, 81, 4766–4777. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, X.; Ma, Y.; Du, Y.; Feng, J. A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9). Genes. Dis. 2023, 10, 2366–2382. [Google Scholar] [CrossRef]
- Tarallo, D.; Martínez, J.; Leyva, A.; Mónaco, A.; Perroni, C.; Tassano, M.; Gambini, J.P.; Cappetta, M.; Durán, R.; Moreno, M.; et al. Mitofusin 1 silencing decreases the senescent associated secretory phenotype, promotes immune cell recruitment and delays melanoma tumor growth after chemotherapy. Sci. Rep. 2024, 14, 909. [Google Scholar] [CrossRef]
- Daley, D.; Mani, V.R.; Mohan, N.; Akkad, N.; Ochi, A.; Heindel, D.W.; Lee, K.B.; Zambirinis, C.P.; Pandian, G.S.B.; Savadkar, S.; et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 2017, 23, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, C.; Li, Y.; Li, H.; Zhang, W.; Liu, J.; Wang, L.; Sun, C. Galectin-9 in cancer therapy: From immune checkpoint ligand to promising therapeutic target. Front. Cell Dev. Biol. 2024, 11, 1332205. [Google Scholar] [CrossRef] [PubMed]
- Van Niel, G.; d’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Hanley, S.; Chen, Y.-Y.; Hazeldine, J.; Lord, J.M. Senescent cell-derived extracellular vesicles as potential mediators of innate immunosenescence and inflammaging. Exp. Gerontol. 2024, 187, 112365. [Google Scholar] [CrossRef]
- Misawa, T.; Tanaka, Y.; Okada, R.; Takahashi, A. Biology of extracellular vesicles secreted from senescent cells as senescence-associated secretory phenotype factors. Geriatr. Gerontol. Int. 2020, 20, 539–546. [Google Scholar] [CrossRef]
- Wallis, R.; Mizen, H.; Bishop, C.L. The bright and dark side of extracellular vesicles in the senescence-associated secretory phenotype. Mech. Ageing Dev. 2020, 189, 111263. [Google Scholar] [CrossRef]
- Rao, S.G.; Jackson, J.G. SASP: Tumor Suppressor or Promoter? Yes! Trends Cancer 2016, 2, 676–687. [Google Scholar] [CrossRef]
- Krtolica, A.; Parrinello, S.; Lockett, S.; Desprez, P.-Y.; Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proc. Natl. Acad. Sci. USA 2001, 98, 12072–12077. [Google Scholar] [CrossRef]
- Di, G.H.; Liu, Y.; Lu, Y.; Liu, J.; Wu, C.; Duan, H.F. IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS ONE 2014, 9, e113572. [Google Scholar] [CrossRef]
- Al-Khalaf, H.H.; Ghebeh, H.; Inass, R.; Aboussekhra, A. Senescent Breast Luminal Cells Promote Carcinogenesis through Interleukin-8-Dependent Activation of Stromal Fibroblasts. Mol. Cell Biol. 2019, 39, e00359-18. [Google Scholar] [CrossRef] [PubMed]
- Takasugi, M.; Okada, R.; Takahashi, A.; Chen, D.V.; Watanabe, S.; Hara, E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 2017, 8, 15729. [Google Scholar] [CrossRef] [PubMed]
- Coppé, J.P.; Patil, C.K.; Rodier, F.; Sun, Y.; Muñoz, D.P.; Goldstein, J.; Nelson, P.S.; Desprez, P.Y.; Campisi, J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6, 2853–2868. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Hornsby, P.J. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 2007, 67, 3117–3126. [Google Scholar] [CrossRef]
- Ohuchida, K.; Mizumoto, K.; Murakami, M.; Qian, L.W.; Sato, N.; Nagai, E.; Matsumoto, K.; Nakamura, T.; Tanaka, M. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res. 2004, 64, 3215–3222. [Google Scholar] [CrossRef]
- Parrinello, S.; Coppe, J.P.; Krtolica, A.; Campisi, J. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation. J. Cell Sci. 2005, 118, 485–496. [Google Scholar] [CrossRef]
- Eggert, T.; Wolter, K.; Ji, J.; Ma, C.; Yevsa, T.; Klotz, S.; Medina-Echeverz, J.; Longerich, T.; Forgues, M.; Reisinger, F.; et al. Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell 2016, 30, 533–547. [Google Scholar] [CrossRef]
- Noh, J.Y.; Lee, I.P.; Han, N.R.; Kim, M.; Min, Y.K.; Lee, S.Y.; Yun, S.H.; Kim, S.I.; Park, T.; Chung, H.; et al. Additive Effect of CD73 Inhibitor in Colorectal Cancer Treatment With CDK4/6 Inhibitor Through Regulation of PD-L1. Cell Mol. Gastroenterol. Hepatol. 2022, 14, 769–788. [Google Scholar] [CrossRef]
- Liu, B.; Peng, Z.; Zhang, H.; Zhang, N.; Liu, Z.; Xia, Z.; Huang, S.; Luo, P.; Cheng, Q. Regulation of cellular senescence in tumor progression and therapeutic targeting: Mechanisms and pathways. Mol. Cancer 2025, 24, 106. [Google Scholar] [CrossRef]
- Milanovic, M.; Fan, D.N.Y.; Belenki, D.; Däbritz, J.H.M.; Zhao, Z.; Yu, Y.; Dörr, J.R.; Dimitrova, L.; Lenze, D.; Monteiro Barbosa, I.A.; et al. Senescence-associated reprogramming promotes cancer stemness. Nature 2018, 553, 96–100. [Google Scholar] [CrossRef]
- Saleh, T.; Tyutyunyk-Massey, L.; Gewirtz, D.A. Tumor Cell Escape from Therapy-Induced Senescence as a Model of Disease Recurrence after Dormancy. Cancer Res. 2019, 79, 1044–1046. [Google Scholar] [CrossRef] [PubMed]
- Kobashigawa, S.; Sakaguchi, Y.M.; Masunaga, S.; Mori, E. Stress-induced cellular senescence contributes to chronic inflammation and cancer progression. Therm. Med. 2019, 35, 41–58. [Google Scholar] [CrossRef]
- Kortlever, R.M.; Higgins, P.J.; Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 2006, 8, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Ariëns, R.A. Fibrin clot structure and function: A role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler. Thromb. Vasc. Biol. 2011, 31, e88–e99. [Google Scholar] [CrossRef]
- Orjalo, A.V.; Bhaumik, D.; Gengler, B.K.; Scott, G.K.; Campisi, J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc. Natl. Acad. Sci. USA 2009, 106, 17031–17036. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Z.; Xu, B.; Hu, H.; Wei, Z.; Liu, Q.; Zhang, X.; Ding, X.; Wang, Y.; Zhao, M.; et al. Chemokine receptor CXCR2 is transactivated by p53 and induces p38-mediated cellular senescence in response to DNA damage. Aging Cell 2013, 12, 1110–1121. [Google Scholar] [CrossRef]
- Miller, K.N.; Li, B.; Pierce-Hoffman, H.R.; Patel, S.; Lei, X.; Rajesh, A.; Teneche, M.G.; Havas, A.P.; Gandhi, A.; Macip, C.C.; et al. p53 enhances DNA repair and suppresses cytoplasmic chromatin fragments and inflammation in senescent cells. Nat. Commun. 2025, 16, 2229. [Google Scholar] [CrossRef]
- Klepacki, H.; Kowalczuk, K.; Łepkowska, N.; Hermanowicz, J.M. Molecular Regulation of SASP in Cellular Senescence: Therapeutic Implications and Translational Challenges. Cells 2025, 14, 942. [Google Scholar] [CrossRef]
- Abbas, T.; Dutta, A. p21 in cancer: Intricate networks and multiple activities. Nat. Rev. Cancer 2009, 9, 400–414. [Google Scholar] [CrossRef]
- de Renty, C.; DePamphilis, M.L.; Ullah, Z. Cytoplasmic localization of p21 protects trophoblast giant cells from DNA damage induced apoptosis. PLoS ONE 2014, 9, e97434. [Google Scholar] [CrossRef]
- Chambers, C.R.; Ritchie, S.; Pereira, B.A.; Timpson, P. Overcoming the senescence-associated secretory phenotype (SASP): A complex mechanism of resistance in the treatment of cancer. Mol. Oncol. 2021, 15, 3242–3255. [Google Scholar] [CrossRef]
- Sharpless, N.E.; Sherr, C.J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 2015, 15, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Coppé, J.-P.; Rodier, F.; Patil, C.K.; Freund, A.; Desprez, P.-Y.; Campisi, J. Tumor suppressor and aging biomarker p16INK4a induces cellular senescence without the associated inflammatory secretory phenotype. J. Biol. Chem. 2011, 286, 36396–36403. [Google Scholar] [CrossRef] [PubMed]
- Buj, R.; Chen, C.-W.; Dahl, E.S.; Leon, K.E.; Kuskovsky, R.; Maglakelidze, N.; Navaratnarajah, M.; Zhang, G.; Doan, M.T.; Jiang, H. Suppression of p16 induces mTORC1-mediated nucleotide metabolic reprogramming. Cell Rep. 2019, 28, 1971–1980.e8. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Patten, D.; Gough, S.; Gonçalves, S.d.B.; Chan, A.; Olan, I.; Cassidy, L.; Poblocka, M.; Zhu, H.; Lun, A.; et al. Senescence-induced endothelial phenotypes underpin immune-mediated senescence surveillance. Genes Dev. 2022, 36, 533–549. [Google Scholar] [CrossRef]
- Ruscetti, M.; Morris, J.P.t.; Mezzadra, R.; Russell, J.; Leibold, J.; Romesser, P.B.; Simon, J.; Kulick, A.; Ho, Y.J.; Fennell, M.; et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell 2020, 181, 424–441.e21. [Google Scholar] [CrossRef]
- Krizhanovsky, V.; Yon, M.; Dickins, R.A.; Hearn, S.; Simon, J.; Miething, C.; Yee, H.; Zender, L.; Lowe, S.W. Senescence of activated stellate cells limits liver fibrosis. Cell 2008, 134, 657–667. [Google Scholar] [CrossRef]
- Chen, H.A.; Ho, Y.J.; Mezzadra, R.; Adrover, J.M.; Smolkin, R.; Zhu, C.; Woess, K.; Bernstein, N.; Schmitt, G.; Fong, L.; et al. Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity. Cancer Discov. 2023, 13, 432–453. [Google Scholar] [CrossRef]
- Fulop, T.; Larbi, A.; Dupuis, G.; Le Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 2017, 8, 1960. [Google Scholar] [CrossRef]
- Kang, T.W.; Yevsa, T.; Woller, N.; Hoenicke, L.; Wuestefeld, T.; Dauch, D.; Hohmeyer, A.; Gereke, M.; Rudalska, R.; Potapova, A.; et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011, 479, 547–551. [Google Scholar] [CrossRef]
- Hasegawa, T.; Oka, T.; Son, H.G.; Oliver-García, V.S.; Azin, M.; Eisenhaure, T.M.; Lieb, D.J.; Hacohen, N.; Demehri, S. Cytotoxic CD4+ T cells eliminate senescent cells by targeting cytomegalovirus antigen. Cell 2023, 186, 1417–1431.e20. [Google Scholar] [CrossRef] [PubMed]
- Majewska, J.; Krizhanovsky, V. Immune surveillance of senescent cells in aging and disease. Nat. Aging 2025, 5, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.W.; Johmura, Y.; Suzuki, N.; Omori, S.; Migita, T.; Yamaguchi, K.; Hatakeyama, S.; Yamazaki, S.; Shimizu, E.; Imoto, S.; et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature 2022, 611, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, V.; Paldino, G.; Kunkl, M.; Paroli, M.; Sorrentino, R.; Tuosto, L.; Fiorillo, M.T. CD8(+) T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. Int. J. Mol. Sci. 2022, 23, 3374. [Google Scholar] [CrossRef]
- Srinivas, N.; Rachakonda, S.; Kumar, R. Telomeres and Telomere Length: A General Overview. Cancers 2020, 12, 558. [Google Scholar] [CrossRef]
- Wu, L.; Fidan, K.; Um, J.Y.; Ahn, K.S. Telomerase: Key regulator of inflammation and cancer. Pharmacol. Res. 2020, 155, 104726. [Google Scholar] [CrossRef]
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of telomere length across human tissues. Science 2020, 369, eaaz6876. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Kuk, M.U.; Kim, J.W.; Lee, Y.H.; Lee, Y.-S.; Choy, H.E.; Park, S.C.; Park, J.T. ATM mediated-p53 signaling pathway forms a novel axis for senescence control. Mitochondrion 2020, 55, 54–63. [Google Scholar] [CrossRef]
- Xiong, H.; Hua, F.; Dong, Y.; Lin, Y.; Ying, J.; Liu, J.; Wang, X.; Zhang, L.; Zhang, J. DNA damage response and GATA4 signaling in cellular senescence and aging-related pathology. Front. Aging Neurosci. 2022, 14, 933015. [Google Scholar] [CrossRef]
- Herbig, U.; Jobling, W.A.; Chen, B.P.; Chen, D.J.; Sedivy, J.M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell 2004, 14, 501–513. [Google Scholar] [CrossRef]
- Shay, J.W. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 2016, 6, 584–593. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, X.; Yuan, Z.; Qiu, J.; Lu, W. A comparison between diffusion tensor imaging and generalized q-sampling imaging in the age prediction of healthy adults via machine learning approaches. J. Neural Eng. 2022, 19, 016013. [Google Scholar] [CrossRef] [PubMed]
- Campa, D.; Mergarten, B.; De Vivo, I.; Boutron-Ruault, M.-C.; Racine, A.; Severi, G.; Nieters, A.; Katzke, V.A.; Trichopoulou, A.; Yiannakouris, N. Leukocyte telomere length in relation to pancreatic cancer risk: A prospective study. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Duell, E.J. Telomere length and pancreatic cancer risk: Breaking down the evidence. Gut 2017, 66, 1. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Shi, L.; Lei, J.; Li, B.; Jin, Y. Advances in optical assays for detecting telomerase activity. Luminescence 2019, 34, 136–152. [Google Scholar] [CrossRef]
- Hata, T.; Ishida, M.; Motoi, F.; Yamaguchi, T.; Naitoh, T.; Katayose, Y.; Egawa, S.; Unno, M. Telomerase activity in pancreatic juice differentiates pancreatic cancer from chronic pancreatitis: A meta-analysis. Pancreatology 2016, 16, 372–381. [Google Scholar] [CrossRef]
- Dong, H.; Qian, D.; Wang, Y.; Meng, L.; Chen, D.; Ji, X.; Feng, W. Survivin expression and serum levels in pancreatic cancer. World J. Surg. Oncol. 2015, 13, 189. [Google Scholar] [CrossRef]
- Mormile, R. Telomere Length and Pancreatic Cancer Risk. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1157. [Google Scholar] [CrossRef]
- Sharma, V.; Mehdi, M.M. Oxidative stress, inflammation and hormesis: The role of dietary and lifestyle modifications on aging. Neurochem. Int. 2023, 164, 105490. [Google Scholar] [CrossRef]
- Bogeska, R.; Mikecin, A.M.; Kaschutnig, P.; Fawaz, M.; Büchler-Schäff, M.; Le, D.; Ganuza, M.; Vollmer, A.; Paffenholz, S.V.; Asada, N.; et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 2022, 29, 1273–1284.e8. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.R.; Soneji, S.; Adolfsson, S.; Bryder, D.; Pronk, C.J. Human and Murine Hematopoietic Stem Cell Aging Is Associated with Functional Impairments and Intrinsic Megakaryocytic/Erythroid Bias. PLoS ONE 2016, 11, e0158369. [Google Scholar] [CrossRef]
- Jahandideh, B.; Derakhshani, M.; Abbaszadeh, H.; Movassaghpour, A.A.; Mehdizadeh, A.; Talebi, M.; Yousefi, M. The pro-Inflammatory cytokines effects on mobilization, self-renewal and differentiation of hematopoietic stem cells. Hum. Immunol. 2020, 81, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Passegué, E. TNF-α Coordinates Hematopoietic Stem Cell Survival and Myeloid Regeneration. Cell Stem Cell 2019, 25, 357–372.e7. [Google Scholar] [CrossRef]
- Ho, N.P.; Takizawa, H. Inflammation Regulates Haematopoietic Stem Cells and Their Niche. Int. J. Mol. Sci. 2022, 23, 1125. [Google Scholar] [CrossRef]
- Shi, Y.; Riese, D.J., 2nd; Shen, J. The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front. Pharmacol. 2020, 11, 574667. [Google Scholar] [CrossRef]
- Mistry, J.J.; Hellmich, C.; Moore, J.A.; Jibril, A.; Macaulay, I.; Moreno-Gonzalez, M.; Di Palma, F.; Beraza, N.; Bowles, K.M.; Rushworth, S.A. Free fatty-acid transport via CD36 drives β-oxidation-mediated hematopoietic stem cell response to infection. Nat. Commun. 2021, 12, 7130. [Google Scholar] [CrossRef]
- Ribeiro, C.; Ferreirinha, P.; Landry, J.J.M.; Macedo, F.; Sousa, L.G.; Pinto, R.; Benes, V.; Alves, N.L. Foxo3 regulates cortical and medullary thymic epithelial cell homeostasis with implications in T cell development. Cell Death Dis. 2024, 15, 352. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, L.; Nie, L.; Lin, H. Unraveling the molecular mechanisms between inflammation and tumor angiogenesis. Am. J. Cancer Res. 2021, 11, 301–317. [Google Scholar]
- Aguilar-Cazares, D.; Chavez-Dominguez, R.; Marroquin-Muciño, M.; Perez-Medina, M.; Benito-Lopez, J.J.; Camarena, A.; Rumbo-Nava, U.; Lopez-Gonzalez, J.S. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front. Endocrinol. 2022, 13, 929572. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, X.; Zhang, Y.; Zhu, M.; Wang, F.X.C.; Mu, J.; Li, J.; Yao, H.; Chen, K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023, 12, 11149–11165. [Google Scholar] [CrossRef]
- Habanjar, O.; Bingula, R.; Decombat, C.; Diab-Assaf, M.; Caldefie-Chezet, F.; Delort, L. Crosstalk of Inflammatory Cytokines within the Breast Tumor Microenvironment. Int. J. Mol. Sci. 2023, 24, 4002. [Google Scholar] [CrossRef]
- Aman, Y.; Schmauck-Medina, T.; Hansen, M.; Morimoto, R.I.; Simon, A.K.; Bjedov, I.; Palikaras, K.; Simonsen, A.; Johansen, T.; Tavernarakis, N.; et al. Autophagy in healthy aging and disease. Nat. Aging 2021, 1, 634–650. [Google Scholar] [CrossRef]
- Lim, S.H.Y.; Hansen, M.; Kumsta, C. Molecular Mechanisms of Autophagy Decline during Aging. Cells 2024, 13, 1364. [Google Scholar] [CrossRef]
- Di Malta, C.; Cinque, L.; Settembre, C. Transcriptional Regulation of Autophagy: Mechanisms and Diseases. Front. Cell Dev. Biol. 2019, 7, 114. [Google Scholar] [CrossRef]
- Anderson, C.M.; Macleod, K.F. Autophagy and cancer cell metabolism. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 347, pp. 145–190. [Google Scholar]
- Pandey, A.; Goswami, A.; Jithin, B.; Shukla, S. Autophagy: The convergence point of aging and cancer. Biochem. Biophys. Rep. 2025, 42, 101986. [Google Scholar] [CrossRef]
- Park, S.J.; Frake, R.A.; Karabiyik, C.; Son, S.M.; Siddiqi, F.H.; Bento, C.F.; Sterk, P.; Vicinanza, M.; Pavel, M.; Rubinsztein, D.C. Vinexin contributes to autophagic decline in brain ageing across species. Cell Death Differ. 2022, 29, 1055–1070. [Google Scholar] [CrossRef] [PubMed]
- Stavoe, A.K.; Gopal, P.P.; Gubas, A.; Tooze, S.A.; Holzbaur, E.L. Expression of WIPI2B counteracts age-related decline in autophagosome biogenesis in neurons. Elife 2019, 8, e44219. [Google Scholar] [CrossRef] [PubMed]
- Nixon, R.A. The aging lysosome: An essential catalyst for late-onset neurodegenerative diseases. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2020, 1868, 140443. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xu, L.; Li, Y.; Jia, S.; Wang, G.; Cen, X.; Xu, Y.; Cao, Z.; Wang, J.; Shen, N. Mitophagy defect mediates the aging-associated hallmarks in Hutchinson–Gilford progeria syndrome. Aging Cell 2024, 23, e14143. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Park, J.-M.; Grunwald, D.; Kim, D.-H. An expanded role for mTORC1 in autophagy. Mol. Cell. Oncol. 2016, 3, e1010958. [Google Scholar] [CrossRef]
- Burrinha, T.; Cunha, C.; Hall, M.J.; Lopes-da-Silva, M.; Seabra, M.C.; Guimas Almeida, C. Deacidification of endolysosomes by neuronal aging drives synapse loss. Traffic 2023, 24, 334–354. [Google Scholar] [CrossRef] [PubMed]
- Babbar, M.; Basu, S.; Yang, B.; Croteau, D.L.; Bohr, V.A. Mitophagy and DNA damage signaling in human aging. Mech. Ageing Dev. 2020, 186, 111207. [Google Scholar] [CrossRef] [PubMed]
- Palikaras, K.; Tavernarakis, N. Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 2014, 56, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Kubli, D.A.; Gustafsson, Å.B. Mitochondria and mitophagy: The yin and yang of cell death control. Circ. Res. 2012, 111, 1208–1221. [Google Scholar] [CrossRef]
- Palmer, J.E.; Wilson, N.; Son, S.M.; Obrocki, P.; Wrobel, L.; Rob, M.; Takla, M.; Korolchuk, V.I.; Rubinsztein, D.C. Autophagy, aging, and age-related neurodegeneration. Neuron 2025, 113, 29–48. [Google Scholar] [CrossRef]
- Kelly, G.; Kataura, T.; Panek, J.; Ma, G.; Salmonowicz, H.; Davis, A.; Kendall, H.; Brookes, C.; Ayine-Tora, D.M.; Banks, P. Suppressed basal mitophagy drives cellular aging phenotypes that can be reversed by a p62-targeting small molecule. Dev. Cell 2024, 59, 1924–1939.e7. [Google Scholar] [CrossRef]
- Eisenberg-Lerner, A.; Kimchi, A. The paradox of autophagy and its implication in cancer etiology and therapy. Apoptosis 2009, 14, 376–391. [Google Scholar] [CrossRef]
- White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 2012, 12, 401–410. [Google Scholar] [CrossRef]
- Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The role of autophagy in cancer: Therapeutic implications. Mol. Cancer Ther. 2011, 10, 1533–1541. [Google Scholar] [CrossRef]
- Shen, Y.; Li, D.-D.; Wang, L.-L.; Deng, R.; Zhu, X.-F. Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy 2008, 4, 1067–1068. [Google Scholar] [CrossRef]
- Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402, 672–676. [Google Scholar] [CrossRef]
- Takahashi, Y.; Coppola, D.; Matsushita, N.; Cualing, H.D.; Sun, M.; Sato, Y.; Liang, C.; Jung, J.U.; Cheng, J.Q.; Mulé, J.J.; et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 2007, 9, 1142–1151. [Google Scholar] [CrossRef]
- Furuya, N.; Yu, J.; Byfield, M.; Pattingre, S.; Levine, B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 2005, 1, 46–52. [Google Scholar] [CrossRef]
- Noguchi, M.; Hirata, N.; Suizu, F. The links between AKT and two intracellular proteolytic cascades: Ubiquitination and autophagy. Biochim. Biophys. Acta 2014, 1846, 342–352. [Google Scholar] [CrossRef]
- Roy, S.; Debnath, J. Autophagy and tumorigenesis. Semin. Immunopathol. 2010, 32, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Kausar, M.A.; Anwar, S.; Khan, Y.S.; Saleh, A.A.; Ahmed, M.A.A.; Kaur, S.; Iqbal, N.; Siddiqui, W.A.; Najm, M.Z. Autophagy and Cancer: Insights into Molecular Mechanisms and Therapeutic Approaches for Chronic Myeloid Leukemia. Biomolecules 2025, 15, 215. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.Y.; Ryan, K.M. Autophagy and cancer—Issues we need to digest. J. Cell Sci. 2012, 125, 2349–2358. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhang, Z.; Xu, R.; Zhang, Y.; Wang, Z. Contribution of HIF-1α/BNIP3-mediated autophagy to lipid accumulation during irinotecan-induced liver injury. Sci. Rep. 2023, 13, 6528. [Google Scholar] [CrossRef]
- Kim, M.J.; Woo, S.J.; Yoon, C.H.; Lee, J.S.; An, S.; Choi, Y.H.; Hwang, S.G.; Yoon, G.; Lee, S.J. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J. Biol. Chem. 2011, 286, 12924–12932. [Google Scholar] [CrossRef]
- Tabibzadeh, S. Signaling pathways and effectors of aging. Front. Biosci. 2021, 26, 50–96. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Pratico, D.; Bahijri, S.; Tuomilehto, J.; Uversky, V.N.; Ren, J. Hallmarks of cellular senescence: Biology, mechanisms, regulations. Exp. Mol. Med. 2025, 57, 1482–1491. [Google Scholar] [CrossRef]
- Simon, M.; Konrath, F.; Wolf, J. From regulation of cell fate decisions towards patient-specific treatments, insights from mechanistic models of signalling pathways. Curr. Opin. Syst. Biol. 2024, 39, 100533. [Google Scholar] [CrossRef]
- Chang, W.-L.; Peng, J.-Y.; Hong, C.-L.; Li, P.-C.; Chye, S.M.; Lu, F.-J.; Lin, H.-Y.; Chen, C.-H. Piperine Induces Apoptosis and Cell Cycle Arrest via Multiple Oxidative Stress Mechanisms and Regulation of PI3K/Akt and MAPK Signaling in Colorectal Cancer Cells. Antioxidants 2025, 14, 892. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Han, W.; Zhang, J.; Liu, G.; Li, H.; Xu, Y.; Liu, F.; Sun, S. Repurposing HIV protease inhibitors as senotherapeutic agents in cervical cancer: Dual targeting of CDK1/6-cell cycle arrest and p53/p21/p16 signaling axis. Biochem. Biophys. Res. Commun. 2025, 771, 152040. [Google Scholar] [CrossRef] [PubMed]
- Sedrak, M.S.; Cohen, H.J. The Aging-Cancer Cycle: Mechanisms and Opportunities for Intervention. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1234–1238. [Google Scholar] [CrossRef]
- Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022, 29, 946–960. [Google Scholar] [CrossRef]
- Indovina, P.; Pentimalli, F.; Casini, N.; Vocca, I.; Giordano, A. RB1 dual role in proliferation and apoptosis: Cell fate control and implications for cancer therapy. Oncotarget 2015, 6, 17873–17890. [Google Scholar] [CrossRef]
- Sasaki, K.; Takahashi, S.; Ouchi, K.; Otsuki, Y.; Wakayama, S.; Ishioka, C. Different impacts of TP53 mutations on cell cycle-related gene expression among cancer types. Sci. Rep. 2023, 13, 4868. [Google Scholar] [CrossRef]
- Jirawatnotai, S.; Dalton, S.; Wattanapanitch, M. Role of cyclins and cyclin-dependent kinases in pluripotent stem cells and their potential as a therapeutic target. Semin. Cell Dev. Biol. 2020, 107, 63–71. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Pi, H.; Sheng, Y. Current therapeutic progress of CDK4/6 inhibitors in breast cancer. Cancer Manag. Res. 2020, 12, 3477–3487. [Google Scholar] [CrossRef] [PubMed]
- Terracina, S.; Ferraguti, G.; Petrella, C.; Bruno, S.M.; Blaconà, G.; Di Certo, M.G.; Minni, A.; Greco, A.; Musacchio, A.; Ralli, M. Characteristic hallmarks of aging and the impact on carcinogenesis. Curr. Cancer Drug Targets 2023, 23, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Jan, N.; Sofi, S.; Mir, A.A.; Masoodi, G.; Mir, M.A. Balancing senescence and apoptosis: Therapeutic insights into aging and cancer. Mol. Cell. Biochem. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Herman, B. Ageing and apoptosis. Mech. Ageing Dev. 2002, 123, 245–260. [Google Scholar] [CrossRef]
- Li, H.; Zhu, H.; Xu, C.-J.; Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998, 94, 491–501. [Google Scholar] [CrossRef]
- Muzio, M.; Stockwell, B.R.; Stennicke, H.R.; Salvesen, G.S.; Dixit, V.M. An induced proximity model for caspase-8 activation. J. Biol. Chem. 1998, 273, 2926–2930. [Google Scholar] [CrossRef]
- Lowe, S.W.; Lin, A.W. Apoptosis in cancer. Carcinogenesis 2000, 21, 485–495. [Google Scholar] [CrossRef]
- Vazquez, A.; Bond, E.E.; Levine, A.J.; Bond, G.L. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat. Rev. Drug Discov. 2008, 7, 979–987. [Google Scholar] [CrossRef]
- Fulda, S.; Meyer, E.; Debatin, K.-M. Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 2002, 21, 2283–2294. [Google Scholar] [CrossRef]
- Soni, S.; Anang, V.; Zhao, Y.; Horowitz, J.C.; Nho, R.S.; Mebratu, Y.A. A new era in cancer therapy: Targeting the Proteasome-Bcl-2 axis. J. Exp. Clin. Cancer Res. 2025, 44, 246. [Google Scholar] [CrossRef]
- Lopez, A.; Reyna, D.E.; Gitego, N.; Kopp, F.; Zhou, H.; Miranda-Roman, M.A.; Nordstrøm, L.U.; Narayanagari, S.-R.; Chi, P.; Vilar, E. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat. Commun. 2022, 13, 1199. [Google Scholar] [CrossRef]
- Higami, Y.; Shimokawa, I. Apoptosis in the aging process. Cell Tissue Res. 2000, 301, 125–132. [Google Scholar] [CrossRef]
- Joaquin, A.M.; Gollapudi, S. Functional decline in aging and disease: A role for apoptosis. J. Am. Geriatr. Soc. 2001, 49, 1234–1240. [Google Scholar] [CrossRef]
- Cai, Y.; Xiong, M.; Xin, Z.; Liu, C.; Ren, J.; Yang, X.; Lei, J.; Li, W.; Liu, F.; Chu, Q.; et al. Decoding aging-dependent regenerative decline across tissues at single-cell resolution. Cell Stem Cell 2023, 30, 1674–1691.e1678. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.i.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, T.; Ulfhake, B. Sarcopenia: What Is the Origin of This Aging-Induced Disorder? Front. Genet. 2021, 12, 688526. [Google Scholar] [CrossRef]
- Wang, N.; Zheng, A.; Yan, Y.; He, T.; Wu, X.; Xian, M.; Luo, J.; Li, C.; Wei, J.; Wang, Y.; et al. Aging induces sarcopenia by disrupting the crosstalk between the skeletal muscle microenvironment and myofibers. J. Adv. Res. 2025. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, I.; Shin, H.R.; Rhee, J.; Seo, J.Y.; Jo, Y.W.; Yoo, K.; Hann, S.H.; Kang, J.S.; Park, J. The hypothalamic–pituitary–gonadal axis controls muscle stem cell senescence through autophagosome clearance. J. Cachexia Sarcopenia Muscle 2021, 12, 177–191. [Google Scholar] [CrossRef]
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers 2021, 7, 33. [Google Scholar] [CrossRef]
- Nisbet, R.M.; Götz, J. Amyloid-β and Tau in Alzheimer’s disease: Novel pathomechanisms and non-pharmacological treatment strategies. J. Alzheimer’s Dis. 2018, 64, S517–S527. [Google Scholar] [CrossRef]
- Tong, B.C.-K.; Wu, A.J.; Li, M.; Cheung, K.-H. Calcium signaling in Alzheimer’s disease & therapies. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2018, 1865, 1745–1760. [Google Scholar]
- Ashrafian, H.; Zadeh, E.H.; Khan, R.H. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int. J. Biol. Macromol. 2021, 167, 382–394. [Google Scholar] [CrossRef]
- Pucci, B.; Kasten, M.; Giordano, A. Cell cycle and apoptosis. Neoplasia 2000, 2, 291–299. [Google Scholar] [CrossRef]
- Gao, X.; Lin, S.H.; Ren, F.; Li, J.T.; Chen, J.J.; Yao, C.B.; Yang, H.B.; Jiang, S.X.; Yan, G.Q.; Wang, D.; et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat. Commun. 2016, 7, 11960. [Google Scholar] [CrossRef]
- Lakshminarasimhan, R.; Liang, G. The Role of DNA Methylation in Cancer. Adv. Exp. Med. Biol. 2016, 945, 151–172. [Google Scholar] [CrossRef]
- Espinoza Pereira, K.N.; Shan, J.; Licht, J.D.; Bennett, R.L. Histone mutations in cancer. Biochem. Soc. Trans. 2023, 51, 1749–1763. [Google Scholar] [CrossRef]
- Lau, M.T.; Klausen, C.; Leung, P.C. E-cadherin inhibits tumor cell growth by suppressing PI3K/Akt signaling via β-catenin-Egr1-mediated PTEN expression. Oncogene 2011, 30, 2753–2766. [Google Scholar] [CrossRef]
- Chawla, S.P.; Cranmer, L.D.; Van Tine, B.A.; Reed, D.R.; Okuno, S.H.; Butrynski, J.E.; Adkins, D.R.; Hendifar, A.E.; Kroll, S.; Ganjoo, K.N. Phase II study of the safety and antitumor activity of the hypoxia-activated prodrug TH-302 in combination with doxorubicin in patients with advanced soft tissue sarcoma. J. Clin. Oncol. 2014, 32, 3299–3306. [Google Scholar] [CrossRef]
- Hoefflin, R.; Harlander, S.; Schäfer, S.; Metzger, P.; Kuo, F.; Schönenberger, D.; Adlesic, M.; Peighambari, A.; Seidel, P.; Chen, C.Y.; et al. HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat. Commun. 2020, 11, 4111. [Google Scholar] [CrossRef]
- Chen, Z.; Han, F.; Du, Y.; Shi, H.; Zhou, W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 70. [Google Scholar] [CrossRef]
- Vijg, J.; Dong, X. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell 2020, 182, 12–23. [Google Scholar] [CrossRef]
- Yoshioka, K.-I.; Kusumoto-Matsuo, R.; Matsuno, Y.; Ishiai, M. Genomic instability and cancer risk associated with erroneous DNA repair. Int. J. Mol. Sci. 2021, 22, 12254. [Google Scholar] [CrossRef]
- Stead, E.R.; Bjedov, I. Balancing DNA repair to prevent ageing and cancer. Exp. Cell Res. 2021, 405, 112679. [Google Scholar] [CrossRef]
- Ataabadi, E.A.; Golshiri, K.; van der Linden, J.; de Boer, M.; Duncker, D.J.; Jüttner, A.; de Vries, R.; Van Veghel, R.; van der Pluijm, I.; Dutheil, S.; et al. Vascular Ageing Features Caused by Selective DNA Damage in Smooth Muscle Cell. Oxid. Med. Cell Longev. 2021, 2021, 2308317. [Google Scholar] [CrossRef]
- Golshiri, K.; Ataabadi, E.A.; Rubio-Beltran, E.; Dutheil, S.; Yao, W.; Snyder, G.L.; Davis, R.E.; van der Pluijm, I.; Brandt, R.; Van den Berg-Garrelds, I.M.; et al. Selective Phosphodiesterase 1 Inhibition Ameliorates Vascular Function, Reduces Inflammatory Response, and Lowers Blood Pressure in Aging Animals. J. Pharmacol. Exp. Ther. 2021, 378, 173–183. [Google Scholar] [CrossRef]
- Meng, F.; Liu, B.; Zhou, Z. Progeria and Genome Instability. In Aging Mechanisms: Longevity, Metabolism, and Brain Aging; Mori, N., Mook-Jung, I., Eds.; Springer: Tokyo, Japan, 2015; pp. 51–63. [Google Scholar]
- Shalabi, S.F.; Miyano, M.; Sayaman, R.W.; Lopez, J.C.; Jokela, T.A.; Todhunter, M.E.; Hinz, S.; Garbe, J.C.; Stampfer, M.R.; Kessenbrock, K. Evidence for accelerated aging in mammary epithelia of women carrying germline BRCA1 or BRCA2 mutations. Nat. Aging 2021, 1, 838–849. [Google Scholar] [CrossRef]
- Menolfi, D.; Zha, S. ATM, ATR and DNA-PKcs kinases—The lessons from the mouse models: Inhibition ≠ deletion. Cell Biosci. 2020, 10, 8. [Google Scholar] [CrossRef]
- Sanchez-Contreras, M.; Kennedy, S.R. The Complicated Nature of Somatic mtDNA Mutations in Aging. Front. Aging 2022, 2, 805126. [Google Scholar] [CrossRef]
- Mito, T.; Kikkawa, Y.; Shimizu, A.; Hashizume, O.; Katada, S.; Imanishi, H.; Ota, A.; Kato, Y.; Nakada, K.; Hayashi, J.-I. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development. PLoS ONE 2013, 8, e55789. [Google Scholar] [CrossRef]
- Lujan, S.A.; Longley, M.J.; Humble, M.H.; Lavender, C.A.; Burkholder, A.; Blakely, E.L.; Alston, C.L.; Gorman, G.S.; Turnbull, D.M.; McFarland, R. Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging. Genome Biol. 2020, 21, 248. [Google Scholar] [CrossRef]
- Macken, W.L.; Vandrovcova, J.; Hanna, M.G.; Pitceathly, R.D. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat. Rev. Neurol. 2021, 17, 215–230. [Google Scholar] [CrossRef]
- Yi, F.; Yuan, J.; Somekh, J.; Peleg, M.; Zhu, Y.C.; Jia, Z.; Wu, F.; Huang, Z. Genetically supported targets and drug repurposing for brain aging: A systematic study in the UK Biobank. Sci. Adv. 2025, 11, eadr3757. [Google Scholar] [CrossRef]
- Fraga, M.F.; Agrelo, R.; Esteller, M. Cross-talk between aging and cancer: The epigenetic language. Ann. N. Y. Acad. Sci. 2007, 1100, 60–74. [Google Scholar] [CrossRef]
- Seale, K.; Horvath, S.; Teschendorff, A.; Eynon, N.; Voisin, S. Making sense of the ageing methylome. Nat. Rev. Genet. 2022, 23, 585–605. [Google Scholar] [CrossRef]
- Agarwal, N.; Jha, A.K. DNA hypermethylation of tumor suppressor genes among oral squamous cell carcinoma patients: A prominent diagnostic biomarker. Mol. Biol. Rep. 2025, 52, 44. [Google Scholar] [CrossRef]
- Zabransky, D.J.; Jaffee, E.M.; Weeraratna, A.T. Shared genetic and epigenetic changes link aging and cancer. Trends Cell Biol. 2022, 32, 338–350. [Google Scholar] [CrossRef]
- Chen, B.-F.; Chan, W.-Y. The de novo DNA methyltransferase DNMT3A in development and cancer. Epigenetics 2014, 9, 669–677. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, S.; Zeng, M.; Liu, M.; Zhao, C.; Yi, B.; Hu, S.; Yu, B.; Jia, H. Impact of Carrying DNMT3A or TET2 Mutations on Plaque Characteristics and Prognosis in Patients With STEMI Based on OCT. Circ. Cardiovasc. Imaging 2025, 18, e017915. [Google Scholar] [CrossRef]
- Vargas-Alarcón, G.; Avilés-Jiménez, F.; Mejía-Sánchez, F.; Pérez-Hernández, N.; Cardoso-Saldaña, G.; Posadas-Sánchez, R. Helicobacter pylori infection and DNMT3a polymorphism are associated with the presence of premature coronary artery disease and subclinical atherosclerosis. Data from the GEA Mexican Study. Microb. Pathog. 2022, 170, 105719. [Google Scholar] [CrossRef]
- Uddin, M.G.; Fandy, T.E. DNA methylation inhibitors: Retrospective and perspective view. Adv. Cancer Res. 2021, 152, 205–223. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Li, Y.; Lei, D.; Xiang, J.; Ouyang, L.; Wang, Y.; Yang, J. Recent progress in DNA methyltransferase inhibitors as anticancer agents. Front. Pharmacol. 2022, 13, 1072651. [Google Scholar] [CrossRef]
- Laranjeira, A.B.A.; Hollingshead, M.G.; Nguyen, D.; Kinders, R.J.; Doroshow, J.H.; Yang, S.X. DNA damage, demethylation and anticancer activity of DNA methyltransferase (DNMT) inhibitors. Sci. Rep. 2023, 13, 5964. [Google Scholar] [CrossRef]
- Papadatos-Pastos, D.; Yuan, W.; Pal, A.; Crespo, M.; Ferreira, A.; Gurel, B.; Prout, T.; Ameratunga, M.; Chénard-Poirier, M.; Curcean, A.; et al. Phase 1, dose-escalation study of guadecitabine (SGI-110) in combination with pembrolizumab in patients with solid tumors. J. Immunother. Cancer 2022, 10, e004495. [Google Scholar] [CrossRef]
- Amaro, A.; Reggiani, F.; Fenoglio, D.; Gangemi, R.; Tosi, A.; Parodi, A.; Banelli, B.; Rigo, V.; Mastracci, L.; Grillo, F.; et al. Guadecitabine increases response to combined anti-CTLA-4 and anti-PD-1 treatment in mouse melanoma in vivo by controlling T-cells, myeloid derived suppressor and NK cells. J. Exp. Clin. Cancer Res. 2023, 42, 67. [Google Scholar] [CrossRef]
- Jang, H.J.; Hostetter, G.; Macfarlane, A.W.; Madaj, Z.; Ross, E.A.; Hinoue, T.; Kulchycki, J.R.; Burgos, R.S.; Tafseer, M.; Alpaugh, R.K.; et al. A Phase II Trial of Guadecitabine plus Atezolizumab in Metastatic Urothelial Carcinoma Progressing after Initial Immune Checkpoint Inhibitor Therapy. Clin. Cancer Res. 2023, 29, 2052–2065. [Google Scholar] [CrossRef]
- Tayari, M.M.; Santos, H.G.D.; Kwon, D.; Bradley, T.J.; Thomassen, A.; Chen, C.; Dinh, Y.; Perez, A.; Zelent, A.; Morey, L. Clinical responsiveness to all-trans retinoic acid is potentiated by LSD1 inhibition and associated with a quiescent transcriptome in myeloid malignancies. Clin. Cancer Res. 2021, 27, 1893–1903. [Google Scholar] [CrossRef]
- Huang, M.; Chen, C.; Geng, J.; Han, D.; Wang, T.; Xie, T.; Wang, L.; Wang, Y.; Wang, C.; Lei, Z. Targeting KDM1A attenuates Wnt/β-catenin signaling pathway to eliminate sorafenib-resistant stem-like cells in hepatocellular carcinoma. Cancer Lett. 2017, 398, 12–21. [Google Scholar] [CrossRef]
- Dratwa, M.; Wysoczańska, B.; Łacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT—Regulation and Roles in Cancer Formation. Front. Immunol. 2020, 11, 589929. [Google Scholar] [CrossRef]
- Lee, D.D.; Leão, R.; Komosa, M.; Gallo, M.; Zhang, C.H.; Lipman, T.; Remke, M.; Heidari, A.; Nunes, N.M.; Apolónio, J.D.; et al. DNA hypermethylation within TERT promoter upregulates TERT expression in cancer. J. Clin. Investig. 2018, 129, 223–229. [Google Scholar] [CrossRef]
- Dogan, F.; Forsyth, N.R. Telomerase Regulation: A Role for Epigenetics. Cancers 2021, 13, 1213. [Google Scholar] [CrossRef]
- Oh, E.S.; Petronis, A. Origins of human disease: The chrono-epigenetic perspective. Nat. Rev. Genet. 2021, 22, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Al Ojaimi, M.; Banimortada, B.J.; Othman, A.; Riedhammer, K.M.; Almannai, M.; El-Hattab, A.W. Disorders of histone methylation: Molecular basis and clinical syndromes. Clin. Genet. 2022, 102, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Luo, M.; Jeong, M.; Rodriguez, B.; Xia, Z.; Hannah, R.; Wang, H.; Le, T.; Faull, K.F.; Chen, R.; et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 2014, 14, 673–688. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Yu, D.Y.; Gao, F.F.; Zhou, D.Y.; Wu, Y.N.; Yang, X.X.; Chen, J.; Yang, J.S.; Shen, M.Q.; Zhang, Y.X. The Histone Lysine Demethylase KDM7A Contributes to Reward Memory via Fscn1-Induced Synaptic Plasticity in the Medial Prefrontal Cortex. Adv. Sci. 2025, 12, 2405352. [Google Scholar] [CrossRef]
- Xiao, L.; Qiao, J.; Huang, Y.; Tan, B.; Hong, L.; Li, Z.; Cai, G.; Wu, Z.; Zheng, E.; Wang, S. RASGRP1 targeted by H3K27me3 regulates myoblast proliferation and differentiation in mice and pigs: RASGRP1 regulates myoblast proliferation and differentiation. Acta Biochim. Biophys. Sin. 2024, 56, 452. [Google Scholar]
- Pashos, A.R.S.; Meyer, A.R.; Bussey-Sutton, C.; O’Connor, E.S.; Coradin, M.; Coulombe, M.; Riemondy, K.A.; Potlapelly, S.; Strahl, B.D.; Hansson, G.C.; et al. H3K36 methylation regulates cell plasticity and regeneration in the intestinal epithelium. Nat. Cell Biol. 2025, 27, 202–217. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, W.; Qu, J.; Liu, G.-H. Emerging epigenetic insights into aging mechanisms and interventions. Trends Pharmacol. Sci. 2024, 45, 157–172. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, X.; Xia, H.; Xu, C. Downregulation of P300/CBP-associated factor protects from vascular aging via Nrf2 signal pathway activation. Int. J. Mol. Sci. 2022, 23, 12574. [Google Scholar] [CrossRef]
- Xu, D.C.; Sas-Nowosielska, H.; Donahue, G.; Huang, H.; Pourshafie, N.; Good, C.R.; Berger, S.L. Histone acetylation in an Alzheimer’s disease cell model promotes homeostatic amyloid-reducing pathways. Acta Neuropathol. Commun. 2024, 12, 3. [Google Scholar] [CrossRef]
- Maity, S.; Farrell, K.; Navabpour, S.; Narayanan, S.N.; Jarome, T.J. Epigenetic mechanisms in memory and cognitive decline associated with aging and Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 12280. [Google Scholar] [CrossRef] [PubMed]
- Georgoulis, A.; Vorgias, C.E.; Chrousos, G.P.; Rogakou, E.P. Genome instability and γH2AX. Int. J. Mol. Sci. 2017, 18, 1979. [Google Scholar] [CrossRef] [PubMed]
- Oizumi, T.; Suzuki, T.; Kobayashi, J.; Nakamura, A.J. Senescence-associated heterochromatin foci suppress γ-H2AX focus formation induced by radiation exposure. Int. J. Mol. Sci. 2024, 25, 3355. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.; Innes, A.J.; Roux, P.-F.; Buisman, S.C.; Jung, J.; Ortet, L.; Moiseeva, V.; Wagner, V.; Robinson, L.; Ausema, A. 3-Deazaadenosine alleviates senescence to promote cellular fitness and cell therapy efficiency in mice. Nat. Aging 2022, 2, 851–866. [Google Scholar] [CrossRef]
- Kim, H.-J.; Cho, J.H.; Quan, H.; Kim, J.-R. Down-regulation of Aurora B kinase induces cellular senescence in human fibroblasts and endothelial cells through a p53-dependent pathway. FEBS Lett. 2011, 585, 3569–3576. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, Y.; Hou, J.; Zhao, B. Chromatin remodeling and cancer: The critical influence of the SWI/SNF complex. Epigenetics Chromatin 2025, 18, 22. [Google Scholar] [CrossRef]
- Wanior, M.; Kramer, A.; Knapp, S.; Joerger, A.C. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 2021, 40, 3637–3654. [Google Scholar] [CrossRef]
- Ding, Y.; Li, N.; Dong, B.; Guo, W.; Wei, H.; Chen, Q.; Yuan, H.; Han, Y.; Chang, H.; Kan, S.; et al. Chromatin remodeling ATPase BRG1 and PTEN are synthetic lethal in prostate cancer. J. Clin. Investig. 2019, 129, 759–773. [Google Scholar] [CrossRef]
- Muthuswami, R.; Bailey, L.; Rakesh, R.; Imbalzano, A.N.; Nickerson, J.A.; Hockensmith, J.W. BRG1 is a prognostic indicator and a potential therapeutic target for prostate cancer. J. Cell Physiol. 2019, 234, 15194–15205. [Google Scholar] [CrossRef]
- Jusic, A.; Thomas, P.B.; Wettinger, S.B.; Dogan, S.; Farrugia, R.; Gaetano, C.; Tuna, B.G.; Pinet, F.; Robinson, E.L.; Tual-Chalot, S. Noncoding RNAs in age-related cardiovascular diseases. Ageing Res. Rev. 2022, 77, 101610. [Google Scholar] [CrossRef]
- Slack, F.J.; Chinnaiyan, A.M. The role of non-coding RNAs in oncology. Cell 2019, 179, 1033–1055. [Google Scholar] [CrossRef]
- Yi, X.; Wang, Y.; Xu, S. MiR-455-3p downregulation facilitates cell proliferation and invasion and predicts poor prognosis of osteosarcoma. J. Orthop. Surg. Res. 2020, 15, 454. [Google Scholar] [CrossRef]
- Ma, F.; Huang, J.; Li, W.; Li, P.; Liu, M.; Xue, H. MicroRNA-455-3p functions as a tumor suppressor by targeting HDAC2 to regulate cell cycle in hepatocellular carcinoma. Environ. Toxicol. 2022, 37, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Hessels, D.; Gunnewiek, J.M.T.K.; van Oort, I.; Karthaus, H.F.M.; van Leenders, G.J.L.; van Balken, B.; Kiemeney, L.A.; Witjes, J.A.; Schalken, J.A. DD3PCA3-based Molecular Urine Analysis for the Diagnosis of Prostate Cancer. Eur. Urol. 2003, 44, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Tang, Q.; Chen, J.; Zhu, L. Epigenetic Clocks: Beyond Biological Age, Using the Past to Predict the Present and Future. Aging Dis. 2024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Vallerga, C.L.; Walker, R.M.; Lin, T.; Henders, A.K.; Montgomery, G.W.; He, J.; Fan, D.; Fowdar, J.; Kennedy, M.; et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 2019, 11, 54. [Google Scholar] [CrossRef]
- You, Y.; Chen, Y.; Ding, H.; Liu, Q.; Wang, R.; Xu, K.; Wang, Q.; Gasevic, D.; Ma, X. Relationship between physical activity and DNA methylation-predicted epigenetic clocks. NPJ Aging 2025, 11, 27. [Google Scholar] [CrossRef]
- Izadi, M.; Sadri, N.; Abdi, A.; Serajian, S.; Jalalei, D.; Tahmasebi, S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci. 2024, 351, 122842. [Google Scholar] [CrossRef]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef]
- Weidner, C.I.; Lin, Q.; Koch, C.M.; Eisele, L.; Beier, F.; Ziegler, P.; Bauerschlag, D.O.; Jockel, K.H.; Erbel, R.; Muhleisen, T.W.; et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014, 15, R24. [Google Scholar] [CrossRef]
- Bao, C.; Zhu, W.; Bao, T.; Hou, Y.; Wu, T.; Huang, J.; He, C. The application of epigenetic clocks in degenerative musculoskeletal diseases: A systematic review. Osteoarthr. Cartil. 2025, 33, 1052–1065. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- McCrory, C.; Fiorito, G.; Hernandez, B.; Polidoro, S.; O’Halloran, A.M.; Hever, A.; Ni Cheallaigh, C.; Lu, A.T.; Horvath, S.; Vineis, P.; et al. GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Protsenko, E.; Yang, R.; Nier, B.; Reus, V.; Hammamieh, R.; Rampersaud, R.; Wu, G.W.Y.; Hough, C.M.; Epel, E.; Prather, A.A.; et al. “GrimAge,” an epigenetic predictor of mortality, is accelerated in major depressive disorder. Transl. Psychiatry 2021, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019, 11, 303–327. [Google Scholar] [CrossRef]
- Belsky, D.W.; Caspi, A.; Corcoran, D.L.; Sugden, K.; Poulton, R.; Arseneault, L.; Baccarelli, A.; Chamarti, K.; Gao, X.; Hannon, E.; et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife 2022, 11, e73420. [Google Scholar] [CrossRef]
- Ying, K.; Liu, H.; Tarkhov, A.E.; Sadler, M.C.; Lu, A.T.; Moqri, M.; Horvath, S.; Kutalik, Z.; Shen, X.; Gladyshev, V.N. Causality-enriched epigenetic age uncouples damage and adaptation. Nat. Aging 2024, 4, 231–246. [Google Scholar] [CrossRef]
- Tomusiak, A.; Floro, A.; Tiwari, R.; Riley, R.; Matsui, H.; Andrews, N.; Kasler, H.G.; Verdin, E. Development of an epigenetic clock resistant to changes in immune cell composition. Commun. Biol. 2024, 7, 934. [Google Scholar] [CrossRef]
- Fuentealba, M.; Rouch, L.; Guyonnet, S.; Lemaitre, J.-M.; de Souto Barreto, P.; Vellas, B.; Andrieu, S.; Furman, D. A blood-based epigenetic clock for intrinsic capacity predicts mortality and is associated with clinical, immunological and lifestyle factors. Nat. Aging 2025, 5, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Jacques, M.; Seale, K.; Voisin, S.; Lysenko, A.; Grolaux, R.; Jones-Freeman, B.; Lamon, S.; Levinger, I.; Bauer, C.; Sharples, A.P.; et al. DNA Methylation Ageing Atlas Across 17 Human Tissues. bioRxiv 2025. [Google Scholar] [CrossRef]
- Simms, C. How ageing changes our genes—Huge epigenetic atlas gives clearest picture yet. Nature 2025, 645, 292–293. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.A.; Basisty, N.; Wilson, D.M., 3rd; Ferrucci, L. Connecting aging biology and inflammation in the omics era. J. Clin. Investig. 2022, 132, e158448. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Senju, S.; Matsumura, K.; Swain, S.L.; Nishimura, Y. IL-6-mediated environmental conditioning of defective Th1 differentiation dampens antitumour immune responses in old age. Nat. Commun. 2015, 6, 6702. [Google Scholar] [CrossRef]
- Haura, E.B.; Turkson, J.; Jove, R. Mechanisms of disease: Insights into the emerging role of signal transducers and activators of transcription in cancer. Nat. Clin. Pract. Oncol. 2005, 2, 315–324. [Google Scholar] [CrossRef]
- Mei, Y.; Zhao, B.; Basiorka, A.; Yang, J.; Cao, L.; Zhang, J.; List, A.; Ji, P. Age-related inflammatory bone marrow microenvironment induces ineffective erythropoiesis mimicking del (5q) MDS. Leukemia 2018, 32, 1023–1033. [Google Scholar] [CrossRef]
- Liposits, G.; Skuladottir, H.; Ryg, J.; Winther, S.B.; Möller, S.; Hofsli, E.; Shah, C.-H.; Poulsen, L.Ø.; Berglund, Å.; Qvortrup, C. The prognostic value of pre-treatment circulating biomarkers of systemic inflammation (CRP, dNLR, YKL-40, and IL-6) in vulnerable older patients with metastatic colorectal cancer receiving palliative chemotherapy—The Randomized NORDIC9-Study. J. Clin. Med. 2022, 11, 5603. [Google Scholar] [CrossRef]
- Yu, J.E.; Yeo, I.J.; Han, S.-B.; Yun, J.; Kim, B.; Yong, Y.J.; Lim, Y.-S.; Kim, T.H.; Son, D.J.; Hong, J.T. Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp. Mol. Med. 2024, 56, 1–18. [Google Scholar] [CrossRef]
- Uceda, A.B.; Mariño, L.; Casasnovas, R.; Adrover, M. An overview on glycation: Molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys. Rev. 2024, 16, 189–218. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, B.; Höök, P.; Jones, A.D.; Larsson, L. Changes in myosin structure and function in response to glycation. FASEB J. 2001, 15, 2415–2422. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Lin, B.; Ortwerth, B.J. Rate of formation of AGEs during ascorbate glycation and during aging in human lens tissue. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2002, 1587, 65–74. [Google Scholar] [CrossRef]
- Brownlee, M. Advanced protein glycosylation in diabetes and aging. Annu. Rev. Med. 1994, 154, 2473–2479. [Google Scholar] [CrossRef]
- Bergman, M.; Abdul-Ghani, M.; Neves, J.S.; Monteiro, M.P.; Medina, J.L.; Dorcely, B.; Buysschaert, M. Pitfalls of HbA1c in the Diagnosis of Diabetes. J. Clin. Endocrinol. Metab. 2020, 105, 2803–2811. [Google Scholar] [CrossRef]
- Sabbatinelli, J.; Castiglione, S.; Macrì, F.; Giuliani, A.; Ramini, D.; Vinci, M.C.; Tortato, E.; Bonfigli, A.R.; Olivieri, F.; Raucci, A. Circulating levels of AGEs and soluble RAGE isoforms are associated with all-cause mortality and development of cardiovascular complications in type 2 diabetes: A retrospective cohort study. Cardiovasc. Diabetol. 2022, 21, 95. [Google Scholar] [CrossRef]
- De Leon-Oliva, D.; González-Prieto, P.; De Castro-Martinez, P.; Boaru, D.L.; Laguna-Hernández, P.; Fraile-Martinez, O.; García-Montero, C.; Guijarro, L.G.; López-González, L.; Díaz-Pedrero, R.; et al. Revisiting the biological role of the Warburg effect: Evolving perspectives on cancer metabolism. Pathol. Res. Pract. 2025, 273, 156151. [Google Scholar] [CrossRef]
- Walker-Samuel, S.; Ramasawmy, R.; Torrealdea, F.; Rega, M.; Rajkumar, V.; Johnson, S.P.; Richardson, S.; Gonçalves, M.; Parkes, H.G.; Arstad, E.; et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 2013, 19, 1067–1072. [Google Scholar] [CrossRef]
- Patra, K.C.; Wang, Q.; Bhaskar, P.T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W.J.; Allen, E.L.; et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 2013, 24, 213–228. [Google Scholar] [CrossRef]
- Zheng, M.; Wu, C.; Yang, K.; Yang, Y.; Liu, Y.; Gao, S.; Wang, Q.; Li, C.; Chen, L.; Li, H. Novel selective hexokinase 2 inhibitor Benitrobenrazide blocks cancer cells growth by targeting glycolysis. Pharmacol. Res. 2021, 164, 105367. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, Z.; Chen, Y.; Tian, H.; Chai, P.; Shen, Y.; Yao, Y.; Xu, S.; Ge, S.; Jia, R. Lactate and lactylation in cancer. Signal Transduct. Target. Ther. 2025, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, F.; Afonso, J.; Costa, M.; Granja, S. Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy. Front. Oncol. 2020, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches. Front. Oncol. 2019, 9, 1143. [Google Scholar] [CrossRef]
- Hayes, C.; Donohoe, C.L.; Davern, M.; Donlon, N.E. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett. 2021, 500, 75–86. [Google Scholar] [CrossRef]
- Xie, H.; Hanai, J.; Ren, J.G.; Kats, L.; Burgess, K.; Bhargava, P.; Signoretti, S.; Billiard, J.; Duffy, K.J.; Grant, A.; et al. Targeting lactate dehydrogenase—A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab. 2014, 19, 795–809. [Google Scholar] [CrossRef]
- Sun, N.; Kabir, M.; Lee, Y.; Xie, L.; Hu, X.; Velez, J.; Chen, X.; Kaniskan, H.Ü.; Jin, J. Discovery of the First Lactate Dehydrogenase Proteolysis Targeting Chimera Degrader for the Treatment of Pancreatic Cancer. J. Med. Chem. 2023, 66, 596–610. [Google Scholar] [CrossRef]
- Timmerman, K.L.; Volpi, E. Amino acid metabolism and regulatory effects in aging. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 45–49. [Google Scholar] [CrossRef]
- Chen, J.; Cui, L.; Lu, S.; Xu, S. Amino acid metabolism in tumor biology and therapy. Cell Death Dis. 2024, 15, 42. [Google Scholar] [CrossRef]
- Sekhar, R.V. GlyNAC Supplementation Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Aging Hallmarks, Metabolic Defects, Muscle Strength, Cognitive Decline, and Body Composition: Implications for Healthy Aging. J. Nutr. 2021, 151, 3606–3616. [Google Scholar] [CrossRef]
- Yang, L.; Chu, Z.; Liu, M.; Zou, Q.; Li, J.; Liu, Q.; Wang, Y.; Wang, T.; Xiang, J.; Wang, B. Amino acid metabolism in immune cells: Essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J. Hematol. Oncol. 2023, 16, 59. [Google Scholar] [CrossRef]
- Song, M.; Sandoval, T.A.; Chae, C.S.; Chopra, S.; Tan, C.; Rutkowski, M.R.; Raundhal, M.; Chaurio, R.A.; Payne, K.K.; Konrad, C.; et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature 2018, 562, 423–428. [Google Scholar] [CrossRef]
- Yu, W.; Yang, X.; Zhang, Q.; Sun, L.; Yuan, S.; Xin, Y. Targeting GLS1 to cancer therapy through glutamine metabolism. Clin. Transl. Oncol. 2021, 23, 2253–2268. [Google Scholar] [CrossRef]
- Seo, S.-K.; Kwon, B. Immune regulation through tryptophan metabolism. Exp. Mol. Med. 2023, 55, 1371–1379. [Google Scholar] [CrossRef]
- Du, L.; Xing, Z.; Tao, B.; Li, T.; Yang, D.; Li, W.; Zheng, Y.; Kuang, C.; Yang, Q. Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn–AhR–AQP4 signaling pathway. Signal Transduct. Target. Ther. 2020, 5, 10. [Google Scholar] [CrossRef]
- Kim, C.; Kim, J.H.; Kim, J.S.; Chon, H.J.; Kim, J.-H. A novel dual inhibitor of IDO and TDO, CMG017, potently suppresses the kynurenine pathway and overcomes resistance to immune checkpoint inhibitors. J. Clin. Oncol. 2019, 37, e14228. [Google Scholar] [CrossRef]
- Baserga, R.; Peruzzi, F.; Reiss, K. The IGF-1 receptor in cancer biology. Int. J. Cancer 2003, 107, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Thissen, J.-P.; Ketelslegers, J.-M.; Underwood, L.E. Nutritional regulation of the insulin-like growth factors. Endocr. Rev. 1994, 15, 80–101. [Google Scholar] [PubMed]
- Gardner, E.J.; Kentistou, K.A.; Stankovic, S.; Lockhart, S.; Wheeler, E.; Day, F.R.; Kerrison, N.D.; Wareham, N.J.; Langenberg, C.; O’Rahilly, S. Damaging missense variants in IGF1R implicate a role for IGF-1 resistance in the etiology of type 2 diabetes. Cell Genom. 2022, 2, 100208. [Google Scholar] [CrossRef]
- Kasprzak, A. Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. Int. J. Mol. Sci. 2021, 22, 6434. [Google Scholar] [CrossRef]
- Mao, K.; Quipildor, G.F.; Tabrizian, T.; Novaj, A.; Guan, F.; Walters, R.O.; Delahaye, F.; Hubbard, G.B.; Ikeno, Y.; Ejima, K. Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat. Commun. 2018, 9, 2394. [Google Scholar] [CrossRef]
- Quipildor, G.E.F.; Mao, K.; Hu, Z.; Novaj, A.; Cui, M.-H.; Gulinello, M.; Branch, C.A.; Gubbi, S.; Patel, K.; Moellering, D.R. Central IGF-1 protects against features of cognitive and sensorimotor decline with aging in male mice. Geroscience 2019, 41, 185–208. [Google Scholar] [CrossRef]
- Christopoulos, P.F.; Msaouel, P.; Koutsilieris, M. The role of the insulin-like growth factor-1 system in breast cancer. Mol. Cancer 2015, 14, 43. [Google Scholar] [CrossRef]
- Soni, U.K.; Jenny, L.; Hegde, R.S. IGF-1R targeting in cancer—Does sub-cellular localization matter? J. Exp. Clin. Cancer Res. 2023, 42, 273. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.N.; Burhans, M.S.; Clark, J.P.; Howell, P.R.; Polewski, M.A.; DeMuth, T.M.; Eliceiri, K.W.; Lindstrom, M.J.; Ntambi, J.M.; Anderson, R.M. Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell 2017, 16, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, M.; Takami, Y.; Akasaka, H.; Kabayama, M.; Maeda, S.; Yokoyama, S.; Fujimoto, T.; Nozato, Y.; Imaizumi, Y.; Takeda, M. High plasma adiponectin levels are associated with frailty in a general old-old population: The septuagenarians, octogenarians, nonagenarians investigation with centenarians study. Geriatr. Gerontol. Int. 2018, 18, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Choubey, M.; Ranjan, A.; Bora, P.S.; Baltazar, F.; Martin, L.J.; Krishna, A. Role of adiponectin as a modulator of testicular function during aging in mice. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2019, 1865, 413–427. [Google Scholar] [CrossRef]
- Jin, H.-R.; Wang, J.; Wang, Z.-J.; Xi, M.-J.; Xia, B.-H.; Deng, K.; Yang, J.-L. Lipid metabolic reprogramming in tumor microenvironment: From mechanisms to therapeutics. J. Hematol. Oncol. 2023, 16, 103. [Google Scholar] [CrossRef]
- Broadfield, L.A.; Pane, A.A.; Talebi, A.; Swinnen, J.V.; Fendt, S.-M. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev. Cell 2021, 56, 1363–1393. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Dong, Z.; Luo, Z.; Zhao, Z.; Xu, Y.; Zhang, J.-T. Fatty acid synthase causes drug resistance by inhibiting TNF-α and ceramide production[S]. J. Lipid Res. 2013, 54, 776–785. [Google Scholar] [CrossRef]
- Sharma, U.; Jagannathan, N.R. In vivo MR spectroscopy for breast cancer diagnosis. BJR Open 2019, 1, 20180040. [Google Scholar] [CrossRef]
- Dalamaga, M.; Diakopoulos, K.N.; Mantzoros, C.S. The role of adiponectin in cancer: A review of current evidence. Endocr. Rev. 2012, 33, 547–594. [Google Scholar] [CrossRef]
- Mutoh, M.; Teraoka, N.; Takasu, S.; Takahashi, M.; Onuma, K.; Yamamoto, M.; Kubota, N.; Iseki, T.; Kadowaki, T.; Sugimura, T. Loss of adiponectin promotes intestinal carcinogenesis in Min and wild-type mice. Gastroenterology 2011, 140, 2000–2008.e2002. [Google Scholar] [CrossRef]
- David, M.K.; Leslie, S.W. Prostate-Specific Antigen. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557495/ (accessed on 14 September 2025).
- Ahamed, Y.; Hossain, M.; Baral, S.; Al-Raiyan, A.U.; Ashraf, S.B.; Sun, W. The research progress on diagnostic indicators related to prostate-specific antigen gray-zone prostate cancer. BMC Cancer 2025, 25, 1264. [Google Scholar] [CrossRef]
- Lepor, A.; Catalona, W.J.; Loeb, S. The Prostate Health Index: Its Utility in Prostate Cancer Detection. Urol. Clin. N. Am. 2016, 43, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Robbins, C.J.; Bates, K.M.; Rimm, D.L. HER2 testing: Evolution and update for a companion diagnostic assay. Nat. Rev. Clin. Oncol. 2025, 22, 408–423. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Breast Cancer HER2 Status. Available online: https://www.cancer.org/cancer/types/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-cancer-her2-status.html#:~:text=If%20the%20IHC%20is%201,the%20cancer%20is%20HER2%2Dpositive (accessed on 12 September 2025).
- Fejzic, H.; Mujagic, S.; Azabagic, S.; Burina, M. Tumor marker CA 15-3 in breast cancer patients. Acta Med. Acad. 2015, 44, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Keshaviah, A.; Dellapasqua, S.; Rotmensz, N.; Lindtner, J.; Crivellari, D.; Collins, J.; Colleoni, M.; Thürlimann, B.; Mendiola, C.; Aebi, S.; et al. CA15-3 and alkaline phosphatase as predictors for breast cancer recurrence: A combined analysis of seven International Breast Cancer Study Group trials. Ann. Oncol. 2007, 18, 701–708. [Google Scholar] [CrossRef]
- Gandhi, T.; Zubair, M.; Bhatt, H. Cancer Antigen 125. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/nBK562245/ (accessed on 14 September 2025).
- Li, Y.; Wang, Z.C.; Luo, L.; Mu, C.Y.; Xu, J.; Feng, Q.; Li, S.B.; Gu, B.; Ma, P.; Lan, T. The clinical value of the combined detection of sEGFR, CA125 and HE4 for epithelial ovarian cancer diagnosis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 604–610. [Google Scholar] [CrossRef]
- Han, C.; Bellone, S.; Siegel, E.R.; Altwerger, G.; Menderes, G.; Bonazzoli, E.; Egawa-Takata, T.; Pettinella, F.; Bianchi, A.; Riccio, F.; et al. A novel multiple biomarker panel for the early detection of high-grade serous ovarian carcinoma. Gynecol. Oncol. 2018, 149, 585–591. [Google Scholar] [CrossRef]
- Englisz, A.; Smycz-Kubanska, M.; Mielczarek-Palacz, A. Sensitivity and Specificity of Selected Biomarkers and Their Combinations in the Diagnosis of Ovarian Cancer. Diagnostics 2024, 14, 949. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.-T.; Zhang, C.; Wu, J.; Lu, P.; Xu, L.; Yuan, H.; Feng, Y.; Chen, Z.-S.; Wang, N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol. Cancer 2024, 23, 189. [Google Scholar] [CrossRef] [PubMed]
- Gramkow, M.H.; Mosgaard, C.S.; Schou, J.V.; Nordvig, E.H.; Dolin, T.G.; Lykke, J.; Nielsen, D.L.; Pfeiffer, P.; Qvortrup, C.; Yilmaz, M.K.; et al. The prognostic role of circulating CA19-9 and CEA in patients with colorectal cancer. Cancer Treat. Res. Commun. 2025, 43, 100907. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Huang, P.; Wang, F.; Li, D.; Xie, E.; Zhang, Y.; Pan, S. Relationship between serum CA19-9 and CEA levels and prognosis of pancreatic cancer. Ann. Transl. Med. 2015, 3, 328. [Google Scholar] [CrossRef]
- Muley, T.; Herth, F.J.; Heussel, C.P.; Kriegsmann, M.; Thomas, M.; Meister, M.; Schneider, M.A.; Wehnl, B.; Mang, A.; Holdenrieder, S. Prognostic value of tumor markers ProGRP, NSE and CYFRA 21-1 in patients with small cell lung cancer and chemotherapy-induced remission. Tumour Biol. 2024, 46, S219–S232. [Google Scholar] [CrossRef]
- Rosu, M.C.; Ardelean, A.; Moldovan, S.D.; Faur, F.I.; Nesiu, A.; Totoloci, B.D. The importance of CA 72-4 and CA 19-9 dosing in gastric cancer. J. Med. Life 2023, 16, 186–188. [Google Scholar] [CrossRef]
- Sharmin, S.; Jamiruddin, M.; Jamiruddin, M.R.; Islam, A.; Ahsan, C.R.; Yasmin, M. Detection of Protein Markers From Blood Samples of Cervical Cancer Patients. Cureus 2024, 16, e72365. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Hsu, J.-M.; Sun, L.; Wang, S.-C.; Hung, M.-C. Advances and prospects of biomarkers for immune checkpoint inhibitors. Cell Rep. Med. 2024, 5, 101621. [Google Scholar] [CrossRef]
- Argentieri, M.A.; Xiao, S.; Bennett, D.; Winchester, L.; Nevado-Holgado, A.J.; Ghose, U.; Albukhari, A.; Yao, P.; Mazidi, M.; Lv, J.; et al. Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations. Nat. Med. 2024, 30, 2450–2460. [Google Scholar] [CrossRef]
- Grande, G.; Valletta, M.; Rizzuto, D.; Xia, X.; Qiu, C.; Orsini, N.; Dale, M.; Andersson, S.; Fredolini, C.; Winblad, B.; et al. Blood-based biomarkers of Alzheimer’s disease and incident dementia in the community. Nat. Med. 2025, 31, 2027–2035. [Google Scholar] [CrossRef]
- Ho, J.E.; Lyass, A.; Courchesne, P.; Chen, G.; Liu, C.; Yin, X.; Hwang, S.J.; Massaro, J.M.; Larson, M.G.; Levy, D. Protein Biomarkers of Cardiovascular Disease and Mortality in the Community. J. Am. Heart Assoc. 2018, 7, e008108. [Google Scholar] [CrossRef]
- Hicks, S.A.; Strumke, I.; Thambawita, V.; Hammou, M.; Riegler, M.A.; Halvorsen, P.; Parasa, S. On evaluation metrics for medical applications of artificial intelligence. Sci. Rep. 2022, 12, 5979. [Google Scholar] [CrossRef]
- Shreffler, J.; Huecker, M.R. Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557491/ (accessed on 14 September 2025).
- Ahmad, I.; Alqurashi, F. Early cancer detection using deep learning and medical imaging: A survey. Crit. Rev. Oncol. Hematol. 2024, 204, 104528. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesth. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid biopsy in cancer current: Status, challenges and future prospects. Signal Transduct. Target. Ther. 2024, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef]
- Heidrich, I.; Ackar, L.; Mohammadi, P.M.; Pantel, K. Liquid biopsies: Potential and challenges. Int. J. Cancer 2021, 148, 528–545. [Google Scholar] [CrossRef]
- Vandekerckhove, O.; Cuppens, K.; Pat, K.; Du Pont, B.; Froyen, G.; Maes, B. Liquid Biopsy in Early-Stage Lung Cancer: Current and Future Clinical Applications. Cancers 2023, 15, 2702. [Google Scholar] [CrossRef]
- Shbeer, A.M.; Robadi, I.A. liquid biopsy holds a promising approach for the early detection of cancer: Current information and future perspectives. Pathol. Res. Pract. 2024, 254, 155082. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Lin, H.; Zhu, Y.; Huang, D.; Lai, M.; Xi, X.; Huang, J.; Zhang, W.; Zhong, T. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front. Oncol. 2024, 14, 1303335. [Google Scholar] [CrossRef]
- Bonanno, L.; Dal Maso, A.; Pavan, A.; Zulato, E.; Calvetti, L.; Pasello, G.; Guarneri, V.; Conte, P.; Indraccolo, S. Liquid biopsy and non-small cell lung cancer: Are we looking at the tip of the iceberg? Br. J. Cancer 2022, 127, 383–393. [Google Scholar] [CrossRef]
- Connal, S.; Cameron, J.M.; Sala, A.; Brennan, P.M.; Palmer, D.S.; Palmer, J.D.; Perlow, H.; Baker, M.J. Liquid biopsies: The future of cancer early detection. J. Transl. Med. 2023, 21, 118. [Google Scholar] [CrossRef]
- Hegade, K.P.N.; Bhat, R.B.; Packirisamy, M. Microfluidic Liquid Biopsy Minimally Invasive Cancer Diagnosis by Nano-Plasmonic Label-Free Detection of Extracellular Vesicles: Review. Int. J. Mol. Sci. 2025, 26, 6352. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Guo, Q.R.; Wang, F.H.; Adhikari, R.; Zhu, Z.Y.; Zhang, H.Y.; Zhou, W.M.; Yu, H.; Li, J.Q.; Zhang, J.Y. Cell-Free DNA: Hope and Potential Application in Cancer. Front. Cell Dev. Biol. 2021, 9, 639233. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Dai, F.; Mei, L.; Huang, D.; Shen, X.; Zhang, H.; She, X.; Ma, Z. The Potential Use of Dynamics Changes of ctDNA and cfDNA in the Perioperative Period to Predict the Recurrence Risk in Early NSCLC. Front. Oncol. 2021, 11, 671963. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Garrastacho, M.; Bajo-Santos, C.; Line, A.; Martens-Uzunova, E.S.; de la Fuente, J.M.; Moros, M.; Soekmadji, C.; Tasken, K.A.; Llorente, A. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: A decade of research. Br. J. Cancer 2022, 126, 331–350. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sun, Y. Circulating tumor DNA methylation detection as biomarker and its application in tumor liquid biopsy: Advances and challenges. Medcomm (2020) 2024, 5, e766. [Google Scholar] [CrossRef]
- Chung, D.C.; Gray, D.M.; Singh, H.; Issaka, R.B.; Raymond, V.M.; Eagle, C.; Hu, S.; Chudova, D.I.; Talasaz, A.; Greenson, J.K.; et al. A Cell-free DNA Blood-Based Test for Colorectal Cancer Screening. N. Engl. J. Med. 2024, 390, 973–983. [Google Scholar] [CrossRef]
- Rasmussen, S.L.; Krarup, H.B.; Sunesen, K.G.; Johansen, M.B.; Stender, M.T.; Pedersen, I.S.; Madsen, P.H.; Thorlacius-Ussing, O. Hypermethylated DNA, a circulating biomarker for colorectal cancer detection. PLoS ONE 2017, 12, e0180809. [Google Scholar] [CrossRef]
- Nassar, F.J.; Msheik, Z.S.; Nasr, R.R.; Temraz, S.N. Methylated circulating tumor DNA as a biomarker for colorectal cancer diagnosis, prognosis, and prediction. Clin. Epigenet 2021, 13, 111. [Google Scholar] [CrossRef]
- Laven-Law, G.; Kichenadasse, G.; Young, G.P.; Symonds, E.L.; Winter, J.M. BCAT1, IKZF1 and SEPT9: Methylated DNA biomarkers for detection of pan-gastrointestinal adenocarcinomas. Biomarkers 2024, 29, 194–204. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.; Ren, L.; Yang, Y.; Zhang, Y.; Ge, B.; Li, S.; Zheng, X.; Liu, J.; Zhang, S.; et al. Progress on diagnostic and prognostic markers of pancreatic cancer. Oncol. Res. 2023, 31, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, Z.; Meng, Y.; Liu, S.; Zhan, H. Blood-based DNA methylation signatures in cancer: A systematic review. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166583. [Google Scholar] [CrossRef] [PubMed]
- Del Re, M.; Vivaldi, C.; Rofi, E.; Vasile, E.; Miccoli, M.; Caparello, C.; d’Arienzo, P.D.; Fornaro, L.; Falcone, A.; Danesi, R. Early changes in plasma DNA levels of mutant KRAS as a sensitive marker of response to chemotherapy in pancreatic cancer. Sci. Rep. 2017, 7, 7931. [Google Scholar] [CrossRef] [PubMed]
- Hum, M.; Lee, A.S.G. DNA methylation in breast cancer: Early detection and biomarker discovery through current and emerging approaches. J. Transl. Med. 2025, 23, 465. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, H.; Qin, Q.; Li, Q.; Hong, L. DNA methylation signatures provide novel diagnostic biomarkers and predict responses of immune therapy for breast cancer. Front. Genet. 2024, 15, 1403907. [Google Scholar] [CrossRef]
- Diaz-Lagares, A.; Mendez-Gonzalez, J.; Hervas, D.; Saigi, M.; Pajares, M.J.; Garcia, D.; Crujerias, A.B.; Pio, R.; Montuenga, L.M.; Zulueta, J.; et al. A Novel Epigenetic Signature for Early Diagnosis in Lung Cancer. Clin. Cancer Res. 2016, 22, 3361–3371. [Google Scholar] [CrossRef]
- Palanca-Ballester, C.; Hervas, D.; Villalba, M.; Valdes-Sanchez, T.; Garcia, D.; Alcoriza-Balaguer, M.I.; Benet, M.; Martinez-Tomas, R.; Briones-Gomez, A.; Galbis-Caravajal, J.; et al. Translation of a tissue epigenetic signature to circulating free DNA suggests BCAT1 as a potential noninvasive diagnostic biomarker for lung cancer. Clin. Epigenet 2022, 14, 116. [Google Scholar] [CrossRef]
- Shi, Y.X.; Wang, Y.; Li, X.; Zhang, W.; Zhou, H.H.; Yin, J.Y.; Liu, Z.Q. Genome-wide DNA methylation profiling reveals novel epigenetic signatures in squamous cell lung cancer. BMC Genom. 2017, 18, 901. [Google Scholar] [CrossRef]
- Hu, S.; Tao, J.; Peng, M.; Ye, Z.; Chen, Z.; Chen, H.; Yu, H.; Wang, B.; Fan, J.B.; Ni, B. Accurate detection of early-stage lung cancer using a panel of circulating cell-free DNA methylation biomarkers. Biomark. Res. 2023, 11, 45. [Google Scholar] [CrossRef]
- Kontic, M.; Markovic, F. Use of DNA methylation patterns for early detection and management of lung cancer: Are we there yet? Oncol. Res. 2025, 33, 781–793. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, Y.; Moldovan, N.; Ramaker, J.; Bootsma, S.; Lenos, K.J.; Vermeulen, L.; Sandhu, S.; Bahce, I.; Pegtel, D.M.; Wong, S.Q.; et al. The landscape of cell-free mitochondrial DNA in liquid biopsy for cancer detection. Genome Biol. 2023, 24, 229. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ju, Y.S.; Kim, Y.; Li, J.; Wang, Y.; Yoon, C.J.; Yang, Y.; Martincorena, I.; Creighton, C.J.; Weinstein, J.N.; et al. Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat. Genet. 2020, 52, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Wang, S.; Feng, Z.; Zhou, K.; Zhang, H.; Guo, X.; Xing, J.; Liu, Y. Circulating cell-free mtDNA as a new biomarker for cancer detection and management. Cancer Biol. Med. 2023, 21, 105–110. [Google Scholar] [CrossRef]
- Lawrence, R.; Watters, M.; Davies, C.R.; Pantel, K.; Lu, Y.-J. Circulating tumour cells for early detection of clinically relevant cancer. Nat. Rev. Clin. Oncol. 2023, 20, 487–500. [Google Scholar] [CrossRef]
- Krol, I.; Schwab, F.D.; Carbone, R.; Ritter, M.; Picocci, S.; De Marni, M.L.; Stepien, G.; Franchi, G.M.; Zanardi, A.; Rissoglio, M.D.; et al. Detection of clustered circulating tumour cells in early breast cancer. Br. J. Cancer 2021, 125, 23–27. [Google Scholar] [CrossRef]
- Trapp, E.; Janni, W.; Schindlbeck, C.; Juckstock, J.; Andergassen, U.; de Gregorio, A.; Alunni-Fabbroni, M.; Tzschaschel, M.; Polasik, A.; Koch, J.G.; et al. Presence of Circulating Tumor Cells in High-Risk Early Breast Cancer During Follow-Up and Prognosis. J. Natl. Cancer Inst. 2019, 111, 380–387. [Google Scholar] [CrossRef]
- Hayes, D.F. Defining Clinical Utility of Tumor Biomarker Tests: A Clinician’s Viewpoint. J. Clin. Oncol. 2021, 39, 238–248. [Google Scholar] [CrossRef]
- Thomas-Bonafos, T.; Pierga, J.Y.; Bidard, F.-C.; Cabel, L.; Kiavue, N. Circulating tumor cells in breast cancer: Clinical validity and utility. NPJ Breast Cancer 2024, 10, 103. [Google Scholar] [CrossRef]
- Takahashi, Y.; Ijiri, Y.; Fujino, S.; Elnaz, N.; Kishimoto, A.; Shirai, K.; Iwanaga, S.; Yanagida, M.; Bhagat, A.A.S.; Miyoshi, N. Detection and Characterization of Circulating Tumor Cells in Colorectal Cancer Patients via Epithelial-Mesenchymal Transition Markers. Cancers 2025, 17, 303. [Google Scholar] [CrossRef]
- Abouleila, Y.; Onidani, K.; Ali, A.; Shoji, H.; Kawai, T.; Lim, C.T.; Kumar, V.; Okaya, S.; Kato, K.; Hiyama, E.; et al. Live single cell mass spectrometry reveals cancer-specific metabolic profiles of circulating tumor cells. Cancer Sci. 2019, 110, 697–706. [Google Scholar] [CrossRef]
- Shou, X.; Li, Y.; Hu, W.; Ye, T.; Wang, G.; Xu, F.; Sui, M.; Xu, Y. Six-gene Assay as a new biomarker in the blood of patients with colorectal cancer: Establishment and clinical validation. Mol. Oncol. 2019, 13, 781–791. [Google Scholar] [CrossRef]
- Purcell, E.; Niu, Z.; Owen, S.; Grzesik, M.; Radomski, A.; Kaehr, A.; Onukwugha, N.-E.; Winkler, H.F.; Ramnath, N.; Lawrence, T.; et al. Circulating tumor cells reveal early predictors of disease progression in patients with stage III NSCLC undergoing chemoradiation and immunotherapy. Cell Rep. 2024, 43, 113687. [Google Scholar] [CrossRef]
- Murakami, M. Extracellular vesicles as a hydrolytic platform of secreted phospholipase A(2). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2024, 1869, 159536. [Google Scholar] [CrossRef] [PubMed]
- Semeradtova, A.; Liegertova, M.; Herma, R.; Capkova, M.; Brignole, C.; Del Zotto, G. Extracellular vesicles in cancer’s communication: Messages we can read and how to answer. Mol. Cancer 2025, 24, 86. [Google Scholar] [CrossRef] [PubMed]
- Jia, E.; Ren, N.; Shi, X.; Zhang, R.; Yu, H.; Yu, F.; Qin, S.; Xue, J. Extracellular vesicle biomarkers for pancreatic cancer diagnosis: A systematic review and meta-analysis. BMC Cancer 2022, 22, 573. [Google Scholar] [CrossRef] [PubMed]
- Allenson, K.; Castillo, J.; San Lucas, F.A.; Scelo, G.; Kim, D.U.; Bernard, V.; Davis, G.; Kumar, T.; Katz, M.; Overman, M.J.; et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann. Oncol. 2017, 28, 741–747. [Google Scholar] [CrossRef]
- Melo, S.A.; Luecke, L.B.; Kahlert, C.; Fernandez, A.F.; Gammon, S.T.; Kaye, J.; LeBleu, V.S.; Mittendorf, E.A.; Weitz, J.; Rahbari, N.; et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015, 523, 177–182. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Guo, X.; Zhou, L.; Jia, Z.; Peng, Z.; Tang, Y.; Liu, W.; Zhu, B.; Wang, L.; et al. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J. Cell Mol. Med. 2017, 21, 838–847. [Google Scholar] [CrossRef]
- Koo, B.; Kim, Y.I.; Lee, M.; Lim, S.B.; Shin, Y. Enhanced Early Detection of Colorectal Cancer via Blood Biomarker Combinations Identified Through Extracellular Vesicle Isolation and Artificial Intelligence Analysis. J. Extracell. Vesicles 2025, 14, e70088. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-L.W.; Sorokin, I.; Aleksic, I.; Fisher, H.; Kaufman, R.P.; Winer, A.; McNeill, B.; Gupta, R.; Tilki, D.; Fleshner, N.; et al. Expression of Small Noncoding RNAs in Urinary Exosomes Classifies Prostate Cancer into Indolent and Aggressive Disease. J. Urol. 2020, 204, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Park, H.; Choi, Y.J.; Im, K.; Lee, C.W.; Kim, D.-S.; Pack, C.-G.; Kim, H.-Y.; Choi, C.-M.; Lee, J.C.; et al. Identification of exosomal microRNA panel as diagnostic and prognostic biomarker for small cell lung cancer. Biomark. Res. 2023, 11, 80. [Google Scholar] [CrossRef]
- Bafiti, V.; Thanou, E.; Ouzounis, S.; Kotsakis, A.; Georgoulias, V.; Lianidou, E.; Katsila, T.; Markou, A. Profiling Plasma Extracellular Vesicle Metabotypes and miRNAs: An Unobserved Clue for Predicting Relapse in Patients with Early-Stage NSCLC. Cancers 2024, 16, 3729. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Rizaldos, E.; Grimm, D.G.; Tadigotla, V.; Hurley, J.; Healy, J.; Neal, P.L.; Sher, M.; Venkatesan, R.; Karlovich, C.; Raponi, M.; et al. Exosome-Based Detection of EGFR T790M in Plasma from Non-Small Cell Lung Cancer Patients. Clin. Cancer Res. 2018, 24, 2944–2950. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, S.; Lee, K.A. Exosome-based detection of EGFR T790M in plasma and pleural fluid of prospectively enrolled non-small cell lung cancer patients after first-line tyrosine kinase inhibitor therapy. Cancer Cell Int. 2021, 21, 50. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, H.; Choi, Y.J.; Kim, S.Y.; Lee, J.-E.; Sung, K.J.; Sung, Y.H.; Pack, C.-G.; Jung, M.-K.; Han, B.; et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Tarin, M.; Oryani, M.A.; Javid, H.; Karimi-Shahri, M. Exosomal PD-L1 in non-small cell lung Cancer: Implications for immune evasion and resistance to immunotherapy. Int. Immunopharmacol. 2025, 155, 114519. [Google Scholar] [CrossRef]
- Shimada, Y.; Matsubayashi, J.; Kudo, Y.; Maehara, S.; Takeuchi, S.; Hagiwara, M.; Kakihana, M.; Ohira, T.; Nagao, T.; Ikeda, N. Serum-derived exosomal PD-L1 expression to predict anti-PD-1 response and in patients with non-small cell lung cancer. Sci. Rep. 2021, 11, 7830. [Google Scholar] [CrossRef]
- Chen, I.H.; Xue, L.; Hsu, C.C.; Paez, J.S.; Pan, L.; Andaluz, H.; Wendt, M.K.; Iliuk, A.B.; Zhu, J.K.; Tao, W.A. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc. Natl. Acad. Sci. USA 2017, 114, 3175–3180. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, X.; Zeng, Y. Multiplexed immunophenotyping of circulating exosomes on nano-engineered ExoProfile chip towards early diagnosis of cancer. Chem. Sci. 2019, 10, 5495–5504. [Google Scholar] [CrossRef]
- Lai, H.; Guo, Y.; Tian, L.; Wu, L.; Li, X.; Yang, Z.; Chen, S.; Ren, Y.; He, S.; He, W.; et al. Protein Panel of Serum-Derived Small Extracellular Vesicles for the Screening and Diagnosis of Epithelial Ovarian Cancer. Cancers 2022, 14, 3719. [Google Scholar] [CrossRef]
- Gasparri, R.; Papale, M.; Sabalic, A.; Catalano, V.; Deleonardis, A.; De Luca, F.; Ranieri, E.; Spaggiari, L. Circulating RKIP and pRKIP in Early-Stage Lung Cancer: Results from a Pilot Study. J. Clin. Med. 2024, 13, 5830. [Google Scholar] [CrossRef]
- Si, Y.Q.; Wang, X.Q.; Fan, G.; Wang, C.Y.; Zheng, Y.W.; Song, X.; Pan, C.C.; Chu, F.L.; Liu, Z.F.; Lu, B.R.; et al. Value of AFP and PIVKA-II in diagnosis of HBV-related hepatocellular carcinoma and prediction of vascular invasion and tumor differentiation. Infect. Agent. Cancer 2020, 15, 70. [Google Scholar] [CrossRef]
- Rui, H.; Yueqin, N.; Wei, W.; Bangtao, L.; Li, X. Combining AFP, PIVKA-II, and GP73 has diagnostic utility for hepatitis B-associated hepatocellular carcinoma and is consistent with liver pathology results. Sci. Rep. 2025, 15, 14869. [Google Scholar] [CrossRef]
- Veyssiere, H.; Bidet, Y.; Penault-Llorca, F.; Radosevic-Robin, N.; Durando, X. Circulating proteins as predictive and prognostic biomarkers in breast cancer. Clin. Proteom. 2022, 19, 25. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Wo, D.; Yan, H.; Liu, P.; Ma, E.; Li, L.; Zheng, L.; Chen, D.; Yu, Z.; et al. LRP6 Ectodomain Prevents SDF-1/CXCR4-Induced Breast Cancer Metastasis to Lung. Clin. Cancer Res. 2019, 25, 4832–4845. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhou, Y.; Wang, K.; Qiao, Y.; Zhao, L.; Chen, M. Apolipoprotein C1 (APOC1), A Candidate Diagnostic Serum Biomarker for Breast Cancer Identified by Serum Proteomics Study. Crit. Rev. Eukaryot. Gene Expr. 2022, 32, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.B.F.; Stodkilde, K.; Saederup, K.L.; Kuhlee, A.; Raunser, S.; Graversen, J.H.; Moestrup, S.K. Haptoglobin. Antioxid. Redox Signal 2017, 26, 814–831. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cheuk, I.W.; Siu, M.T.; Yang, W.; Cheng, A.S.; Shin, V.Y.; Kwong, A. Human haptoglobin contributes to breast cancer oncogenesis through glycolytic activity modulation. Am. J. Cancer Res. 2020, 10, 2865–2877. [Google Scholar]
- Li, L.; Xu, Y.; Lai, Z.; Li, D.; Sun, Q.; Li, Z.; Zhou, Y. Development and validation of a model and nomogram for breast cancer diagnosis based on quantitative analysis of serum disease-specific haptoglobin N-glycosylation. J. Transl. Med. 2024, 22, 331. [Google Scholar] [CrossRef]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.; Zhong, G.; Li, S.; Wu, W.; Liu, X.; Zhu, D.; Feng, Y.; Zhang, Y.; Duan, C.; Mao, M. A panel of seven protein tumour markers for effective and affordable multi-cancer early detection by artificial intelligence: A large-scale and multicentre case-control study. EClinicalMedicine 2023, 61, 102041. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Sánchez, D.; Arriaga-Canon, C.; Pedroza-Torres, A.; De La Rosa-Velázquez, I.A.; González-Barrios, R.; Contreras-Espinosa, L.; Montiel-Manríquez, R.; Castro-Hernández, C.; Fragoso-Ontiveros, V.; Álvarez-Gómez, R.M.; et al. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol. Ther. Nucleic Acids 2020, 20, 409–420. [Google Scholar] [CrossRef]
- Yokoi, A.; Yoshioka, Y.; Hirakawa, A.; Yamamoto, Y.; Ishikawa, M.; Ikeda, S.I.; Kato, T.; Niimi, K.; Kajiyama, H.; Kikkawa, F.; et al. A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget 2017, 8, 89811–89823. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Z.; Wang, M.; Zhang, M.; Chen, Y.; Yang, X.; Zhou, C.; Liu, Y.; Hong, L.; Zhang, L. Detection of plasma exosomal miRNA-205 as a biomarker for early diagnosis and an adjuvant indicator of ovarian cancer staging. J. Ovarian Res. 2022, 15, 27. [Google Scholar] [CrossRef]
- Su, Y.Y.; Sun, L.; Guo, Z.R.; Li, J.C.; Bai, T.T.; Cai, X.X.; Li, W.H.; Zhu, Y.F. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J. Ovarian Res. 2019, 12, 6. [Google Scholar] [CrossRef]
- Ku, J.L.; Jeon, Y.K.; Park, J.G. Methylation-specific PCR. Methods Mol. Biol. 2011, 791, 23–32. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Mikeska, T.; Krypuy, M.; Dobrovic, A. Sensitive Melting Analysis after Real Time- Methylation Specific PCR (SMART-MSP): High-throughput and probe-free quantitative DNA methylation detection. Nucleic Acids Res. 2008, 36, e42. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, H.; An, K.; Liu, Z.; Hai, L.; Li, R.; Zhou, Y.; Zhao, W.; Jia, Y.; Wu, N.; et al. Whole-genome bisulfite sequencing analysis of circulating tumour DNA for the detection and molecular classification of cancer. Clin. Transl. Med. 2022, 12, e1014. [Google Scholar] [CrossRef]
- Liu, J.; Dai, L.; Wang, Q.; Li, C.; Liu, Z.; Gong, T.; Xu, H.; Jia, Z.; Sun, W.; Wang, X.; et al. Multimodal analysis of cfDNA methylomes for early detecting esophageal squamous cell carcinoma and precancerous lesions. Nat. Commun. 2024, 15, 3700. [Google Scholar] [CrossRef]
- Lu, D.; Wu, X.; Wu, W.; Wu, S.; Li, H.; Zhang, Y.; Yan, X.; Zhai, J.; Dong, X.; Feng, S.; et al. Plasma cell-free DNA 5-hydroxymethylcytosine and whole-genome sequencing signatures for early detection of esophageal cancer. Cell Death Dis. 2023, 14, 843. [Google Scholar] [CrossRef] [PubMed]
- Maggi, E.C.; Gravina, S.; Cheng, H.; Piperdi, B.; Yuan, Z.; Dong, X.; Libutti, S.K.; Vijg, J.; Montagna, C. Development of a Method to Implement Whole-Genome Bisulfite Sequencing of cfDNA from Cancer Patients and a Mouse Tumor Model. Front. Genet. 2018, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Olmedillas-López, S.; Olivera-Salazar, R.; García-Arranz, M.; García-Olmo, D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol. Diagn. Ther. 2021, 26, 61–87. [Google Scholar] [CrossRef] [PubMed]
- Isaka, T.; Yokose, T.; Ito, H.; Nakayama, H.; Miyagi, Y.; Saito, H.; Masuda, M. Detection of EGFR mutation of pulmonary adenocarcinoma in sputum using droplet digital PCR. BMC Pulm. Med. 2021, 21, 100. [Google Scholar] [CrossRef]
- Hackner, K.; Buder, A.; Hochmair, M.J.; Strieder, M.; Grech, C.; Fabikan, H.; Burghuber, O.C.; Errhalt, P.; Filipits, M. Detection of EGFR Activating and Resistance Mutations by Droplet Digital PCR in Sputum of EGFR-Mutated NSCLC Patients. Clin. Med. Insights Oncol. 2021, 15, 1179554921993072. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, E.Y.; Kim, T.; Chang, Y.S. Compared to plasma, bronchial washing fluid shows higher diagnostic yields for detecting EGFR-TKI sensitizing mutations by ddPCR in lung cancer. Respir. Res. 2020, 21, 142. [Google Scholar] [CrossRef]
- Mandlik, J.S.; Patil, A.S.; Singh, S. Next-Generation Sequencing (NGS): Platforms and Applications. J. Pharm. Bioallied Sci. 2024, 16, S41–S45. [Google Scholar] [CrossRef]
- Cheng, C.; Fei, Z.; Xiao, P. Methods to improve the accuracy of next-generation sequencing. Front. Bioeng. Biotechnol. 2023, 11, 982111. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Li, S.; Hu, N.; He, Y.; Pong, R.; Lin, D.; Lu, L.; Law, M. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 2012, 251364. [Google Scholar] [CrossRef]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Shah, A. Chromatin immunoprecipitation sequencing (ChIP-Seq) on the SOLiD™ system. Nat. Methods 2009, 6, ii–iii. [Google Scholar] [CrossRef]
- Marco-Puche, G.; Lois, S.; Benitez, J.; Trivino, J.C. RNA-Seq Perspectives to Improve Clinical Diagnosis. Front. Genet. 2019, 10, 1152. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.R. Next-Generation Sequencing in High-Sensitive Detection of Mutations in Tumors: Challenges, Advances, and Applications. J. Mol. Diagn. 2020, 22, 994–1007. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, K.; Jing, C.; Cao, H.; Ma, R.; Wu, J. Comparison of droplet digital PCR and direct Sanger sequencing for the detection of the BRAF(V600E) mutation in papillary thyroid carcinoma. J. Clin. Lab. Anal. 2019, 33, e22902. [Google Scholar] [CrossRef]
- Dong, L.; Wang, S.; Fu, B.; Wang, J. Evaluation of droplet digital PCR and next generation sequencing for characterizing DNA reference material for KRAS mutation detection. Sci. Rep. 2018, 8, 9650. [Google Scholar] [CrossRef]
- Qiagen. dPCR and NGS: Better Together? Available online: https://www.qiagen.com/us/knowledge-and-support/knowledge-hub/science-matters/pcr-solutions/dpcr-and-ngs (accessed on 9 October 2025).
- Crucitta, S.; Ruglioni, M.; Novi, C.; Manganiello, M.; Arici, R.; Petrini, I.; Pardini, E.; Cucchiara, F.; Marmorino, F.; Cremolini, C.; et al. Comparison of digital PCR systems for the analysis of liquid biopsy samples of patients affected by lung and colorectal cancer. Clin. Chim. Acta 2023, 541, 117239. [Google Scholar] [CrossRef]
- Mattox, A.K.; D’Souza, G.; Khan, Z.; Allen, H.; Henson, S.; Seiwert, T.Y.; Koch, W.; Pardoll, D.M.; Fakhry, C. Comparison of next generation sequencing, droplet digital PCR, and quantitative real-time PCR for the earlier detection and quantification of HPV in HPV-positive oropharyngeal cancer. Oral. Oncol. 2022, 128, 105805. [Google Scholar] [CrossRef]
- Trouchet, A.; Gines, G.; Benhaim, L.; Taly, V. Digital PCR: From early developments to its future application in clinics. Lab. Chip 2025, 25, 3921–3961. [Google Scholar] [CrossRef]
- Liao, P.; Jiang, M.; Chen, Z.; Zhang, F.; Sun, Y.; Nie, J.; Du, M.; Wang, J.; Fei, P.; Huang, Y. Three-dimensional digital PCR through light-sheet imaging of optically cleared emulsion. Proc. Natl. Acad. Sci. USA 2020, 117, 25628–25633. [Google Scholar] [CrossRef]
- Katara, A.; Chand, S.; Chaudhary, H.; Chaudhry, V.; Chandra, H.; Dubey, R.C. Evolution and applications of Next Generation Sequencing and its intricate relations with chromatographic and spectrometric techniques in modern day sciences. J. Chromatogr. Open 2024, 5, 100121. [Google Scholar] [CrossRef]
- Dobbs, F.M.; van Eijk, P.; Fellows, M.D.; Loiacono, L.; Nitsch, R.; Reed, S.H. Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq. Nat. Commun. 2022, 13, 3989. [Google Scholar] [CrossRef]
- Barbany, G.; Arthur, C.; Lieden, A.; Nordenskjold, M.; Rosenquist, R.; Tesi, B.; Wallander, K.; Tham, E. Cell-free tumour DNA testing for early detection of cancer—A potential future tool. J. Intern. Med. 2019, 286, 118–136. [Google Scholar] [CrossRef]
- Szeto, S.; Kytola, S.; Erkan, E.P.; Ahtiainen, M.; Mecklin, J.P.; Kuopio, T.; Sallinen, V.; Lepisto, A.; Koskenvuo, L.; Renkonen-Sinisalo, L.; et al. Performance Comparison of Droplet Digital PCR and Next-Generation Sequencing for Circulating Tumor DNA Detection in Non-Metastatic Rectal Cancer. Cancer Med. 2025, 14, e70943. [Google Scholar] [CrossRef] [PubMed]
- Excedr. How Much Does a Next-Generation Sequencer Cost? Available online: https://www.excedr.com/blog/how-much-does-a-next-generation-sequencer-cost (accessed on 9 October 2025).
- Ip, B.B.K.; Wong, A.T.C.; Law, J.H.Y.; Au, C.H.; Ma, S.Y.; Chim, J.C.S.; Liang, R.H.S.; Leung, A.Y.H.; Wan, T.S.K.; Ma, E.S.K. Application of droplet digital PCR in minimal residual disease monitoring of rare fusion transcripts and mutations in haematological malignancies. Sci. Rep. 2024, 14, 6400. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhao, H. Next-generation sequencing in liquid biopsy: Cancer screening and early detection. Hum. Genom. 2019, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Byron, S.A.; Van Keuren-Jensen, K.R.; Engelthaler, D.M.; Carpten, J.D.; Craig, D.W. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nat. Rev. Genet. 2016, 17, 257–271. [Google Scholar] [CrossRef]
- Benayed, R.; Offin, M.; Mullaney, K.; Sukhadia, P.; Rios, K.; Desmeules, P.; Ptashkin, R.; Won, H.; Chang, J.; Halpenny, D.; et al. High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with No Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clin. Cancer Res. 2019, 25, 4712–4722. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Johann, D.J., Jr.; Butler, D.; Chen, G.; Foox, J.; Gong, B.; Jones, W.; Kreil, D.P.; Kusko, R.; et al. Augmenting precision medicine via targeted RNA-Seq detection of expressed mutations. NPJ Precis. Oncol. 2025, 9, 182. [Google Scholar] [CrossRef]
- Wong, M.; Mayoh, C.; Lau, L.M.S.; Khuong-Quang, D.A.; Pinese, M.; Kumar, A.; Barahona, P.; Wilkie, E.E.; Sullivan, P.; Bowen-James, R.; et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 2020, 26, 1742–1753. [Google Scholar] [CrossRef]
- Tong, L.; Wu, P.Y.; Phan, J.H.; Hassazadeh, H.R.; Consortium, S.; Tong, W.; Wang, M.D. Impact of RNA-seq data analysis algorithms on gene expression estimation and downstream prediction. Sci. Rep. 2020, 10, 17925. [Google Scholar] [CrossRef]
- Clauwaert, J.; McVey, Z.; Gupta, R.; Yannuzzi, I.; Basrur, V.; Nesvizhskii, A.I.; Menschaert, G.; Prensner, J.R. Deep learning to decode sites of RNA translation in normal and cancerous tissues. Nat. Commun. 2025, 16, 1275. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, Y.; Fan, Y.; Liu, Y.; Yang, M. Recent advances in droplet-based microfluidics in liquid biopsy for cancer diagnosis. Droplet 2024, 3, e92. [Google Scholar] [CrossRef]
- Culbertson, C.T.; Mickleburgh, T.G.; Stewart-James, S.A.; Sellens, K.A.; Pressnall, M. Micro total analysis systems: Fundamental advances and biological applications. Anal. Chem. 2014, 86, 95–118. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Prajapati, P. Navigating pharmaceuticals: Microfluidic devices in analytical and formulation sciences. Discov. Chem. 2025, 2, 49. [Google Scholar] [CrossRef]
- Qiao, Z.; Teng, X.; Liu, A.; Yang, W. Novel Isolating Approaches to Circulating Tumor Cell Enrichment Based on Microfluidics: A Review. Micromachines 2024, 15, 706. [Google Scholar] [CrossRef]
- Lee, J.; Sul, O.; Lee, S.B. Enrichment of Circulating Tumor Cells from Whole Blood Using a Microfluidic Device for Sequential Physical and Magnetophoretic Separations. Micromachines 2020, 11, 481. [Google Scholar] [CrossRef]
- Li, T.; Li, N.; Ma, Y.; Bai, Y.-J.; Xing, C.-M.; Gong, Y.-K. A blood cell repelling and tumor cell capturing surface for high-purity enrichment of circulating tumor cells. J. Mater. Chem. B 2019, 7, 6087–6098. [Google Scholar] [CrossRef]
- Mishra, A.; Huang, S.-B.; Dubash, T.; Burr, R.; Edd, J.F.; Wittner, B.S.; Cunneely, Q.E.; Putaturo, V.R.; Deshpande, A.; Antmen, E.; et al. Tumor cell-based liquid biopsy using high-throughput microfluidic enrichment of entire leukapheresis product. Nat. Commun. 2025, 16, 32. [Google Scholar] [CrossRef]
- Rejuan, R.; Aulisa, E.; Li, W.; Thompson, T.; Kumar, S.; Canic, S.; Wang, Y. Validation of a Microfluidic Device Prototype for Cancer Detection and Identification: Circulating Tumor Cells Classification Based on Cell Trajectory Analysis Leveraging Cell-Based Modeling and Machine Learning. Int. J. Numer. Method. Biomed. Eng. 2025, 41, e70037. [Google Scholar] [CrossRef]
- Kurosawa, T.; Watanabe, M. Development of on-chip fully automated immunoassay system “muTASWako i30” to measure the changes in glycosylation profiles of alpha-fetoprotein in patients with hepatocellular carcinoma. Proteomics 2016, 16, 3056–3061. [Google Scholar] [CrossRef] [PubMed]
- Lyu, N.; Hassanzadeh-Barforoushi, A.; Rey Gomez, L.M.; Zhang, W.; Wang, Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: Current progress and perspectives. Nano Converg. 2024, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Xiang, Y.; Mao, L.; Yang, Y.; Wei, B.; Lu, H.; Li, X.; Zhang, Y.; Yang, F. Buoyant Metal–Organic Framework Corona-Driven Fast Isolation and Ultrasensitive Profiling of Circulating Extracellular Vesicles. ACS Nano 2024, 18, 14569–14582. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kwon, S.; Lee, J.-J. Highly Dense and Accessible Nanogaps in Au–Ag Alloy Patterned Nanostructures for Surface-Enhanced Raman Spectroscopy Analysis. ACS Appl. Nano Mater. 2020, 3, 5920–5927. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, R.; Zhan, Y.; Dong, W.; Chen, Q.; Wang, Y.; Zhou, P.; Gao, S.; Huang, W.; Li, L.; et al. Novel Ratiometric Surface-Enhanced Raman Scattering (SERS) Biosensor for Ultrasensitive Quantitative Monitoring of Human Carboxylesterase-1 in Hepatocellular Carcinoma Cells Using Ag–Au Nanoflowers as SERS Substrate. Anal. Chem. 2024, 96, 18555–18563. [Google Scholar] [CrossRef]
- Park, K.S.; Choi, A.; Kim, H.J.; Park, I.; Eom, M.-S.; Yeo, S.-G.; Son, R.G.; Park, T.-I.; Lee, G.; Soh, H.T.; et al. Ultra-sensitive label-free SERS biosensor with high-throughput screened DNA aptamer for universal detection of SARS-CoV-2 variants from clinical samples. Biosens. Bioelectron. 2023, 228, 115202. [Google Scholar] [CrossRef]
- Miao, X.; Fang, Q.; Xiao, X.; Liu, S.; Wu, R.; Yan, J.; Nie, B.; Liu, J. Integrating Cycled Enzymatic DNA Amplification and Surface-Enhanced Raman Scattering for Sensitive Detection of Circulating Tumor DNA. Front. Mol. Biosci. 2021, 8, 676065. [Google Scholar] [CrossRef]
- Zhang, X.; Gan, T.; Xu, Z.; Zhang, H.; Wang, D.; Zhao, X.; Huang, Y.; Liu, Q.; Fu, B.; Dai, Z.; et al. Immune-like sandwich multiple hotspots SERS biosensor for ultrasensitive detection of NDKA biomarker in serum. Talanta 2024, 271, 125630. [Google Scholar] [CrossRef]
- Nguyen, T.A.N.; Yu, Y.-L.; Chang, Y.C.; Wang, Y.-H.; Woon, W.-Y.; Wu, C.-T.; Lin, K.-L.; Liu, C.-Y.; Chien, F.-C.; Lai, K.-Y. Controlling the Electron Concentration for Surface-Enhanced Raman Spectroscopy. ACS Photonics 2021, 8, 2410–2416. [Google Scholar] [CrossRef]
- Nguyen, T.A.N.; Luo, C.-L.; Chien, F.-C.; Lai, K.-Y. Single-Base Detection of DNA with Simplified Steps on InGaN Quantum Wells. J. Phys. Chem. B 2025, 129, 4366–4372. [Google Scholar] [CrossRef]
- Ngo, L.; Zhang, W.; Hnit, S.S.T.; Wang, Y. Improving SERS biosensors for the analysis of ovarian cancer-derived small extracellular vesicles. Analyst 2023, 148, 3074–3086. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, D.; Chen, X.; Yao, C.; Li, Z. Interfacial Profiling of MicroRNAs at Patterned Nanogaps for an Integrated Microfluidic-SERS Liquid Biopsy. Anal. Chem. 2023, 95, 16049–16053. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Koster, H.J.; O’Sullivan, J.; Ono, S.G.; O’Toole, H.J.; Leiserowitz, G.S.; Heffern, M.C.; Carney, R.P. Integration of label-free surface enhanced Raman spectroscopy (SERS) of extracellular vesicles (EVs) with Raman tagged labels to enhance ovarian cancer diagnostics. Biosens. Bioelectron. 2025, 288, 117800. [Google Scholar] [CrossRef] [PubMed]
- Mostufa, S.; Akib, T.B.A.; Rana, M.M.; Islam, M.R. Highly Sensitive TiO(2)/Au/Graphene Layer-Based Surface Plasmon Resonance Biosensor for Cancer Detection. Biosensors 2022, 12, 603. [Google Scholar] [CrossRef]
- Azzouz, A.; Hejji, L.; Kim, K.H.; Kukkar, D.; Souhail, B.; Bhardwaj, N.; Brown, R.J.C.; Zhang, W. Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection. Biosens. Bioelectron. 2022, 197, 113767. [Google Scholar] [CrossRef]
- Topor, C.V.; Puiu, M.; Bala, C. Strategies for Surface Design in Surface Plasmon Resonance (SPR) Sensing. Biosens 2023, 13, 465. [Google Scholar] [CrossRef]
- Vikas Saccomandi, P. Antimonene-Coated Uniform-Waist Tapered Fiber Optic Surface Plasmon Resonance Biosensor for the Detection of Cancerous Cells: Design and Optimization. ACS Omega 2023, 8, 4627–4638. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, Q.; Yao, B.; Ma, G. Advancing cancer diagnosis through surface plasmon resonance detection of extracellular vesicles. TrAC Trends Anal. Chem. 2025, 191, 118298. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, H.; Xia, J.; Zhu, Z.; Koh, K.; Chen, H. Controllable synthesis of multi-tip spatial gold nanostructures to facilitate SPR enhancement for exosomal PD-L1 assay. Chem. Eng. J. 2024, 481, 148137. [Google Scholar] [CrossRef]
- Takaloo, S.; Xu, A.H.; Zaidan, L.; Irannejad, M.; Yavuz, M. Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review. Biosensors 2024, 14, 593. [Google Scholar] [CrossRef]
- Lee, S.; Moussa, N.A.M.; Kang, S.H. Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics. Nanomaterials 2025, 15, 1153. [Google Scholar] [CrossRef]
- Yildizhan, Y.; Driessens, K.; Tsao, H.S.K.; Boiy, R.; Thomas, D.; Geukens, N.; Hendrix, A.; Lammertyn, J.; Spasic, D. Detection of Breast Cancer-Specific Extracellular Vesicles with Fiber-Optic SPR Biosensor. Int. J. Mol. Sci. 2023, 24, 3764. [Google Scholar] [CrossRef]
- Ghahramani, Y.; Mokhberi, M.; Mousavi, S.M.; Hashemi, S.A.; Lai, C.W. Electrochemical biosensors for determination of tumor biomarkers. In Semiconducting Polymer Materials for Biosensing Applications; Woodhead Publishing: Cambridge, UK, 2024; pp. 351–377. [Google Scholar]
- Li, M.; Jiang, F.; Xue, L.; Peng, C.; Shi, Z.; Zhang, Z.; Li, J.; Pan, Y.; Wang, X.; Feng, C.; et al. Recent Progress in Biosensors for Detection of Tumor Biomarkers. Molecules 2022, 27, 7327. [Google Scholar] [CrossRef] [PubMed]
- Hosseine, M.; Naghib, S.M.; Khodadadi, A. Label-free electrochemical biosensor based on green-synthesized reduced graphene oxide/Fe(3)O(4)/nafion/polyaniline for ultrasensitive detection of SKBR3 cell line of HER2 breast cancer biomarker. Sci. Rep. 2024, 14, 11928. [Google Scholar] [CrossRef] [PubMed]
- Eskandarinezhad, S.; Wani, I.A.; Nourollahileilan, M.; Khosla, A.; Ahmad, T. Review—Metal and Metal Oxide Nanoparticles/Nanocomposites as Electrochemical Biosensors for Cancer Detection. J. Electrochem. Soc. 2022, 169, 047504. [Google Scholar] [CrossRef]
- Kangarshahi, B.M.; Naghib, S.M.; Rabiee, N. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers. Crit. Rev. Clin. Lab. Sci. 2024, 61, 473–495. [Google Scholar] [CrossRef]
- Sridharan, G.; Atchudan, R.; Magesh, V.; Arya, S.; Ganapathy, D.; Nallaswamy, D.; Sundramoorthy, A.K. Advanced electrocatalytic materials based biosensors for cancer cell detection—A review. Electroanalysis 2023, 35, e202300093. [Google Scholar] [CrossRef]
- Cao, Y.; Xia, J.; Li, L.; Zeng, Y.; Zhao, J.; Li, G. Electrochemical Biosensors for Cancer Diagnosis: Multitarget Analysis to Present Molecular Characteristics of Tumor Heterogeneity. JACS Au 2024, 4, 4655–4672. [Google Scholar] [CrossRef]
- Geeksforgeeks. Difference Between Artificial Intelligence vs Machine Learning vs Deep Learning. Available online: https://www.geeksforgeeks.org/artificial-intelligence/difference-between-artificial-intelligence-vs-machine-learning-vs-deep-learning/ (accessed on 4 September 2025).
- Malik, M.; Alqahtani, M.M.; Hadadi, I.; Kanbayti, I.; Alawaji, Z.; Aloufi, B.A. Molecular Imaging Biomarkers for Early Cancer Detection: A Systematic Review of Emerging Technologies and Clinical Applications. Diagnostics 2024, 14, 2459. [Google Scholar] [CrossRef]
- Shobayo, O.; Saatchi, R. Developments in Deep Learning Artificial Neural Network Techniques for Medical Image Analysis and Interpretation. Diagnostics 2025, 15, 1072. [Google Scholar] [CrossRef]
- AnandKumar, C. Artificial intelligence and machine learning for early cancer prediction and response. World J. Adv. Eng. Technol. Sci. 2024, 12, 35–40. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef]
- Frasca, M.; La Torre, D.; Repetto, M.; De Nicolò, V.; Pravettoni, G.; Cutica, I. Artificial intelligence applications to genomic data in cancer research: A review of recent trends and emerging areas. Discov. Anal. 2024, 2, 10. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Tiwari, A.; Mishra, S.; Kuo, T.R. Current AI technologies in cancer diagnostics and treatment. Mol. Cancer 2025, 24, 159. [Google Scholar] [CrossRef]
- Yao, I.Z.; Dong, M.; Hwang, W.Y.K. Deep Learning Applications in Clinical Cancer Detection: A Review of Implementation Challenges and Solutions. Mayo Clin. Proc. Digit. Health 2025, 3, 100253. [Google Scholar] [CrossRef]
- Mienye, I.D.; Swart, T.G.; Obaido, G.; Jordan, M.; Ilono, P. Deep Convolutional Neural Networks in Medical Image Analysis: A Review. Information 2025, 16, 195. [Google Scholar] [CrossRef]
- Nayak, N.; Kumar, D.; Malhotra, A. A CNN-Based Approach for Early Detection of Breast Cancer Using Infrared Imaging. In Proceedings of the 2024 International Conference on Intelligent Systems and Advanced Applications (ICISAA), Pune, India, 25–26 October 2024; pp. 1–4. [Google Scholar]
- Ahn, J.S.; Shin, S.; Yang, S.A.; Park, E.K.; Kim, K.H.; Cho, S.I.; Ock, C.Y.; Kim, S. Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine. J. Breast Cancer 2023, 26, 405–435. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Das, P.K.; Meher, S. High accuracy hybrid CNN classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomed. Signal Process Control 2023, 80, 104292. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, C.Y.; Liu, K.Y.; Huang, Y.H.; Chen, T.B.; Chiu, K.N.; Liang, C.Y.; Lu, N.H. CNN-Based Cross-Modality Fusion for Enhanced Breast Cancer Detection Using Mammography and Ultrasound. Tomography 2024, 10, 2038–2057. [Google Scholar] [CrossRef]
- Chang, Y.W.; Ryu, J.K.; An, J.K.; Choi, N.; Park, Y.M.; Ko, K.H.; Han, K. Artificial intelligence for breast cancer screening in mammography (AI-STREAM): Preliminary analysis of a prospective multicenter cohort study. Nat. Commun. 2025, 16, 2248. [Google Scholar] [CrossRef]
- Kwon, M.-R.; Chang, Y.; Ham, S.-Y.; Cho, Y.; Kim, E.Y.; Kang, J.; Park, E.K.; Kim, K.H.; Kim, M.; Kim, T.S.; et al. Screening mammography performance according to breast density: A comparison between radiologists versus standalone intelligence detection. Breast Cancer Res. 2024, 26, 68. [Google Scholar] [CrossRef] [PubMed]
- Caldas, F.A.A.; Caldas, H.C.; Henrique, T.; Jordão, P.H.F.; Fernandes-Ferreira, R.; Souza, D.R.S.; Bauab, S.d.P. Evaluating the performance of artificial intelligence and radiologists accuracy in breast cancer detection in screening mammography across breast densities. Eur. J. Radiol. Artif. Intell. 2025, 2, 100013. [Google Scholar] [CrossRef]
- Hammad, M.; ElAffendi, M.; El-Latif, A.A.A.; Ateya, A.A.; Ali, G.; Plawiak, P. Explainable AI for lung cancer detection via a custom CNN on CT images. Sci. Rep. 2025, 15, 12707. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, S.; Ali, S.; Alahmadi, T.J.; Assam, M.; Ansari, G.J.; Bhatti, U.A. Pretrained Model with CNN for Lung Cancer Identification and Classification. In Proceedings of the 2024 7th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), Hangzhou, China, 15–17 August 2024; pp. 811–816. [Google Scholar]
- Priya, A.; Bharathi, P.S. SE-ResNeXt-50-CNN: A deep learning model for lung cancer classification. Appl. Soft Comput. 2025, 171, 112696. [Google Scholar] [CrossRef]
- Shariff, V.; Paritala, C.; Ankala, K.M. Optimizing non small cell lung cancer detection with convolutional neural networks and differential augmentation. Sci. Rep. 2025, 15, 15640. [Google Scholar] [CrossRef]
- Mekala, S.; Kumar, S.P. Enhancing pancreatic cancer detection in CT images through secretary wolf bird optimization and deep learning. Sci. Rep. 2025, 15, 19787. [Google Scholar] [CrossRef]
- Podina, N.; Gheorghe, E.C.; Constantin, A.; Cazacu, I.; Croitoru, V.; Gheorghe, C.; Balaban, D.V.; Jinga, M.; Tieranu, C.G.; Saftoiu, A. Artificial Intelligence in Pancreatic Imaging: A Systematic Review. United Eur. Gastroenterol. J. 2025, 13, 55–77. [Google Scholar] [CrossRef]
- Chaithanyadas, K.V.; King, D.R.G.R.G. Automated detection of pancreatic cancer with segmentation and classification using fusion of UNET and CNN through spider monkey optimization. Biomed. Signal Process Control 2025, 102, 107413. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Tang, Y.; Wang, C.; Landman, B.A.; Zhou, S.K. Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives. Med. Image Anal. 2023, 85, 102762. [Google Scholar] [CrossRef]
- Xie, Y.-H.; Huang, B.-S.; Li, F. UnetTransCNN: Integrating transformers with convolutional neural networks for enhanced medical image segmentation. Front. Oncol. 2025, 15, 1467672. [Google Scholar] [CrossRef] [PubMed]
- Sokouti, M.; Sokouti, B. Cancer genetics and deep learning applications for diagnosis, prognosis, and categorization. J. Biol. Methods 2024, 11, e99010017. [Google Scholar] [CrossRef] [PubMed]
- Srikantamurthy, M.M.; Rallabandi, V.P.S.; Dudekula, D.B.; Natarajan, S.; Park, J. Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning. BMC Med. Imaging 2023, 23, 19. [Google Scholar] [CrossRef] [PubMed]
- Kaddes, M.; Ayid, Y.M.; Elshewey, A.M.; Fouad, Y. Breast cancer classification based on hybrid CNN with LSTM model. Sci. Rep. 2025, 15, 4409. [Google Scholar] [CrossRef]
- Pohl, M.; Uesaka, M.; Takahashi, H.; Demachi, K.; Bhusal Chhatkuli, R. Prediction of the position of external markers using a recurrent neural network trained with unbiased online recurrent optimization for safe lung cancer radiotherapy. Comput. Methods Programs Biomed. 2022, 222, 106908. [Google Scholar] [CrossRef]
- Rasheed, J.; Diao, S.; Wan, Y.; Huang, D.; Huang, S.; Sadiq, T.; Khan, M.S.; Hussain, L.; Alkahtani, B.S.; Mazhar, T. Optimizing Bi-LSTM networks for improved lung cancer detection accuracy. PLoS ONE 2025, 20, e0316136. [Google Scholar] [CrossRef]
- Mendes, J.M.; Barbar, A.; Refaie, M. Synthetic data generation: A privacy-preserving approach to accelerate rare disease research. Front. Digit. Health 2025, 7, 1563991. [Google Scholar] [CrossRef]
- Sun, C.; Dumontier, M. Generating unseen diseases patient data using ontology enhanced generative adversarial networks. NPJ Digit. Med. 2025, 8, 4. [Google Scholar] [CrossRef]
- Zhao, Z.; Alzubaidi, L.; Zhang, J.; Duan, Y.; Gu, Y. A comparison review of transfer learning and self-supervised learning: Definitions, applications, advantages and limitations. Expert. Syst. Appl. 2024, 242, 122807. [Google Scholar] [CrossRef]
- Shao, D.; Addagudi, S.; Cowles, J.; Jain, A.; D’Souza, L.; Gore, S.; Azad, R.K. RareNet: A deep learning model for rare cancer diagnosis. Sci. Rep. 2025, 15, 22732. [Google Scholar] [CrossRef]
- Kaur, N.; Hans, R. Transfer Learning for Cancer Diagnosis in Medical Images: A Compendious Study. Int. J. Comput. Intell. Syst. 2025, 18, 62. [Google Scholar] [CrossRef]
- Gui, J.; Chen, T.; Zhang, J.; Cao, Q.; Sun, Z.; Luo, H.; Tao, D. A Survey on Self-Supervised Learning: Algorithms, Applications, and Future Trends. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 9052–9071. [Google Scholar] [CrossRef]
- Pai, S.; Bontempi, D.; Hadzic, I.; Prudente, V.; Sokač, M.; Chaunzwa, T.L.; Bernatz, S.; Hosny, A.; Mak, R.H.; Birkbak, N.J.; et al. Foundation model for cancer imaging biomarkers. Nat. Mach. Intell. 2024, 6, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, Z.; Alizadehsani, R.; Cifci, M.A.; Kausar, S.; Rehman, R.; Mahanta, P.; Bora, P.K.; Almasri, A.; Alkhawaldeh, R.S.; Hussain, S.; et al. A review of Explainable Artificial Intelligence in healthcare. Comput. Electr. Eng. 2024, 118, 109370. [Google Scholar] [CrossRef]
- Agrawal, R.; Agrawal, R. Explainable AI in early autism detection: A literature review of interpretable machine learning approaches. Discov. Ment. Health 2025, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Houssein, E.H.; Gamal, A.M.; Younis, E.M.G.; Mohamed, E. Explainable artificial intelligence for medical imaging systems using deep learning: A comprehensive review. Clust. Comput. 2025, 28, 469. [Google Scholar] [CrossRef]
- Dalmolin, M.; Azevedo, K.S.; Souza, L.C.d.; de Farias, C.B.; Lichtenfels, M.; Fernandes, M.A.C. Feature Selection in Cancer Classification: Utilizing Explainable Artificial Intelligence to Uncover Influential Genes in Machine Learning Models. AI 2024, 6, 2. [Google Scholar] [CrossRef]
- Perdomo-Quinteiro, P.; Belmonte-Hernández, A. Knowledge Graphs and Explainable AI for Drug Repurposing: A review of databases and methods. Brief. Bioinform. 25. [CrossRef]
- Haue, A.D.; Hjaltelin, J.X.; Holm, P.C.; Placido, D.; Brunak, S.R. Artificial intelligence-aided data mining of medical records for cancer detection and screening. Lancet Oncol. 2024, 25, e694–e703. [Google Scholar] [CrossRef]
- Lang, K.; Josefsson, V.; Larsson, A.M.; Larsson, S.; Hogberg, C.; Sartor, H.; Hofvind, S.; Andersson, I.; Rosso, A. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): A clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol. 2023, 24, 936–944. [Google Scholar] [CrossRef]
- Raaj, R.S. Breast cancer detection and diagnosis using hybrid deep learning architecture. Biomed. Signal Process Control 2023, 82, 104558. [Google Scholar] [CrossRef]
- Rahman, H.; Bukht, T.F.N.; Ahmad, R.; Almadhor, A.; Javed, A.R.; Aoun, N.B. Efficient Breast Cancer Diagnosis from Complex Mammographic Images Using Deep Convolutional Neural Network. Comput. Intell. Neurosci. 2023, 2023, 7717712. [Google Scholar] [CrossRef]
- Alzahrani, R.M.; Sikkandar, M.Y.; Begum, S.S.; Babetat, A.F.S.; Alhashim, M.; Alduraywish, A.; Prakash, N.B.; Ng, E.Y.K. Early breast cancer detection via infrared thermography using a CNN enhanced with particle swarm optimization. Sci. Rep. 2025, 15, 25290. [Google Scholar] [CrossRef]
- Dewangan, K.K.; Dewangan, D.K.; Sahu, S.P.; Janghel, R. Breast cancer diagnosis in an early stage using novel deep learning with hybrid optimization technique. Multimed. Tools Appl. 2022, 81, 13935–13960. [Google Scholar] [CrossRef] [PubMed]
- Zakareya, S.; Izadkhah, H.; Karimpour, J. A New Deep-Learning-Based Model for Breast Cancer Diagnosis from Medical Images. Diagnostics 2023, 13, 1944. [Google Scholar] [CrossRef] [PubMed]
- Altan, G. Breast cancer diagnosis using deep belief networks on ROI images. Pamukkale Univ. J. Eng. Sci. 2022, 28, 286–291. [Google Scholar] [CrossRef]
- Ardila, D.; Kiraly, A.P.; Bharadwaj, S.; Choi, B.; Reicher, J.J.; Peng, L.; Tse, D.; Etemadi, M.; Ye, W.; Corrado, G.; et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 2019, 25, 954–961. [Google Scholar] [CrossRef]
- Lu, F.; Zhao, Y.; Wang, Z.; Feng, N. Biparametric MRI-based radiomics for prediction of clinically significant prostate cancer of PI-RADS category 3 lesions. BMC Cancer 2025, 25, 615. [Google Scholar] [CrossRef]
- Hiremath, A.; Shiradkar, R.; Fu, P.; Mahran, A.; Rastinehad, A.R.; Tewari, A.; Tirumani, S.H.; Purysko, A.; Ponsky, L.; Madabhushi, A. An integrated nomogram combining deep learning, Prostate Imaging–Reporting and Data System (PI-RADS) scoring, and clinical variables for identification of clinically significant prostate cancer on biparametric MRI: A retrospective multicentre study. Lancet Digit. Health 2021, 3, e445–e454. [Google Scholar] [CrossRef]
- Soleymanjahi, S.; Huebner, J.; Elmansy, L.; Rajashekar, N.; Ludtke, N.; Paracha, R.; Thompson, R.; Grimshaw, A.A.; Foroutan, F.; Sultan, S.; et al. Artificial Intelligence-Assisted Colonoscopy for Polyp Detection: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2024, 177, 1652–1663. [Google Scholar] [CrossRef]
- Unger, M.; Loeffler, C.M.L.; Zigutyte, L.; Sainath, S.; Lenz, T.; Vibert, J.; Mock, A.; Frohling, S.; Graham, T.A.; Carrero, Z.I.; et al. Deep Learning for Biomarker Discovery in Cancer Genomes. bioRxiv 2025. [Google Scholar] [CrossRef]
- Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Swanton, C.; Seiden, M.V.; Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Smith, D.; Richards, D.; et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 2020, 31, 745–759. [Google Scholar] [CrossRef]
- The American Cancer Society Medical and Editorial Content Team, Multi-Cancer Early Detection (MCED) Tests. Available online: https://www.cancer.org/cancer/screening/multi-cancer-early-detection-tests.html (accessed on 12 August 2025).
- Hajjar, M.; Albaradei, S.; Aldabbagh, G. Machine Learning Approaches in Multi-Cancer Early Detection. Information 2024, 15, 627. [Google Scholar] [CrossRef]
- Wang, H.Y.; Lin, W.Y.; Zhou, C.; Yang, Z.A.; Kalpana, S.; Lebowitz, M.S. Integrating Artificial Intelligence for Advancing Multiple-Cancer Early Detection via Serum Biomarkers: A Narrative Review. Cancers 2024, 16, 862. [Google Scholar] [CrossRef] [PubMed]
- Sosinsky, A.; Ambrose, J.; Cross, W.; Turnbull, C.; Henderson, S.; Jones, L.; Hamblin, A.; Arumugam, P.; Chan, G.; Chubb, D.; et al. Insights for precision oncology from the integration of genomic and clinical data of 13,880 tumors from the 100,000 Genomes Cancer Programme. Nat. Med. 2024, 30, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, B.D.; Oke, J.; Virdee, P.S.; Harris, D.A.; O’Doherty, C.; Park, J.E.; Hamady, Z.; Sehgal, V.; Millar, A.; Medley, L.; et al. Multi-cancer early detection test in symptomatic patients referred for cancer investigation in England and Wales (SYMPLIFY): A large-scale, observational cohort study. Lancet Oncol. 2023, 24, 733–743. [Google Scholar] [CrossRef]
- Tie, J. Triaging suspected cancer with a multi-cancer early detection blood test. Lancet Oncol. 2023, 24, 710–711. [Google Scholar] [CrossRef]
- Schrag, D.; Beer, T.M.; McDonnell, C.H., 3rd; Nadauld, L.; Dilaveri, C.A.; Reid, R.; Marinac, C.R.; Chung, K.C.; Lopatin, M.; Fung, E.T.; et al. Blood-based tests for multicancer early detection (PATHFINDER): A prospective cohort study. Lancet 2023, 402, 1251–1260. [Google Scholar] [CrossRef]
- Nguyen, L.H.D.; Nguyen, T.H.H.; Le, V.H.; Bui, V.Q.; Nguyen, L.H.; Pham, N.H.; Phan, T.H.; Nguyen, H.T.; Tran, V.S.; Bui, C.V.; et al. Prospective validation study: A non-invasive circulating tumor DNA-based assay for simultaneous early detection of multiple cancers in asymptomatic adults. BMC Med. 2025, 23, 90. [Google Scholar] [CrossRef]
- Bao, H.; Yang, S.; Chen, X.; Dong, G.; Mao, Y.; Wu, S.; Cheng, X.; Wu, X.; Tang, W.; Wu, M.; et al. Early detection of multiple cancer types using multidimensional cell-free DNA fragmentomics. Nat. Med. 2025, 31, 2737–2745. [Google Scholar] [CrossRef]
- Batalini, F.; Madison, R.W.; Sokol, E.S.; Jin, D.X.; Chen, K.T.; Decker, B.; Pavlick, D.C.; Frampton, G.M.; Wulf, G.M.; Garber, J.E.; et al. Homologous Recombination Deficiency Landscape of Breast Cancers and Real-World Effectiveness of Poly ADP-Ribose Polymerase Inhibitors in Patients With Somatic BRCA1/2, Germline PALB2, or Homologous Recombination Deficiency Signature. JCO Precis. Oncol. 2023, 7, e2300091. [Google Scholar] [CrossRef]
- Kim, Y.N.; Gulhan, D.C.; Jin, H.; Glodzik, D.; Park, P.J. Recent Advances in Genomic Approaches for the Detection of Homologous Recombination Deficiency. Cancer Res. Treat. 2024, 56, 975–990. [Google Scholar] [CrossRef] [PubMed]
- Perez-Villatoro, F.; Oikkonen, J.; Casado, J.; Chernenko, A.; Gulhan, D.C.; Tumiati, M.; Li, Y.; Lavikka, K.; Hietanen, S.; Hynninen, J.; et al. Optimized detection of homologous recombination deficiency improves the prediction of clinical outcomes in cancer. NPJ Precis. Oncol. 2022, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bi, X.; Leng, Y.; Chen, D.; Wang, J.; Ma, Y.; Zhang, M.Z.; Han, B.W.; Li, Y. A deep-learning-based genomic status estimating framework for homologous recombination deficiency detection from low-pass whole genome sequencing. Heliyon 2024, 10, e26121. [Google Scholar] [CrossRef] [PubMed]
- Sathipati, S.Y.; Tsai, M.J.; Shukla, S.K.; Ho, S.Y. Artificial intelligence-driven pan-cancer analysis reveals miRNA signatures for cancer stage prediction. HGG Adv. 2023, 4, 100190. [Google Scholar] [CrossRef]
- El-Serag, H.B.; Jin, Q.; Tayob, N.; Salem, E.; Luster, M.; Alsarraj, A.; Khaderi, S.; Singal, A.G.; Marrero, J.A.; Asrani, S.K.; et al. HES V2.0 outperforms GALAD for detection of HCC: A phase 3 biomarker study in the United States. Hepatology 2025, 81, 465–475. [Google Scholar] [CrossRef]
- Placido, D.; Yuan, B.; Hjaltelin, J.X.; Zheng, C.; Haue, A.D.; Chmura, P.J.; Yuan, C.; Kim, J.; Umeton, R.; Antell, G.; et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nat. Med. 2023, 29, 1113–1122. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, W.; Jiang, Q.; Deng, L.; Du, L.; Mou, W.; Lai, Y.; Zhang, W.; Yang, Y.; Lim, J.; et al. Artificial intelligence-aided detection for prostate cancer with multimodal routine health check-up data: An Asian multi-center study. Int. J. Surg. 2023, 109, 3848–3860. [Google Scholar] [CrossRef]
- Boehm, K.M.; El Nahhas, O.S.M.; Marra, A.; Waters, M.; Jee, J.; Braunstein, L.; Schultz, N.; Selenica, P.; Wen, H.Y.; Weigelt, B.; et al. Multimodal histopathologic models stratify hormone receptor-positive early breast cancer. Nat. Commun. 2025, 16, 2106. [Google Scholar] [CrossRef]
- Thorn, G.J.; Gadaleta, E.; Dayem Ullah, A.Z.M.; James, L.G.E.; Abdollahyan, M.; Barrow-McGee, R.; Jones, L.J.; Chelala, C. The clinical and molecular landscape of breast cancer in women of African and South Asian ancestry. Nat. Commun. 2025, 16, 4237. [Google Scholar] [CrossRef]
- Skaf, Y.; Laubenbacher, R. Topological data analysis in biomedicine: A review. J. Biomed. Inf. Inform. 2022, 130, 104082. [Google Scholar] [CrossRef]
- Vandaele, R.; Mukherjee, P.; Selby, H.M.; Shah, R.P.; Gevaert, O. Topological data analysis of thoracic radiographic images shows improved radiomics-based lung tumor histology prediction. Patterns 2023, 4, 100657. [Google Scholar] [CrossRef]
- Belchi, F.; Pirashvili, M.; Conway, J.; Bennett, M.; Djukanovic, R.; Brodzki, J. Lung Topology Characteristics in patients with Chronic Obstructive Pulmonary Disease. Sci. Rep. 2018, 8, 5341. [Google Scholar] [CrossRef]
- Iqbal, S.; Ahmed, H.F.; Qaiser, T.; Qureshi, M.I.; Rajpoot, N. Classification of COVID-19 via Homology of CT-SCAN. Comput. Biol. Med. 2025, 193, 110226. [Google Scholar] [CrossRef]
- Yadav, A.; Ahmed, F.; Daescu, O.; Gedik, R.; Coskunuzer, B. Histopathological Cancer Detection with Topological Signatures. In Proceedings of the 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Istanbul, Turkey, 5–8 December 2023; pp. 1610–1619. [Google Scholar]
- Fatema, S.; Nuwagira, B.; Chakraborty, S.; Gedik, R.; Coskunuzer, B. Diagnosis. In Topology- and Graph-Informed Imaging Informatics. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2025; Volume 15239, pp. 22–32. [Google Scholar]
- Ward, A.D.; Tomaszewski, J.E.; Lawson, P.J.; Sheppard, J.W.; Fasy, B.T.; Schupbach, J. Persistent homology for the automatic classification of prostate cancer aggressiveness in histopathology images. In Proceedings of the Medical Imaging 2019: Digital Pathology, San Diego, CA, USA, 9–21 February 2019; p. 109560. [Google Scholar]
- Singh, Y.; Farrelly, C.M.; Hathaway, Q.A.; Leiner, T.; Jagtap, J.; Carlsson, G.E.; Erickson, B.J. Topological data analysis in medical imaging: Current state of the art. Insights Imaging 2023, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Loughrey, C.F.; Fitzpatrick, P.; Orr, N.; Jurek-Loughrey, A.; Wren, J. The topology of data: Opportunities for cancer research. Bioinform 2021, 37, 3091–3098. [Google Scholar] [CrossRef] [PubMed]
- Bukkuri, A.; Andor, N.; Darcy, I.K. Applications of Topological Data Analysis in Oncology. Front. Artif. Intell. 2021, 4, 659037. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.H.; Bardelotte, Y.A.; Ferreira, C.d.O.L.; Simao, A. Identifying key genes in cancer networks using persistent homology. Sci. Rep. 2025, 15, 2751. [Google Scholar] [CrossRef]
- Masoomy, H.; Askari, B.; Tajik, S.; Rizi, A.K.; Jafari, G.R. Topological analysis of interaction patterns in cancer-specific gene regulatory network: Persistent homology approach. Sci. Rep. 2021, 11, 16414. [Google Scholar] [CrossRef]
- Scott, A.J.; Ellison, M.; Sinclair, D.A. The economic value of targeting aging. Nat. Aging 2021, 1, 616–623. [Google Scholar] [CrossRef]
- Jytzler, J.A.; Lysdahlgaard, S. Radiomics evaluation for the early detection of Alzheimer’s dementia using T1-weighted MRI. Radiography 2024, 30, 1427–1433. [Google Scholar] [CrossRef]
- Mahavar, A.; Patel, A.; Patel, A. A Comprehensive Review on Deep Learning Techniques in Alzheimer’s Disease Diagnosis. Curr. Top. Med. Chem. 2025, 25, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Shi, D.; Cai, Y.; Li, A.; Lan, G.; Sun, P.; Liu, L.; Zhu, Y.; Yang, J.; Zhou, Y.; et al. Pathophysiology characterization of Alzheimer’s disease in South China’s aging population: For the Greater-Bay-Area Healthy Aging Brain Study (GHABS). Alzheimer’s Res. Ther. 2024, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Wang, L.; Song, M.; Geng, H.; Li, W.; Huo, Y.; Huang, A.; Wang, X.; An, C. Serum neurofilament light chain and inflammatory cytokines as biomarkers for early detection of mild cognitive impairment. Sci. Rep. 2024, 14, 9072. [Google Scholar] [CrossRef] [PubMed]
- Chimthanawala, N.M.A.; Haria, A.; Sathaye, S. Non-invasive Biomarkers for Early Detection of Alzheimer’s Disease: A New-Age Perspective. Mol. Neurobiol. 2023, 61, 212–223. [Google Scholar] [CrossRef]
- Guo, T.; Noble, W.; Hanger, D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017, 133, 665–704. [Google Scholar] [CrossRef]
- d’Abramo, C.; D’Adamio, L.; Giliberto, L. Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer’s Disease: Sensitivity, Specificity and Potential for Clinical Use. J. Pers. Med. 2020, 10, 116. [Google Scholar] [CrossRef]
- Ding, Y.; Zuo, Y.; Zhang, B.; Fan, Y.; Xu, G.; Cheng, Z.; Ma, S.; Fang, S.; Tian, A.; Gao, D.; et al. Comprehensive human proteome profiles across a 50-year lifespan reveal aging trajectories and signatures. Cell 2025, 188, 5763–5784.e26. [Google Scholar] [CrossRef]
- Wu, D.; Sun, J.K.; Chow, K.H. Neuronal cell cycle reentry events in the aging brain are more prevalent in neurodegeneration and lead to cellular senescence. PLoS Biol. 2024, 22, e3002559. [Google Scholar] [CrossRef]
- Tamatta, R.; Pai, V.; Jaiswal, C.; Singh, I.; Singh, A.K. Neuroinflammaging and the Immune Landscape: The Role of Autophagy and Senescence in Aging Brain. Biogerontology 2025, 26, 52. [Google Scholar] [CrossRef]
- Zhong, Y.; Jin, C.; Luo, X.; Huang, J.; Wu, F.; Chen, H.; Wang, J.; Tian, M.; Zhang, H. PET molecular imaging-based prevention for brain aging. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 1611–1613. [Google Scholar] [CrossRef]
- Alzola, P.; Carnero, C.; Bermejo-Pareja, F.; Sánchez-Benavides, G.; Peña-Casanova, J.; Puertas-Martín, V.; Fernández-Calvo, B.; Contador, I. Neuropsychological Assessment for Early Detection and Diagnosis of Dementia: Current Knowledge and New Insights. J. Clin. Med. 2024, 13, 3442. [Google Scholar] [CrossRef]
- Papp, K.V.; Jutten, R.J.; Soberanes, D.; Weizenbaum, E.; Hsieh, S.; Molinare, C.; Buckley, R.; Betensky, R.A.; Marshall, G.A.; Johnson, K.A.; et al. Early Detection of Amyloid-Related Changes in Memory among Cognitively Unimpaired Older Adults with Daily Digital Testing. Ann. Neurol. 2024, 95, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Lerche, S.; Zimmermann, M.; Wurster, I.; Roeben, B.; Fries, F.L.; Deuschle, C.; Waniek, K.; Lachmann, I.; Gasser, T.; Jakobi, M.; et al. CSF and Serum Levels of Inflammatory Markers in PD: Sparse Correlation, Sex Differences and Association With Neurodegenerative Biomarkers. Front. Neurol. 2022, 13, 834580. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Baek, S.-H.; Lai, M.K.P.; Arumugam, T.V.; Jo, D.-G. Aging-associated sensory decline and Alzheimer’s disease. Mol. Neurodegener. 2024, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, I. Brain Age: A Promising Biomarker for Understanding Aging in the Context of Cognitive Reserve. medRxiv 2025. [Google Scholar] [CrossRef]
- Hagiwara, A.; Kamio, S.; Kikuta, J.; Nakaya, M.; Uchida, W.; Fujita, S.; Nikola, S.; Akasahi, T.; Wada, A.; Kamagata, K.; et al. Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques. Investig. Radiol. 2025, 60, 162–174. [Google Scholar] [CrossRef]
- Torres-Simon, L.; del Cerro-León, A.; Yus, M.; Bruña, R.; Gil-Martinez, L.; Dolado, A.M.; Maestú, F.; Arrazola-Garcia, J.; Cuesta, P. Decoding the best automated segmentation tools for vascular white matter hyperintensities in the aging brain: A clinician’s guide to precision and purpose. GeroScience 2024, 46, 5485–5504. [Google Scholar] [CrossRef]
- Tsuchida, A.; Boutinaud, P.; Verrecchia, V.; Tzourio, C.; Debette, S.; Joliot, M. Early detection of white matter hyperintensities using SHIVA-WMH detector. Hum. Brain Mapp. 2024, 45, e26548. [Google Scholar] [CrossRef]
- Hagiwara, A.; Fujimoto, K.; Kamagata, K.; Murata, S.; Irie, R.; Kaga, H.; Someya, Y.; Andica, C.; Fujita, S.; Kato, S.; et al. Age-Related Changes in Relaxation Times, Proton Density, Myelin, and Tissue Volumes in Adult Brain Analyzed by 2-Dimensional Quantitative Synthetic Magnetic Resonance Imaging. Investig. Radiol. 2021, 56, 163–172. [Google Scholar] [CrossRef]
- Nguchu, B.A.; Zhao, J.; Lu, Y.; Han, Y.; Jin, H.; Wang, X.; Li, H.; Shaw, P. Human immunodeficiency virus accelerates brain aging and disrupts the trajectory of glymphatic clearance in aging brain. Front. Psychiatry 2025, 16, 1509093. [Google Scholar] [CrossRef]
- Chow, M.S.; Wu, S.L.; Webb, S.E.; Gluskin, K.; Yew, D.T. Functional magnetic resonance imaging and the brain: A brief review. World J. Radiol. 2017, 9, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Maschio, C.; Ni, R. Amyloid and Tau Positron Emission Tomography Imaging in Alzheimer’s Disease and Other Tauopathies. Front. Aging Neurosci. 2022, 14, 838034. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Srivastava, R. Enhanced EEG-based Alzheimer’s disease detection using synchrosqueezing transform and deep transfer learning. Neuroscience 2025, 576, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, G.; McGuinness, M.; Khan, M.A.; Obtinalla, C.; Hadoux, X.; van Wijngaarden, P. Retinal imaging biomarkers of Alzheimer’s disease: A systematic review and meta-analysis of studies using brain amyloid beta status for case definition. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2023, 15, e12421. [Google Scholar] [CrossRef]
- Zabel, P.; Przekoracka-Krawczyk, A.; Jaworski, D.; Zabel, K.; Suwala, K.; Gebska-Toloczko, M.; Kucharski, R.; Kaluzny, J.J. Assessment of individual retinal layer thickness and vascular changes in Alzheimer’s disease. Sci. Rep. 2025, 15, 17287. [Google Scholar] [CrossRef]
- Bennett, H.C.; Zhang, Q.; Wu, Y.-T.; Manjila, S.B.; Chon, U.; Shin, D.; Vanselow, D.J.; Pi, H.-J.; Drew, P.J.; Kim, Y. Aging drives cerebrovascular network remodeling and functional changes in the mouse brain. Nat. Commun. 2024, 15, 6398. [Google Scholar] [CrossRef]
- Open Access Series of Imaging Studies (OASIS). Available online: https://sites.wustl.edu/oasisbrains/ (accessed on 19 August 2025).
- Jack, C.R., Jr.; Bernstein, M.A.; Fox, N.C.; Thompson, P.; Alexander, G.; Harvey, D.; Borowski, B.; Britson, P.J.; Whitwell, J.L.; Ward, C.; et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 2008, 27, 685–691. [Google Scholar] [CrossRef]
- NeuroImaging Tool. Resources Collaboratory. The Internet Brain Segmentation Repository (IBSR). Available online: https://www.nitrc.org/plugins/mwiki/index.php/ibsr:MainPage (accessed on 19 August 2025).
- Yamanakkanavar, N.; Choi, J.Y.; Lee, B. MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer’s Disease: A Survey. Sensors 2020, 20, 3243. [Google Scholar] [CrossRef]
- Elam, J.S.; Glasser, M.F.; Harms, M.P.; Sotiropoulos, S.N.; Andersson, J.L.R.; Burgess, G.C.; Curtiss, S.W.; Oostenveld, R.; Larson-Prior, L.J.; Schoffelen, J.M.; et al. The Human Connectome Project: A retrospective. Neuroimage 2021, 244, 118543. [Google Scholar] [CrossRef]
- Glasser, M.F.; Smith, S.M.; Marcus, D.S.; Andersson, J.L.; Auerbach, E.J.; Behrens, T.E.; Coalson, T.S.; Harms, M.P.; Jenkinson, M.; Moeller, S.; et al. The Human Connectome Project’s neuroimaging approach. Nat. Neurosci. 2016, 19, 1175–1187. [Google Scholar] [CrossRef]
- NIH Blueprint for Neuroscience Research. 1200 Subjects Data Release. Available online: https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release (accessed on 28 August 2025).
- NIH Blueprint for Neuroscience Research. Components of the Human Connectome Project—Task fMRI. Available online: https://www.humanconnectome.org/study/hcp-young-adult/project-protocol/task-fmri (accessed on 28 August 2025).
- Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.; Yacoub, E.; Ugurbil, K.; Consortium, W.U.-M.H. The WU-Minn Human Connectome Project: An overview. Neuroimage 2013, 80, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Battiston, F.; Lucas, M.; Petri, G.; Amico, E. Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior. Nat. Commun. 2024, 15, 10244. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, N.A.; Bauer, C.C.C.; Siless, V.; Auerbach, R.P.; Elam, J.S.; Frosch, I.R.; Henin, A.; Hofmann, S.G.; Hodge, M.R.; Jones, R.; et al. The Human Connectome Project of adolescent anxiety and depression dataset. Sci. Data 2024, 11, 837. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Cocuzza, C.V.; Lawhead, C.; Ricard, J.A.; Labache, L.; Patrick, L.M.; Kumar, P.; Rubenstein, A.; Moses, J.; Chen, L.; et al. The Transdiagnostic Connectome Project: An open dataset for studying brain-behavior relationships in psychiatry. Sci. Data 2025, 12, 923. [Google Scholar] [CrossRef]
- Shafto, M.A.; Tyler, L.K.; Dixon, M.; Taylor, J.R.; Rowe, J.B.; Cusack, R.; Calder, A.J.; Marslen-Wilson, W.D.; Duncan, J.; Dalgleish, T.; et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: A cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurol. 2014, 14, 204. [Google Scholar] [CrossRef]
- University of Cambridge. Cambridge Centre for Ageing and Neuroscience. Available online: https://cam-can.mrc-cbu.cam.ac.uk/ (accessed on 28 August 2025).
- Shafto, M.A.; Henson, R.N.; Matthews, F.E.; Taylor, J.R.; Emery, T.; Erzinclioglu, S.; Hanley, C.; Rowe, J.B.; Cusack, R.; Calder, A.J.; et al. Cognitive Diversity in a Healthy Aging Cohort: Cross-Domain Cognition in the Cam-CAN Project. J. Aging Health 2020, 32, 1029–1041. [Google Scholar] [CrossRef]
- Jauny, G.; Mijalkov, M.; Canal-Garcia, A.; Volpe, G.; Pereira, J.; Eustache, F.; Hinault, T. Linking structural and functional changes during aging using multilayer brain network analysis. Commun. Biol. 2024, 7, 239. [Google Scholar] [CrossRef]
- Mijalkov, M.; Storm, L.; Zufiria-Gerbolés, B.; Veréb, D.; Xu, Z.; Canal-Garcia, A.; Sun, J.; Chang, Y.-W.; Zhao, H.; Gómez-Ruiz, E.; et al. Computational memory capacity predicts aging and cognitive decline. Nat. Commun. 2025, 16, 2748. [Google Scholar] [CrossRef]
- Moon, S.; Lee, J.; Lee, W.H. Predicting brain age with global-local attention network from multimodal neuroimaging data: Accuracy, generalizability, and behavioral associations. Comput. Biol. Med. 2025, 184, 109411. [Google Scholar] [CrossRef]
- Mapkar, S.A.; Bliss, S.A.; Carbajal, E.E.P.; Murray, S.H.; Li, Z.; Wilson, A.K.; Piprode, V.; Lee, Y.J.; Kirsch, T.; Petroff, K.S.; et al. Nuclear morphometrics coupled with machine learning identifies dynamic states of senescence across age. Nat. Commun. 2025, 16, 6231. [Google Scholar] [CrossRef]
- Ali, A.-N. Developing an Artificial Intelligence Framework for Identifying Fusion Blood-Based Biomarkers in Alzheimer’s Disease. J. Inf. Syst. Eng. Manag. 2025, 10, 443–458. [Google Scholar] [CrossRef]
- Elgandelwar, S.M.; Bairagi, V.; Vasekar, S.; Nanthaamornphong, A.; Tupe-Waghmare, P. Analyzing electroencephalograph signals for early Alzheimer’s disease detection: Deep learning vs. traditional machine learning approaches. Int. J. Elec Comp. Eng. 2024, 14, 2602–2615. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Li, J.; Wang, M.; Xu, A.; Huang, Y.; Yu, Q.; Zhang, L.; Li, Y.; Li, Z.; et al. Development and Validation of a Brain Aging Biomarker in Middle-Aged and Older Adults: Deep Learning Approach. JMIR Aging 2025, 8, e73004. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, I.U.; Hossain, A.-A.; Imam, T.; Islam, J. A Multimodal Analytical Approach to Alzheimer’s Disease Diagnosis Using Machine Learning and Convolutional Neural Networks on MRI Datasets. In Proceedings of the 2024 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), Bandung, Indonesia, 28–30 November 2024; pp. 32–37. [Google Scholar]
- Ahamed, I.U.; Hossain, A.-A.; Gupta, U.D.; Ahamed, I.U.; Saha, U. Confronting the Challenges of Alzheimer’s Diagnosis: A Deep Dive into MRI-Based Early Detection Methods. In Proceedings of the 2024 4th International Conference of Science and Information Technology in Smart Administration (ICSINTESA), Balikpapan, Indonesia, 12–13 July 2024; pp. 696–701. [Google Scholar]
- Awotunde, J.B.; Sur, N.S.; Imoize, A.L.; Misra, S.; Gaber, T. An Enhanced Residual Networks Based Framework for Early Alzheimer’s Disease Classification and Diagnosis. In Advances in Communication, Devices and Networking. ICCDN 2022; Dhar, S., Do, D.T., Sur, S.N., Liu, C.M., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2023; Volume 1037, pp. 335–348. [Google Scholar] [CrossRef]
- Ozdemir, C.; Dogan, Y. Advancing early diagnosis of Alzheimer’s disease with next-generation deep learning methods. Biomed. Signal Process. Control 2024, 96, 106614. [Google Scholar] [CrossRef]
- Abunadi, I. Deep and hybrid learning of MRI diagnosis for early detection of the progression stages in Alzheimer’s disease. Conn. Sci. 2022, 34, 2395–2430. [Google Scholar] [CrossRef]
- Hussain, M.Z.; Shahzad, T.; Mehmood, S.; Akram, K.; Khan, M.A.; Tariq, M.U.; Ahmed, A. A fine-tuned convolutional neural network model for accurate Alzheimer’s disease classification. Sci. Rep. 2025, 15, 11616. [Google Scholar] [CrossRef]
- Zhou, J.; Wei, Y.; Li, X.; Zhou, W.; Tao, R.; Hua, Y.; Liu, H. A deep learning model for early diagnosis of alzheimer’s disease combined with 3D CNN and video Swin transformer. Sci. Rep. 2025, 15, 23311. [Google Scholar] [CrossRef]
- Babu, B.; Parvathy, G.; Bawa, F.S.M.; Gill, G.S.; Patel, J.; Sibia, D.S.; Sureddi, J.; Patel, V. Comparing the Artificial Intelligence Detection Models to Standard Diagnostic Methods and Alternative Models in Identifying Alzheimer’s Disease in At-Risk or Early Symptomatic Individuals: A Scoping Review. Cureus 2024, 16, e75389. [Google Scholar] [CrossRef]
- Kim, S.K.; Duong, Q.A.; Gahm, J.K. Multimodal 3D Deep Learning for Early Diagnosis of Alzheimer’s Disease. IEEE Access 2024, 12, 46278–46289. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, S.; Fang, Z.; Liu, C.; Zou, B.; Qiu, L.; Wang, Y.; Chang, S.; Jia, F.; Qin, F.; et al. Toward Robust Early Detection of Alzheimer’s Disease via an Integrated Multimodal Learning Approach. In Proceedings of the ICASSP 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 6–11 April 2025; pp. 1–5. [Google Scholar]
- Sun, J.; Xie, Z.; Sun, Y.; Shen, A.; Li, R.; Yuan, X.; Lu, B.; Li, Y. Precise prediction of cerebrospinal fluid amyloid beta protein for early Alzheimer’s disease detection using multimodal data. MedComm (2020) 2024, 5, e532. [Google Scholar] [CrossRef]
- Gaeta, A.M.; Quijada-Lopez, M.; Barbe, F.; Vaca, R.; Pujol, M.; Minguez, O.; Sanchez-de-la-Torre, M.; Munoz-Barrutia, A.; Pinol-Ripoll, G. Predicting Alzheimer’s disease CSF core biomarkers: A multimodal Machine Learning approach. Front. Aging Neurosci. 2024, 16, 1369545. [Google Scholar] [CrossRef]
- Viswan, V.; Shaffi, N.; Mahmud, M.; Subramanian, K.; Hajamohideen, F. Explainable Artificial Intelligence in Alzheimer’s Disease Classification: A Systematic Review. Cogn. Comput. 2023, 16, 1–44. [Google Scholar] [CrossRef]
- Kumari, L.K.S.; Sundarrajan, R. A review on brain age prediction models. Brain Res. 2024, 1823, 148668. [Google Scholar] [CrossRef] [PubMed]
- Baecker, L.; Garcia-Dias, R.; Vieira, S.; Scarpazza, C.; Mechelli, A. Machine learning for brain age prediction: Introduction to methods and clinical applications. EBioMedicine 2021, 72, 103600. [Google Scholar] [CrossRef] [PubMed]
- Zivanovic, M.; Trenkic, A.A.; Milosevic, V.; Stojanov, D.; Misic, M.; Radovanovic, M.; Radovanovic, V. The role of magnetic resonance imaging in the diagnosis and prognosis of dementia. Biomol. Biomed. 2023, 23, 209–224. [Google Scholar] [CrossRef]
- Srividhya, L.; Sowmya, V.; Ravi, V.; Gopalakrishnan, E.A.; Soman, K.P. Deep learning-based approach for multi-stage diagnosis of Alzheimer’s disease. Multimed. Tools Appl. 2023, 83, 16799–16822. [Google Scholar] [CrossRef]
- Han, J.; Kim, S.Y.; Lee, J.; Lee, W.H. Brain Age Prediction: A Comparison between Machine Learning Models Using Brain Morphometric Data. Sensors 2022, 22, 8077. [Google Scholar] [CrossRef]
- Lockhart, S.N.; DeCarli, C. Structural imaging measures of brain aging. Neuropsychol. Rev. 2014, 24, 271–289. [Google Scholar] [CrossRef]
- Dartora, C.; Marseglia, A.; Martensson, G.; Rukh, G.; Dang, J.; Muehlboeck, J.S.; Wahlund, L.O.; Moreno, R.; Barroso, J.; Ferreira, D.; et al. A deep learning model for brain age prediction using minimally preprocessed T1w images as input. Front. Aging Neurosci. 2023, 15, 1303036. [Google Scholar] [CrossRef]
- Yu, Y.; Cui, H.Q.; Haas, S.S.; New, F.; Sanford, N.; Yu, K.; Zhan, D.; Yang, G.; Gao, J.H.; Wei, D.; et al. Brain-age prediction: Systematic evaluation of site effects, and sample age range and size. Hum. Brain Mapp. 2024, 45, e26768. [Google Scholar] [CrossRef]
- Capó, M.; Vitali, S.; Athanasiou, G.; Cusimano, N.; García, D.; Cruickshank, G.; Patel, B. UK Biobank MRI data can power the development of generalizable brain clocks: A study of standard ML/DL methodologies and performance analysis on external databases. NeuroImage 2025, 308, 121064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, S.; Feng, J.; Zhang, S. Age-level bias correction in brain age prediction. Neuroimage Clin. 2023, 37, 103319. [Google Scholar] [CrossRef] [PubMed]
- Roibu, A.-C.; Adaszewski, S.; Schindler, T.; Smith, S.M.; Namburete, A.I.L.; Lange, F.J. Brain Ages Derived from Different MRI Modalities are Associated with Distinct Biological Phenotypes. In Proceedings of the 2023 10th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 22–23 June 2023; pp. 17–25. [Google Scholar]
- Wang, Y.; Wen, J.; Xin, J.; Zhang, Y.; Xie, H.; Tang, Y. 3DCNN predicting brain age using diffusion tensor imaging. Med. Biol. Eng. Comput. 2023, 61, 3335–3344. [Google Scholar] [CrossRef] [PubMed]
- Dorfel, R.P.; Arenas-Gomez, J.M.; Svarer, C.; Ganz, M.; Knudsen, G.M.; Svensson, J.E.; Plaven-Sigray, P. Multimodal brain age prediction using machine learning: Combining structural MRI and 5-HT2AR PET-derived features. Geroscience 2024, 46, 4123–4133. [Google Scholar] [CrossRef]
- Dardouri, S. An efficient method for early Alzheimer’s disease detection based on MRI images using deep convolutional neural networks. Front. Artif. Intell. 2025, 8, 1563016. [Google Scholar] [CrossRef]
- Umirzakova, S.; Muksimova, S.; Iskhakova, N.; Anorova, S.; Cho, Y.I. Enhancing Early Alzheimer′s Disease Detection: Integrative Approaches Using Machine Learning and Deep Learning in Neuroimaging. J. Artif. Intell. Res. Appl. 2024, 1, 113–126. [Google Scholar]
- Li, Y.; Chang, X.; Wu, J.; Liu, Y.; Wang, H.; Zhang, Y. Machine learning in early diagnosis of neurological diseases: Advancing accuracy and overcoming challenges. Brain Netw. Disord. 2025, 1, 132–139. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Luna, S.A.; Siddique, Z. Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare 2022, 10, 541. [Google Scholar] [CrossRef]
- Xiong, M.; Lin, L.; Jin, Y.; Kang, W.; Wu, S.; Sun, S. Comparison of Machine Learning Models for Brain Age Prediction Using Six Imaging Modalities on Middle-Aged and Older Adults. Sensors 2023, 23, 3622. [Google Scholar] [CrossRef]
- Lee, W.H. The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function. Mathematics 2023, 11, 1229. [Google Scholar] [CrossRef]
- Peng, H.; Gong, W.; Beckmann, C.F.; Vedaldi, A.; Smith, S.M. Accurate brain age prediction with lightweight deep neural networks. Med. Image Anal. 2021, 68, 101871. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, S.; Seo, S.W.; Na, D.L.; Jang, H.; Kim, J.P.; Kim, H.J.; Kang, S.H.; Kwak, K. A novel deep learning-based brain age prediction framework for routine clinical MRI scans. NPJ Aging 2025, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Hernandez, P.A.; Nodarse, C.L.; Cole, J.H.; Cruz-Almeida, Y. Feasibility of brain age predictions from clinical T1-weighted MRIs. Brain Res. Bull. 2023, 205, 110811. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, C.; Ma, X.; Zhu, X.; Lin, L.; Tian, M. ds-FCRN: Three-dimensional dual-stream fully convolutional residual networks and transformer-based global-local feature learning for brain age prediction. Brain Struct. Funct. 2025, 230, 32. [Google Scholar] [CrossRef]
- Ding, R.; Lu, H.; Liu, M. DenseFormer-MoE: A Dense Transformer Foundation Model with Mixture of Experts for Multi-Task Brain Image Analysis. IEEE Trans. Med. Imaging 2025, Online ahead of print. [Google Scholar] [CrossRef]
- Orka, N.A.; Awal, M.A.; Liò, P.; Pogrebna, G.; Ross, A.G.; Moni, M.A. Quantum deep learning in neuroinformatics: A systematic review. Artif. Intell. Rev. 2025, 58, 134. [Google Scholar] [CrossRef]
- Haghayegh, F.; Norouziazad, A.; Haghani, E.; Feygin, A.A.; Rahimi, R.H.; Ghavamabadi, H.A.; Sadighbayan, D.; Madhoun, F.; Papagelis, M.; Felfeli, T.; et al. Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. Adv. Sci. 2024, 11, e2400595. [Google Scholar] [CrossRef]
- Syedmoradi, L.; Daneshpour, M.; Alvandipour, M.; Gomez, F.A.; Hajghassem, H.; Omidfar, K. Point of care testing: The impact of nanotechnology. Biosens. Bioelectron. 2017, 87, 373–387. [Google Scholar] [CrossRef]
- Han, G.-R.; Goncharov, A.; Eryilmaz, M.; Ye, S.; Palanisamy, B.; Ghosh, R.; Lisi, F.; Rogers, E.; Guzman, D.; Yigci, D.; et al. Machine learning in point-of-care testing: Innovations, challenges, and opportunities. Nat. Commun. 2025, 16, 3165. [Google Scholar] [CrossRef]
- Malik, S.; Singh, J.; Goyat, R.; Saharan, Y.; Chaudhry, V.; Umar, A.; Ibrahim, A.A.; Akbar, S.; Ameen, S.; Baskoutas, S. Nanomaterials-based biosensor and their applications: A review. Heliyon 2023, 9, e19929. [Google Scholar] [CrossRef]
- Tripathi, A.; Bonilla-Cruz, J. Review on Healthcare Biosensing Nanomaterials. ACS Appl. Nano Mater. 2023, 6, 5042–5074. [Google Scholar] [CrossRef]
- Burlec, A.F.; Corciova, A.; Boev, M.; Batir-Marin, D.; Mircea, C.; Cioanca, O.; Danila, G.; Danila, M.; Bucur, A.F.; Hancianu, M. Current Overview of Metal Nanoparticles’ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals 2023, 16, 1410. [Google Scholar] [CrossRef]
- Sadiq, Z.; Tali, S.H.S.; Hajimiri, H.; Al-Kassawneh, M.; Jahanshahi-Anbuhi, S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit. Rev. Anal. Chem. 2023, 54, 2209–2244. [Google Scholar] [CrossRef]
- Wang, J.; Giordani, S.; Marassi, V.; Placci, A.; Roda, B.; Reschiglian, P.; Zattoni, A. Multi-environment and multi-parameter screening of stability and coating efficiency of gold nanoparticle bioconjugates in application media. Sci. Rep. 2024, 14, 31568. [Google Scholar] [CrossRef] [PubMed]
- Hanmante, P.S.; Lohiya, R.T.; Wankhede, A.G.; Undirwade, D.S.; Lade, S.N.; Burle, S.S.; Umekar, M.J. Quantum dot nanotechnology: Advancing target drug delivery in Oncology. Next Nanotechnol. 2025, 7, 100172. [Google Scholar] [CrossRef]
- Behrouzi, K.; Fard, Z.K.; Chen, C.-M.; He, P.; Teng, M.; Lin, L. Plasmonic coffee-ring biosensing for AI-assisted point-of-care diagnostics. Nat. Commun. 2025, 16, 4597. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Jiang, N.; Yetisen, A.K. Wearable artificial intelligence biosensor networks. Biosens. Bioelectron. 2023, 219, 114825. [Google Scholar] [CrossRef]
- Smith, A.A.; Li, R.; Tse, Z.T.H. Reshaping healthcare with wearable biosensors. Sci. Rep. 2023, 13, 4998. [Google Scholar] [CrossRef]
- Keum, D.H.; Kim, S.K.; Koo, J.; Lee, G.H.; Jeon, C.; Mok, J.W.; Mun, B.H.; Lee, K.J.; Kamrani, E.; Joo, C.K.; et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci. Adv. 2020, 6, eaba3252. [Google Scholar] [CrossRef]
- Park, W.; Seo, H.; Kim, J.; Hong, Y.-M.; Song, H.; Joo, B.J.; Kim, S.; Kim, E.; Yae, C.-G.; Kim, J.; et al. In-depth correlation analysis between tear glucose and blood glucose using a wireless smart contact lens. Nat. Commun. 2024, 15, 2828. [Google Scholar] [CrossRef]
- Youn, S.; Ki, M.R.; Abdelhamid, M.A.A.; Pack, S.P. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics 2024, 9, 278. [Google Scholar] [CrossRef]
- Promphet, N.; Thanawattano, C.; Buekban, C.; Laochai, T.; Lormaneenopparat, P.; Sukmas, W.; Rattanawaleedirojn, P.; Puthongkham, P.; Potiyaraj, P.; Leewattanakit, W.; et al. Smartphone based wearable sweat glucose sensing device correlated with machine learning for real-time diabetes screening. Anal. Chim. Acta 2024, 1312, 342761. [Google Scholar] [CrossRef]
- Luo, R.; Yang, Y.; Huang, S.; Huang, Z. Wearable devices for monitoring sweat glucose: An integrated strategy for efficient electrochemical sensors. Sens. Actuators Rep. 2025, 9, 100339. [Google Scholar] [CrossRef]
- Xing, E.; Chen, H.; Xin, X.; Cui, H.; Dou, Y.; Song, S. Recent Advances in Smart Phone-Based Biosensors for Various Applications. Chemosensors 2025, 13, 221. [Google Scholar] [CrossRef]
- Zarei, M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC Trends Anal. Chem. 2017, 91, 26–41. [Google Scholar] [CrossRef]
- Joh, D.Y.; Heggestad, J.T.; Zhang, S.; Anderson, G.R.; Bhattacharyya, J.; Wardell, S.E.; Wall, S.A.; Cheng, A.B.; Albarghouthi, F.; Liu, J.; et al. Cellphone enabled point-of-care assessment of breast tumor cytology and molecular HER2 expression from fine-needle aspirates. NPJ Breast Cancer 2021, 7, 85. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Y.; Lu, J.; Gong, T.; Ibáñez, E.; Cifuentes, A.; Lu, W. Microfluidic biosensors for biomarker detection in body fluids: A key approach for early cancer diagnosis. Biomark. Res. 2024, 12, 153. [Google Scholar] [CrossRef]
- Yang, S.M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors 2022, 22, 1620. [Google Scholar] [CrossRef]
- Chen, C.; Ran, B.; Liu, B.; Liu, X.; Zhang, Z.; Li, Y.; Li, H.; Lan, M.; Zhu, Y. Multiplexed detection of biomarkers using a microfluidic chip integrated with mass-producible micropillar array electrodes. Anal. Chim. Acta 2023, 1272, 341450. [Google Scholar] [CrossRef]
- Wormald, B.W.; Moser, N.; deSouza, N.M.; Mantikas, K.-T.; Malpartida-Cardenas, K.; Pennisi, I.; Ind, T.E.J.; Vroobel, K.; Kalofonou, M.; Rodriguez-Manzano, J.; et al. Lab-on-chip assay of tumour markers and human papilloma virus for cervical cancer detection at the point-of-care. Sci. Rep. 2022, 12, 8750. [Google Scholar] [CrossRef]
- Mwai, L.M.; Kyama, M.C.; Ngugi, C.W.; Walong, E. Development of HPV 16/18 E6 Oncoprotein Paperbased Nanokit for Enhanced Detection of HPV 16/18 E6 Oncoprotein in Cervical Cancer Screening. J. Nanotechnol. Nanomater. 2020, 1, 31–44. [Google Scholar] [CrossRef]
- Krings, A.; Dückelmann, A.M.; Moser, L.; Gollrad, J.; Wiegerinck, M.; Schweizer, J.; Kaufmann, A.M. Performance of OncoE6 cervical test with collection methods enabling self-sampling. BMC Women’s Health 2018, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Abate, A.; Munshea, A.; Nibret, E.; Bezabih, B.; Amare, B.; Yismaw, G. Evaluation of Onco E6 point of care rapid diagnostic test for human papilloma virus in Bahir Dar, Amhara Regional State, Ethiopia. PLoS ONE 2025, 20, e0321076. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, X.; Ge, C.; Li, S.; Wang, L.; Xu, Y. Detection of VEGF165 in Whole Blood by Differential Pulse Voltammetry Based on a Centrifugal Microfluidic Chip. ACS Sens. 2022, 7, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Cheng, L.; Hu, L.; Lou, D.; Zhang, T.; Li, J.; Zhu, Q.; Liu, F. An integrative microfluidic device for isolation and ultrasensitive detection of lung cancer-specific exosomes from patient urine. Biosens. Bioelectron. 2020, 163, 112290. [Google Scholar] [CrossRef]
- Song, Y.; Shi, Y.; Huang, M.; Wang, W.; Wang, Y.; Cheng, J.; Lei, Z.; Zhu, Z.; Yang, C. Bioinspired Engineering of a Multivalent Aptamer-Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells. Angew. Chem. Int. Ed. Engl. 2019, 58, 2236–2240. [Google Scholar] [CrossRef]
- Wu, L.; Ding, H.; Qu, X.; Shi, X.; Yang, J.; Huang, M.; Zhang, J.; Zhang, H.; Song, J.; Zhu, L.; et al. Fluidic Multivalent Membrane Nanointerface Enables Synergetic Enrichment of Circulating Tumor Cells with High Efficiency and Viability. J. Am. Chem. Soc. 2020, 142, 4800–4806. [Google Scholar] [CrossRef]
- Jia, L.; Zhen, X.; Chen, L.; Feng, Q.; Yuan, W.; Bu, Y.; Wang, S.; Xie, X. Bioinspired nano-plate-coral platform enabled efficient detection of circulating tumor cells via the synergistic capture of multivalent aptamer and tumor cell membrane. J. Colloid. Interface Sci. 2023, 631, 55–65. [Google Scholar] [CrossRef]
- Erkocyigit, B.A.; Ozufuklar, O.; Yardim, A.; Celik, E.G.; Timur, S. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics. Biosensors 2023, 13, 387. [Google Scholar] [CrossRef]
- Smith, C.A.; Paul, S.; Haney, K.E.; Parra, S.G.; Bond, M.; Lopez, L.; Maza, M.; Felix, J.; Ramalingam, P.; Escobar, P.; et al. A paper-based HPV E7 oncoprotein assay for cervical precancer detection at the point of care. Sci. Rep. 2025, 15, 3041. [Google Scholar] [CrossRef]
- Wei, B.; Mao, K.; Liu, N.; Zhang, M.; Yang, Z. Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens. Bioelectron. 2018, 121, 41–46. [Google Scholar] [CrossRef]
- Li, F.; Guo, L.; Hu, Y.; Li, Z.; Liu, J.; He, J.; Cui, H. Multiplexed chemiluminescence determination of three acute myocardial infarction biomarkers based on microfluidic paper-based immunodevice dual amplified by multifunctionalized gold nanoparticles. Talanta 2020, 207, 120346. [Google Scholar] [CrossRef]
- Gilroy, C.; Silver, C.D.; Kunstmann-Olsen, C.; Miller, L.M.; Johnson, S.D.; Krauss, T.F. A passive blood separation sensing platform for point-of-care devices. NPJ Biosens. 2025, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Li, P.R.; Boilla, S.K.; Wang, C.H.; Lin, P.C.; Kuo, C.N.; Tsai, T.H.; Lee, G.B. A self-driven, microfluidic, integrated-circuit biosensing chip for detecting four cardiovascular disease biomarkers. Biosens. Bioelectron. 2024, 249, 115931. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Esparza, S.; Wu, D.; Hanudel, M.R.; Joung, H.A.; Gales, B.; Tseng, D.; Salusky, I.B.; Ozcan, A. Measurement of serum phosphate levels using a mobile sensor. Analyst 2020, 145, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Pittman, T.W.; Decsi, D.B.; Punyadeera, C.; Henry, C.S. Saliva-based microfluidic point-of-care diagnostic. Theranostics 2023, 13, 1091–1108. [Google Scholar] [CrossRef]
- Wei, X.; Guo, J.; Lian, H.; Sun, X.; Liu, B. Cobalt metal-organic framework modified carbon cloth/paper hybrid electrochemical button-sensor for nonenzymatic glucose diagnostics. Sens. Actuators B Chem. 2021, 329, 129205. [Google Scholar] [CrossRef]
- Goncharov, A.; Joung, H.A.; Ghosh, R.; Han, G.R.; Ballard, Z.S.; Maloney, Q.; Bell, A.; Aung, C.T.Z.; Garner, O.B.; Carlo, D.D.; et al. Deep Learning-Enabled Multiplexed Point-of-Care Sensor using a Paper-Based Fluorescence Vertical Flow Assay. Small 2023, 19, 2300617. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, J.; Ko, S.H. Electrochemical biosensors for point-of-care testing. Bio-Des. Manuf. 2024, 7, 548–565. [Google Scholar] [CrossRef]
- Madadelahi, M.; Romero-Soto, F.O.; Kumar, R.; Tlaxcala, U.B.; Madou, M.J. Electrochemical sensors: Types, applications, and the novel impacts of vibration and fluid flow for microfluidic integration. Biosens. Bioelectron. 2025, 272, 117099. [Google Scholar] [CrossRef]
- Ko, D.H.; Bates, D.; Karaosmanoglu, H.; Taredun, K.; Elton, C.; Jones, L.; Hosseini, A.; Partridge, A. 3D microelectrode arrays, pushing the bounds of sensitivity toward a generic platform for point-of-care diagnostics. Biosens. Bioelectron. 2023, 227, 115154. [Google Scholar] [CrossRef]
- Sun, Z.; Tong, Y.; Zhao, L.; Li, J.; Gao, F.; Wang, C.; Li, H.; Du, L.; Jiang, Y. MoS2@Ti3C2 nanohybrid-based photoelectrochemical biosensor: A platform for ultrasensitive detection of cancer biomarker exosomal miRNA. Talanta 2022, 238, 123077. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ye, Q.; Yang, M. Sensitive photoelectrochemical sensor for detection of cancer biomarker based on enzyme embedded nanoparticles as signal probe. Mater. Lett. 2023, 331, 133479. [Google Scholar] [CrossRef]
- Cimmino, W.; Migliorelli, D.; Singh, S.; Miglione, A.; Generelli, S.; Cinti, S. Design of a printed electrochemical strip towards miRNA-21 detection in urine samples: Optimization of the experimental procedures for real sample application. Anal. Bioanal. Chem. 2023, 415, 4511–4520. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Xiao, W.; Shen, L.; Shi, X.; Li, J. An electrochemical method based on CRISPR-Cas12a and enzymatic reaction for the highly sensitive detection of tumor marker MUC1 mucin. Analyst 2024, 149, 3920–3927. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Kargupta, R.; Ghoshal, D.; Li, Z.; Chande, C.; Feng, L.; Chatterjee, S.; Koratkar, N.; Motkuri, R.K.; Basuray, S. ESSENCE—A rapid, shear-enhanced, flow-through, capacitive electrochemical platform for rapid detection of biomolecules. Biosens. Bioelectron. 2021, 182, 113163. [Google Scholar] [CrossRef]
- Ko, D.H.; Hosseini, A.; Karaosmanoglu, H.; Taredun, K.; Jones, L.; Partridge, A. Microfluidic separation of capture from detection and its application for determination of COVID-19 antibodies. Sens. Actuators B Chem. 2022, 351, 130918. [Google Scholar] [CrossRef]
- Yamani, H.Z.; Safwat, N.; Mahmoud, A.M.; Ayad, M.F.; Abdel-Ghany, M.F.; Gomaa, M.M. Point-of-care diagnostics for rapid determination of prostate cancer biomarker sarcosine: Application of disposable potentiometric sensor based on oxide-conductive polymer nanocomposite. Anal. Bioanal. Chem. 2023, 415, 5451–5462. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, W.; Li, N.; Yang, M.; Hou, C.; Huo, D. A Clinically Feasible Diagnostic Typing of Breast Cancer Built on a Homogeneous Electrochemical Biosensor for Simultaneous Multiplex Detection. Anal. Chem. 2024, 96, 12316–12322. [Google Scholar] [CrossRef]
- Chen, H.; Li, Z.Y.; Chen, J.; Yu, H.; Zhou, W.; Shen, F.; Chen, Q.; Wu, L. CRISPR/Cas12a-based electrochemical biosensor for highly sensitive detection of cTnI. Bioelectrochemistry 2022, 146, 108167. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Z.; Liu, J.; Yao, C.; Chen, X.; Huang, X.; Huang, S.; Shi, P.; Li, M.; Wang, L.; et al. Multi-sized microelectrode array coupled with micro-electroporation for effective recording of intracellular action potential. Microsyst. Nanoeng. 2025, 11, 85. [Google Scholar] [CrossRef]
- Hirsch, I.B. Introduction: History of Glucose Monitoring. In Role of Continuous Glucose Monitoring in Diabetes Treatment; ADA Clinical Compendia Series; American Diabetes Association: Arlington, VA, USA, 2018; p. 1. [Google Scholar] [CrossRef]
- Diabetes, C.; Research, G.C.T.; Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar] [CrossRef]
- Mittal, R.; Koutras, N.; Maya, J.; Lemos, J.R.N.; Hirani, K. Blood glucose monitoring devices for type 1 diabetes: A journey from the food and drug administration approval to market availability. Front. Endocrinol. 2024, 15, 1352302. [Google Scholar] [CrossRef]
- Lin, P.H.; Sheu, S.C.; Chen, C.W.; Huang, S.C.; Li, B.R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta 2022, 241, 123187. [Google Scholar] [CrossRef]
- Xu, J.; Tao, X.; Liu, X.; Yang, L. Wearable Eye Patch Biosensor for Noninvasive and Simultaneous Detection of Multiple Biomarkers in Human Tears. Anal. Chem. 2022, 94, 8659–8667. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Song, G.; Zhong, K.; Wang, Z.; Xia, X.; Tian, Y. Wearable fluorescent contact lenses for monitoring glucose via a smartphone. Sens. Actuators B Chem. 2022, 352, 131067. [Google Scholar] [CrossRef]
- Lee, H.; Song, C.; Hong, Y.S.; Kim, M.; Cho, H.R.; Kang, T.; Shin, K.; Choi, S.H.; Hyeon, T.; Kim, D.-H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 2017, 3, e1601314. [Google Scholar] [CrossRef] [PubMed]
- Karim, Z.; Khan, M.J.; Hussain, A.; Ahmed, F.; Khan, Z.H. Multilayer patch functionalized microfibrillated cellulosic paper sensor for sweat glucose monitoring. Sci. Rep. 2024, 14, 23434. [Google Scholar] [CrossRef]
- Duy Mac, K.; Su, J. Optical biosensors for diagnosing neurodegenerative diseases. NPJ Biosens. 2025, 2, 20. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, Z.; Xu, R.; Hou, S.; Gong, L.; Guo, L.; Gao, K.; Xu, X.; Tan, X.; Xiao, D.; et al. A genetically encoded biosensor for point-of-care and live-cell detection of D-2-hydroxyglutarate. Nat. Commun. 2025, 16, 6913. [Google Scholar] [CrossRef]
- Chou, F.J.; Liu, Y.; Lang, F.; Yang, C. D-2-Hydroxyglutarate in Glioma Biology. Cells 2021, 10, 2345. [Google Scholar] [CrossRef] [PubMed]
- Keum, C.; Yeom, H.; Noh, T.I.; Yi, S.Y.; Jin, S.; Kim, C.; Shim, J.S.; Yoon, S.G.; Kim, H.; Lee, K.H.; et al. Diagnosis of early-stage bladder cancer via unprocessed urine samples at the point of care. Na Biomed. Eng. 2024, 9, 1026–1038. [Google Scholar] [CrossRef] [PubMed]
- Ming-Jung, T.; Nan-Fu, C. Active plasmonic colorimetric biosensor for detecting lung cancer proteins. In Proceedings of the SPIE Optics + Optoelectronics Exhibition 2025, Prague, Czech Republic, 7–10 April 2025; p. 135270Q. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Cheng, W.; Wu, T.; Li, J.; Li, X.; Liu, L.; Bai, H.; Ding, S.; Li, X.; et al. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon. J. Nanobiotechnol. 2021, 19, 450. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Li, X.; Zhang, J.; Pan, H.; Peng, Q.; Gan, H.; Su, S.; Yuwen, L.; Song, C. SERS/electrochemical dual-mode biosensor based on multi-functionalized molybdenum disulfide nanosheet probes and SERS-active Ag nanorods array electrodes for reliable detection of cancer-related miRNA. Sens. Actuators B Chem. 2022, 368, 132245. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Y.; Liu, C.; Jiang, Q.Y.; Chen, F.; Cao, Y. SERS-Based Biosensors Combined with Machine Learning for Medical Application. ChemistryOpen 2023, 12, e202200192. [Google Scholar] [CrossRef]
- Lin, D.; Wu, Q.; Qiu, S.; Chen, G.; Feng, S.; Chen, R.; Zeng, H. Label-free liquid biopsy based on blood circulating DNA detection using SERS-based nanotechnology for nasopharyngeal cancer screening. Nanomedicine 2019, 22, 102100. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zeng, Q.Y.; Li, L.F.; Qi, M.N.; Qi, Q.C.; Li, S.X.; Xu, J.F. Label-free rapid identification of tumor cells and blood cells with silver film SERS substrate. Opt. Express 2018, 26, 33044–33056. [Google Scholar] [CrossRef]
- Park, K.S.; Cha, H.; Niu, J.; Soh, H.T.; Lee, J.H.; Pack, S.P. DNA-controlled protein fluorescence: Design of aptamer-split peptide hetero-modulator for GFP to respond to intracellular ATP levels. Nucleic Acids Res. 2024, 52, 8063–8071. [Google Scholar] [CrossRef]
- Chen, H.; Zhuang, Z.; Guo, S.; Xie, S.; Xin, Y.; Chen, Y.; Ouyang, S.; Zhao, W.; Shen, K.; Tao, J.; et al. Artificial neural network processed linear-light tristimulus and hue parameters of fluorescence for smartphone assisted point-of-care testing device. Sens. Actuators B Chem. 2023, 384, 133659. [Google Scholar] [CrossRef]
- Roostaei, N.; Hamidi, S.M. Plasmonic smart contact lens based on etalon nanostructure for tear glucose sensing. Sci. Rep. 2025, 15, 14948. [Google Scholar] [CrossRef]
- Park, T.I.; Yang, A.H.; Kanth, B.K.; Pack, S.P. Aptamers as Diagnostic and Therapeutic Agents for Aging and Age-Related Diseases. Biosensors 2025, 15, 232. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.M.T.; Cho, S. Fluorescent Aptasensor and Colorimetric Aptablot for p-tau231 Detection: Toward Early Diagnosis of Alzheimer’s Disease. Biomedicines 2022, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Wu, J.; Chai, K.; Hu, X.; Hu, Y.; Shi, S.; Yao, T. A turn-on unlabeled colorimetric biosensor based on aptamer-AuNPs conjugates for amyloid-beta oligomer detection. Talanta 2023, 260, 124649. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Man, Y.; Xu, S.; Wu, H.; Ling, P.; Gao, F. A label-free dually-amplified aptamer sensor for the specific detection of amyloid-beta peptide oligomers in cerebrospinal fluids. Anal. Chim. Acta 2023, 1266, 341298. [Google Scholar] [CrossRef]
- Gao, S.; Li, Q.; Zhang, S.; Sun, X.; Zhou, H.; Wang, Z.; Wu, J. A novel biosensing platform for detection of glaucoma biomarker GDF15 via an integrated BLI-ELASA strategy. Biomaterials 2023, 294, 121997. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, H.; Han, X.; Liu, Z.; Lu, Y. Advancements and applications of loop-mediated isothermal amplification technology: A comprehensive overview. Front. Microbiol. 2024, 15, 1406632. [Google Scholar] [CrossRef]
- Manning, J.C.; Boza, J.M.; Cesarman, E.; Erickson, D. Rapid, equipment-free extraction of DNA from skin biopsies for point-of-care diagnostics. Sci. Rep. 2024, 14, 13782. [Google Scholar] [CrossRef]
- Barra, M.J.; Wilkinson, A.F.; Ma, A.E.; Goli, K.; Atif, H.; Osman, N.; Lorenzoni, C.; Tivir, G.; Lathrop, E.H.; Castle, P.E.; et al. One-hour extraction-free loop-mediated isothermal amplification HPV DNA assay for point-of-care testing in Maputo, Mozambique. Nat. Commun. 2025, 16, 7295. [Google Scholar] [CrossRef]
- Park, B.C.; Soh, J.O.; Choi, H.-J.; Park, H.S.; Lee, S.M.; Fu, H.E.; Kim, M.S.; Ko, M.J.; Koo, T.M.; Lee, J.-Y.; et al. Ultrasensitive and Rapid Circulating Tumor DNA Liquid Biopsy Using Surface-Confined Gene Amplification on Dispersible Magnetic Nano-Electrodes. ACS Nano 2024, 18, 12781–12794. [Google Scholar] [CrossRef]
- Yang, C.H.; Wu, T.H.; Chang, C.C.; Lo, H.Y.; Liu, H.W.; Huang, N.T.; Lin, C.W. Biosensing Amplification by Hybridization Chain Reaction on Phase-Sensitive Surface Plasmon Resonance. Biosensors 2021, 11, 75. [Google Scholar] [CrossRef]
- Hosseinzadeh, E.; Ravan, H.; Mohammadi, A.; Pourghadamyari, H. Colorimetric detection of miRNA-21 by DNAzyme-coupled branched DNA constructs. Talanta 2020, 216, 12913. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, B.; Deng, Y.; Yang, N.; Li, G. A dual-recognition-controlled electrochemical biosensor for accurate and sensitive detection of specific circulating tumor cells. Biosens. Bioelectron. 2022, 201, 113973. [Google Scholar] [CrossRef]
- Jia, Y.-L.; Li, X.-Q.; Wang, Z.-X.; Gao, H.; Chen, H.-Y.; Xu, J.-J. Logic Signal Amplification System for Sensitive Electrochemiluminescence Detection and Subtype Identification of Cancer Cells. Anal. Chem. 2024, 96, 7172–7178. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, K.; Chadwick, A.C.; Mizoguchi, T.; Garcia, S.P.; DeNizio, J.E.; Reiss, C.W.; Wang, K.; Iyer, S.; Dutta, C.; Clendaniel, V.; et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021, 593, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Dai, Y.; Wang, X.; Yu, P.; Qu, S.; Liu, Z.; Cao, Y.; Zhang, L.; Ping, Y.; Liu, W.; et al. Determination of plasma beta-amyloids by rolling circle amplification chemiluminescent immunoassay for noninvasive diagnosis of Alzheimer’s disease. Mikrochim. Acta 2021, 188, 24. [Google Scholar] [CrossRef]
- Kwapisz, D. The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann. Transl. Med. 2017, 5, 46. [Google Scholar] [CrossRef]
- Lim, S.B.; Menon, N.V.; Lim, C.T. Microfluidic tools for probing micro-culprits: Opportunities and challenges in microfluidic diagnostics. EMBO Rep. 2020, 21, e49749. [Google Scholar] [CrossRef]
- Meyer, A.R.; Gorin, M.A. First point-of-care PSA test for prostate cancer detection. Nat. Rev. Urol. 2019, 16, 331–332. [Google Scholar] [CrossRef]
- Xu, H.; Li, S.; Liu, Y.S. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct. Target. Ther. 2022, 7, 231. [Google Scholar] [CrossRef]
- Ratinho, L.; Meyer, N.; Greive, S.; Cressiot, B.; Pelta, J. Nanopore sensing of protein and peptide conformation for point-of-care applications. Nat. Commun. 2025, 16, 3211. [Google Scholar] [CrossRef]
- Prasad, K.S.; Cao, X.; Gao, N.; Jin, Q.; Sanjay, S.T.; Henao-Pabon, G.; Li, X. A Low-Cost Nanomaterial-based Electrochemical Immunosensor on Paper for High-Sensitivity Early Detection of Pancreatic Cancer. Sens. Actuators B Chem. 2020, 305, 127516. [Google Scholar] [CrossRef]
- Resmi, A.N.; Nazeer, S.S.; Dhushyandhun, M.E.; Paul, W.; Chacko, B.P.; Menon, R.N.; Jayasree, R.S. Ultrasensitive Detection of Blood-Based Alzheimer’s Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning. ACS Chem. Neurosci. 2024, 15, 4390–4401. [Google Scholar] [CrossRef]
- Palacio, I.; Moreno, M.; Nanez, A.; Purwidyantri, A.; Domingues, T.; Cabral, P.D.; Borme, J.; Marciello, M.; Mendieta-Moreno, J.I.; Torres-Vazquez, B.; et al. Attomolar detection of hepatitis C virus core protein powered by molecular antenna-like effect in a graphene field-effect aptasensor. Biosens. Bioelectron. 2023, 222, 115006. [Google Scholar] [CrossRef] [PubMed]
- Demeritte, T.; Nellore, B.P.V.; Kanchanapally, R.; Sinha, S.S.; Pramanik, A.; Chavva, S.R.; Ray, P.C. Hybrid Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and Label-Free Identification of Alzheimer’s Disease Biomarkers. ACS Appl. Mater. Interfaces 2015, 7, 13693–13700. [Google Scholar] [CrossRef] [PubMed]
- Daoutakou, M.; Kintzios, S. Point-of-Care Testing (POCT) for Cancer and Chronic Disease Management in the Workplace: Opportunities and Challenges in the Era of Digital Health Passports. Appl. Sci. 2025, 15, 6906. [Google Scholar] [CrossRef]
- Behera, P.P.; Kumar, N.; Kumari, M.; Kumar, S.; Mondal, P.K.; Arun, R.K. Integrated microfluidic devices for point-of-care detection of bio-analytes and disease. Sens. Diagn. 2023, 2, 1437–1459. [Google Scholar] [CrossRef]
- Heydari, A.; Sharifi, M.; Moghaddam, A.B. Challenges and Barriers to Providing Care to Older Adult Patients in the Intensive Care Unit: A Qualitative Research. Open Access Maced. J. Med. Sci. 2019, 7, 3682–3690. [Google Scholar] [CrossRef]
- Pullano, S.A.; Greco, M.; Bianco, M.G.; Foti, D.; Brunetti, A.; Fiorillo, A.S. Glucose biosensors in clinical practice: Principles, limits and perspectives of currently used devices. Theranostics 2022, 12, 493–511. [Google Scholar] [CrossRef]
- van der Flier, W.M.; de Vugt, M.E.; Smets, E.M.A.; Blom, M.; Teunissen, C.E. Towards a future where Alzheimer’s disease pathology is stopped before the onset of dementia. Nat. Aging 2023, 3, 494–505. [Google Scholar] [CrossRef]
- Naseem, M.S. Tumor biomarkers from discovery to clinical practice. J. Cancer Biol. 2022, 3, 19–32. [Google Scholar] [CrossRef]
- Zhou, Y.; Tao, L.; Qiu, J.; Xu, J.; Yang, X.; Zhang, Y.; Tian, X.; Guan, X.; Cen, X.; Zhao, Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Sig Transduct. Target. Ther. 2024, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Sugeeta, S.S.; Sharma, A.; Ng, K.; Nayak, A.; Vasdev, N. Biomarkers in Bladder Cancer Surveillance. Front. Surg. 2021, 8, 735868. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Li, Y.; Huang, Y.; Wu, J.; Bao, W.; Xue, C.; Li, X.; Dong, S.; Dong, Z.; Hu, S. Advances in molecular pathology and therapy of non-small cell lung cancer. Sig Transduct. Target. Ther. 2025, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.J.; Zhong, X.H.; Duan, L.X. Integration of artificial intelligence and multi-omics in kidney diseases. Fundam. Res. 2023, 3, 126–148. [Google Scholar] [CrossRef]
- Zhang, J.; Che, Y.; Liu, R.; Wang, Z.; Liu, W. Deep learning–driven multi-omics analysis: Enhancing cancer diagnostics and therapeutics. Brief. Bioinform. 2025, 26, bbaf440. [Google Scholar] [CrossRef]
- Purnama, A.; Drago, D. MEDICAL DEVICES: FDA Regulatory Pathways for Medical Devices. Available online: https://www.topra.org/topra/topra_member/pdfs/CPD-May-2019-Medical-Devices-and-FDA.pdf (accessed on 9 October 2025).
- FDA. 510(k) Clearances. Available online: https://www.fda.gov/medical-devices/device-approvals-and-clearances/510k-clearances?utm_source=chatgpt.com (accessed on 15 October 2025).
- FDA. Premarket Approval (PMA). Available online: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-approval-pma?utm_source=chatgpt.com (accessed on 15 October 2025).
- EMA’s Committee. Qualification of Novel Methodologies for Medicine Development. Available online: https://www.ema.europa.eu/en/qualification-novel-methodologies-medicine-development?utm_source=chatgpt.com (accessed on 9 October 2025).
- Sturgeon, C.; Hill, R.; Hortin, G.L.; Thompson, D. Taking a new biomarker into routine use--a perspective from the routine clinical biochemistry laboratory. Proteom. Clin. Appl. 2010, 4, 892–903. [Google Scholar] [CrossRef]
- Budelier, M.M.; Hubbard, J.A. The regulatory landscape of laboratory developed tests: Past, present, and a perspective on the future. J. Mass. Spectrom. Adv. Clin. Lab. 2023, 28, 67–69. [Google Scholar] [CrossRef]
- Gonzalez, S.J. Federal District Court Vacates FDA’s Laboratory Developed Tests Final Rule. Available online: https://www.thefdalawblog.com/2025/04/federal-district-court-vacates-fdas-laboratory-developed-tests-final-rule/ (accessed on 9 October 2025).
- FDA. Regulation Identification Number 0910-AJ05 Medical Devices; Laboratory Developed Tests; Implementation of Vacatur. Available online: https://www.federalregister.gov/documents/2024/05/06/2024-08935/medical-devices-laboratory-developed-tests (accessed on 9 October 2025).
- McShane, L.M.; Lively, T.G.; Makhlouf, H.R. Translation of Biomarkers into Clinical Practice. In Molecular Pathology of Breast Cancer; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–18. [Google Scholar]
- Cohen, J.F.; Korevaar, D.A.; Altman, D.G.; Bruns, D.E.; Gatsonis, C.A.; Hooft, L.; Irwig, L.; Levine, D.; Reitsma, J.B.; de Vet, H.C.W.; et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaboration. BMJ Open 2016, 6, e012799. [Google Scholar] [CrossRef]
- Sittimart, M.; Rattanavipapong, W.; Mirelman, A.J.; Hung, T.M.; Dabak, S.; Downey, L.E.; Jit, M.; Teerawattananon, Y.; Turner, H.C. An overview of the perspectives used in health economic evaluations. Cost. Eff. Resour. Alloc. 2024, 22, 41. [Google Scholar] [CrossRef]
- Schunemann, H.J.; Reinap, M.; Piggott, T.; Laidmae, E.; Kohler, K.; Pold, M.; Ens, B.; Irs, A.; Akl, E.A.; Cuello, C.A.; et al. The ecosystem of health decision making: From fragmentation to synergy. Lancet Public Health 2022, 7, e378–e390. [Google Scholar] [CrossRef]
- Schroll, M.M.; Quinn, E.; Pritchard, D.; Chang, A.; Amanti, K.G.; Perez, O.; Agarwal, A.; Gustavsen, G. Perspectives on Clinical Adoption Barriers to Blood-Based Multi-Cancer Early Detection Tests across Stakeholders. J. Pers. Med. 2024, 14, 593. [Google Scholar] [CrossRef]
- Anghel, S.A.; Ionita-Mindrican, C.B.; Luca, I.; Pop, A.L. Promising Epigenetic Biomarkers for the Early Detection of Colorectal Cancer: A Systematic Review. Cancers 2021, 13, 4965. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. FDA Approves First Non-Invasive DNA Screening Test for Colorectal cancer. Available online: https://wayback.archive-it.org/7993/20170112222835/http:/www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm409021.htm (accessed on 9 October 2025).
- Milbury, C.A.; Creeden, J.; Yip, W.K.; Smith, D.L.; Pattani, V.; Maxwell, K.; Sawchyn, B.; Gjoerup, O.; Meng, W.; Skoletsky, J.; et al. Clinical and analytical validation of FoundationOne(R)CDx, a comprehensive genomic profiling assay for solid tumors. PLoS ONE 2022, 17, e0264138. [Google Scholar] [CrossRef]
- Wisch, J.K.; Ances, B.M. Ruling in, ruling out: The clinical utility of plasma biomarkers in diagnosis of Alzheimer’s disease. J. Clin. Investig. 2025, 135, e198725. [Google Scholar] [CrossRef] [PubMed]
- Argueta-Diaz, V.; Owens, M.; Al Ramadan, A. Increasing Optical Path Lengths in Micro-Fluidic Devices Using a Multi-Pass Cell. Micromachines 2024, 15, 820. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dou, W.; Zhou, C.; Wang, X.; Yang, A.; Zhang, Y.; Qiao, D. A Microtester for Measuring the Reliability of Microdevices in Controlled Environmental Conditions. Micromachines 2021, 12, 585. [Google Scholar] [CrossRef]
- Gerken, E.; Konig, A. Enhancing Reliability in Redundant Homogeneous Sensor Arrays with Self-X and Multidimensional Mapping. Sensors 2025, 25, 3841. [Google Scholar] [CrossRef]
- Gunasegaram, D.R.; Barnard, A.S.; Matthews, M.J.; Jared, B.H.; Andreaco, A.M.; Bartsch, K.; Murphy, A.B. Machine learning-assisted in-situ adaptive strategies for the control of defects and anomalies in metal additive manufacturing. Addit. Manuf. 2024, 81, 104013. [Google Scholar] [CrossRef]
- Bernhardt, M.; Jones, C.; Glocker, B. Potential sources of dataset bias complicate investigation of underdiagnosis by machine learning algorithms. Nat. Med. 2022, 28, 1157–1158. [Google Scholar] [CrossRef]
- Poulain, R.; Tarek, M.F.B.; Beheshti, R. Improving Fairness in AI Models on Electronic Health Records: The Case for Federated Learning Methods. FAccT 23 (2023) 2023, 2023, 1599–1608. [Google Scholar] [CrossRef]
- Chen, R.J.; Wang, J.J.; Williamson, D.F.K.; Chen, T.Y.; Lipkova, J.; Lu, M.Y.; Sahai, S.; Mahmood, F. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat. Biomed. Eng. 2023, 7, 719–742. [Google Scholar] [CrossRef]
- Guo, L.L.; Pfohl, S.R.; Fries, J.; Johnson, A.E.W.; Posada, J.; Aftandilian, C.; Shah, N.; Sung, L. Evaluation of domain generalization and adaptation on improving model robustness to temporal dataset shift in clinical medicine. Sci. Rep. 2022, 12, 2726. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, D.; Bendechache, M. Unveiling the black box: A systematic review of Explainable Artificial Intelligence in medical image analysis. Comput. Struct. Biotechnol. J. 2024, 24, 542–560. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Verma, C.; Illés, Z. Federated learning with explainable AI for liver disease prediction: A privacy-preserving approach. Intell. Based Med. 2025, 12, 100285. [Google Scholar] [CrossRef]
- Erdemli, G.; Murphy, T.; Walinsky, S. Regulatory considerations for successful implementation of digital endpoints in clinical trials for drug development. NPJ Digit. Med. 2025, 8, 142. [Google Scholar] [CrossRef]
- Zu, Y.; Chang, H.; Cui, Z. Molecular point-of-care testing technologies: Current status and challenges. Nexus 2025, 2, 100059. [Google Scholar] [CrossRef]
- Chong, S.W.; Shen, Y.; Palomba, S.; Vigolo, D. Nanofluidic Lab-On-A-Chip Systems for Biosensing in Healthcare. Small 2024, 21, 2407478. [Google Scholar] [CrossRef]
- Siavashy, S.; Soltani, M.; Rahimi, S.; Hosseinali, M.; Guilandokht, Z.; Raahemifar, K. Recent advancements in microfluidic-based biosensors for detection of genes and proteins: Applications and techniques. Biosens. Bioelectron. X 2024, 19, 100489. [Google Scholar] [CrossRef]
- Monfared, Y.E. Refractive Index Sensor Based on Surface Plasmon Resonance Excitation in a D-Shaped Photonic Crystal Fiber Coated by Titanium Nitride. Plasmonics 2019, 15, 535–542. [Google Scholar] [CrossRef]
- Toma, A.d.; Brunetti, G.; Colapietro, P.; Ciminelli, C. High-Resolved Near-Field Sensing by Means of Dielectric Grating With a Box-Like Resonance Shape. IEEE Sens. J. 2024, 24, 6045–6053. [Google Scholar] [CrossRef]
- Ramadan, Q.; Zourob, M. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. Biomicrofluidics 2020, 14, 041501. [Google Scholar] [CrossRef]
- Shinde, A.; Illath, K.; Kasiviswanathan, U.; Nagabooshanam, S.; Gupta, P.; Dey, K.; Chakrabarty, P.; Nagai, M.; Rao, S.; Kar, S.; et al. Recent Advances of Biosensor-Integrated Organ-on-a-Chip Technologies for Diagnostics and Therapeutics. Anal. Chem. 2023, 95, 3121–3146. [Google Scholar] [CrossRef] [PubMed]
- Ingber, D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef] [PubMed]
- Cauli, E.; Polidoro, M.A.; Marzorati, S.; Bernardi, C.; Rasponi, M.; Lleo, A. Cancer-on-chip: A 3D model for the study of the tumor microenvironment. J. Biol. Eng. 2023, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Holman, J.B.; Shi, Z.; Qiu, B.; Ding, W. On-chip modeling of tumor evolution: Advances, challenges and opportunities. Mater. Today Bio 2023, 21, 100724. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Wang, Z.; Khutsishvili, D.; Tang, J.; Zhu, Y.; Cai, Y.; Dai, X.; Ma, S. Bridging the organoid translational gap: Integrating standardization and micropatterning for drug screening in clinical and pharmaceutical medicine. Life Med. 2024, 3, lnae016. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Chen, R.; Song, Y.; Wei, W.; Baek, D.; Gillin, M.; Kurabayashi, K.; Chen, W. Cancer-on-a-chip for precision cancer medicine. Lab. Chip 2025, 25, 3314–3347. [Google Scholar] [CrossRef]
- Han, Y.; Albert, P.S.; Berg, C.D.; Wentzensen, N.; Katki, H.A.; Liu, D. Statistical approaches using longitudinal biomarkers for disease early detection: A comparison of methodologies. Stat. Med. 2020, 39, 4405–4420. [Google Scholar] [CrossRef]
- He, S.; Zhu, C.; Liu, Y.; Xu, Z.; Sun, R.; Yang, B.; Guo, X.; Herrmann, I.M.; Muñoz, L.E.; Gjertsson, I.; et al. A longitudinal cohort study uncovers plasma protein biomarkers predating clinical onset and treatment response of rheumatoid arthritis. Nat. Commun. 2025, 16, 6692. [Google Scholar] [CrossRef]
- Chu, S.S.; Nguyen, H.A.; Zhang, J.; Tabassum, S.; Cao, H. Towards Multiplexed and Multimodal Biosensor Platforms in Real-Time Monitoring of Metabolic Disorders. Sensors 2022, 22, 5200. [Google Scholar] [CrossRef]
- Huang, G.; Chen, X.; Liao, C. AI-Driven Wearable Bioelectronics in Digital Healthcare. Biosensors 2025, 15, 410. [Google Scholar] [CrossRef]
- Chandel, M.; Rosenkranz, A.; Moraru, D.; Woźniak, A.; Jastrzębska, A.M. Measuring the Future—Nanometrology for Advanced Manufacturing of Miniaturized Devices. Adv. Funct. Mater. 2025, 2501663. [Google Scholar] [CrossRef]





| Gene | Main Function | Associated with BAG | Key Notes and Disease Links |
|---|---|---|---|
| MAPT | Encodes Tau protein; stabilizes neuronal microtubules | Negative causal association (blood and brain tissues) | Linked to AD and Parkinson’s disease; high expression correlates with higher glucose, blood pressure, and ApoA |
| TNFSF12 | Encodes TWEAK cytokine; modulates inflammation | Negative causal association (transcript and protein level) | Regulates blood–brain barrier inflammation and supports glucose homeostasis; strong multi-layer genetic evidence |
| GZMB | Encodes Granzyme B; serine protease | Negative causal association | Mediates inflammation (induces IL-8, MIP2); linked to vascular and skin aging |
| SIRPB1 | Immune receptor (Ig superfamily) | Negative causal association | Associated with longevity genetics; linked to insomnia, IL-1α, glucose |
| GNLY | Encodes Granulysin from NK/T cells | Positive causal association | Antimicrobial and pro-inflammatory; induces cytokines (CCL5, IL-10, IL-6, IFN-α) |
| NMB | Neuropeptide | Positive causal association | Regulates feeding behavior and obesity—key factors in aging |
| C1RL | Complement-related protease | Positive causal association (brain tissue) | Linked to AD, obsessive–compulsive disorder, anorexia nervosa; regulates immune/inflammatory pathways |
| Generation | Clock | CpG Sites | Key Features | Performance | Ref. |
|---|---|---|---|---|---|
| 1 | Hannum | 71 | A single-tissue clock developed primarily based on white blood cell (blood) data | While it shows high accuracy in chronological age prediction, applying it to non-blood tissues or children may result in biased age estimates. | [304] |
| Horvath | 353 | A pan-tissue prediction model developed using over 8000 samples from 51 healthy tissue and cell types. Applicable across the entire lifespan (from fetal samples to individuals aged 100). | Shows a high correlation with chronological age of r > 0.90 across the entire age range sample. | [305] | |
| Weidner | 3 | Blood aging can be tracked using just three CpG site (ITGA2B, ASPA and PDE4C) changes. | Higher precision than age predictions based on telomere length, cost-effective, and practical forensic applicability. Variation in age predictions correlates moderately with clinical and lifestyle parameters | [306] | |
| 2 | PhenoAge | 513 | Designed to predict ‘Phenotypic Age’ by combining 9 key clinical biomarkers with chronological age. | Outperforms 1st-generation clocks in predicting mortality, healthy life expectancy, cardiovascular disease, and multiple comorbidities. | [308] |
| GrimAge | 1030 | Developed to predict time to death by integrating seven plasma protein surrogate biomarkers and a DNA methylation-based surrogate marker for smoking history (pack-years). | It demonstrates the strongest predictive power for lifespan and healthspan. AgeAccelGrim excels in predicting mortality, coronary heart disease, and cancer. | [309,310,311,312] | |
| DunedinPACE | 173 | Developed to measure the pace of aging by analyzing 20 years of longitudinal data. It separates aging from cohort effects and survival bias using single-age birth cohort data. | Provides additional predictive power over existing clocks including GrimAge, associated with predicting morbidity, disability, and mortality. Shows a high correlation with aging rate (r = 0.78). | [313] | |
| CausAge, AdaptAge, and DamAge | 586, 1000 and 1090 | Developed by integrating causal information through epigenome-wide Mendelian randomization. DamAge tracks harmful methylation changes, while AdaptAge tracks beneficial adaptive changes. | DamAge correlates with negative outcomes such as mortality, while AdaptAge is associated with beneficial adaptations. It demonstrates SN to short-term interventions and may serve as a preferred biomarker for tracking events that influence aging-related traits during development. | [314] | |
| IntrinClock | 381 | A clock designed to remain unaffected by changes in immune cell composition | High overall prediction accuracy across a variety of tissues and SN to cellular interventions | [315] | |
| IC Clock | 91 | Trained to predict IC based on clinical assessments (cognition, motor function, psychological well-being, sensory abilities, vitality) | Emerges as one of the most powerful predictors of mortality, surpassing the 1st and 2nd generation clocks (HR = 1.38) | [316] | |
| Aging Atlas | >900,000 | the atlas integrates differentially methylated positions, variably methylated positions, and entropy to capture both deterministic and stochastic changes | Shifts the focus from age-prediction clocks to a systems-level atlas that identifies mechanisms, biomarkers, and intervention targets across human tissues | [317] |
| Method | Assay/Test | FDA Approved Year | Notes/Indications |
|---|---|---|---|
| IHC | HercepTest | 1998 | First FDA-approved companion diagnostic with trastuzumab; used rabbit polyclonal antibody with signal amplification |
| PATHWAY 4B5 | 2016 | Rabbit monoclonal antibody assay; approved for HER2-low breast cancers; expansion to HER2-ultralow expected by 2025 | |
| FISH | INFORM HER2/neu | 1997 | First FDA-approved prognostic HER2 test. |
| PathVysion | 2001 | Companion diagnostic for trastuzumab therapy. | |
| PharmDx Kit | 2005 | For ERBB2 (HER2) amplification testing. | |
| HER2 FISH | 2013 | Approved alongside trastuzumab emtansine (T-DM1). | |
| CISH | SPOT-LIGHT | 2008 | First FDA-approved CISH assay for ERBB2; more followed later. |
| QIA algorithms | PATHIAM, ScanScope XT, VIAS, ARIOL, ACIS | Various (last approved ~2010) | Automated HER2 IHC image analysis; no new approvals in past 15 years; predated HER2-low focus. |
| Standardized Quantitative Controls | Microbead calibrator slides | Various (post-2000s) | Cell-sized microbeads with synthetic antigens; improve reproducibility and LoD in IHC |
| Biomarkers | Cancer or Condition | Biological/Clinical Role | Sample Type | Detection/Analytical Platform | Clinical or Regulatory Status | Evidence Level/Stage |
|---|---|---|---|---|---|---|
| PSA | PCa | Serine protease secreted by prostate epithelium; elevated in malignancy and benign disease | Blood/ Serum | Immunoassay, ELISA, chemiluminescence | Widely used; PHI test FDA-approved (2012) | Clinical practice, prospective validation [370] |
| fPSA/tPSA ratio | PCa | Composite index improving SP over total PSA | Blood | Immunoassay + mathematical model | FDA-approved (PHI = [−2]proPSA/fPSA × √PSA) | Clinical validation completed [371] |
| HER2 (ERBB2) | BC | Receptor tyrosine kinase predictive for trastuzumab response | Tissue | IHC, FISH, CISH, QIF, RT-PCR, RNA assay | FDA-approved companion diagnostic (HercepTest) | Extensive clinical validation [372] |
| ER/PR | BC | Hormone receptor markers guiding endocrine therapy | Tissue | IHC | FDA-approved assays | Routine clinical use [372] |
| CA 15-3 (MUC1) | BC | Glycoprotein shed from tumor cells; recurrence monitoring | Serum | ELISA, chemiluminescent assay | Research/clinical follow-up use | Retrospective and prospective cohorts [375] |
| CA-125 (MUC16) | OC | Tumor-associated glycoprotein; recurrence monitoring | Serum | Immunoassay, ELISA | Part of FDA-cleared multivariate tests (ROMA, OVA1) | Clinical and regulatory validation [377] |
| HE4 (WFDC2) | OC | Improves SP when combined with CA-125 | Serum | Immunoassay | FDA-cleared (ROMA algorithm) | Clinical validation [379] |
| AFP/AFP-L3/DCP(PIVKA-II) | HCC | AFP oncofetal marker; AFP-L3 specific for HCC; DCP complements AFP | Serum | Immunoassay, lectin affinity assay | AFP-L3 FDA-cleared; DCP regionally approved | Clinical validation [380] |
| CEA/CA19-9 | CRC, PC, GC | Circulating tumor markers for prognosis and recurrence monitoring | Serum | ELISA, electrochemical sensor | Clinical guideline recommended | Large cohort validation [381,382,384] |
| ProGRP/NSE/CYFRA 21-1 | SCLC | Neuroendocrine markers correlating with therapy response | Serum | Immunoassay | Clinical application | Retrospective validation [383] |
| SCCA/HMGB1 | Cervical cancer (HPV-related) | Tumor-associated and inflammatory proteins; correlate with HPV status | Serum/Tissue | ELISA, IHC | Research stage | Retrospective/exploratory [385] |
| PD-L1 | Lung, melanoma, kidney | Checkpoint ligand guiding anti-PD-1/PD-L1 therapy | Tissue | IHC (22C3, SP142), RNA-seq | FDA-approved companion diagnostic | Clinical implementation [386] |
| p-Tau181/p-Tau217/NfL/GFAP | AD, dementia | Neural proteins indicating tauopathy and neurodegeneration | Plasma/CSF | SIMOA, immunoassay | CE-marked/validation ongoing | Longitudinal cohort validation [388] |
| GDF15/NT-proBNP/CRP/Leptin/IGF-1/sRAGE | Cardiovascular and metabolic aging | Proteins reflecting inflammation, metabolism, and CVD risk | Plasma/Serum | Multiplex proteomic assay | Research/prognostic validation | Large cohort studies [389] |
| ProtAge20 panel | Systemic aging | Proteomic aging clock predicting multimorbidity and mortality | Serum/Plasma | LC-MS/MS, computational modeling | Research use | Prospective cohort validation [387] |
| Tissue/Organ | Protein | Full Name | Major Biological Function | Aging Relevance |
|---|---|---|---|---|
| Central Nervous System | GFAP | Glial fibrillary acidic protein | Astrocyte structural protein | Marker of brain aging and neurodegeneration |
| NEFL | Neurofilament light polypeptide | Axonal structure protein | Marker of neuronal damage | |
| PLXNB2 | Plexin-B2 | Axon guidance, cell signaling | Brain development and aging | |
| NCAMI | Neural cell adhesion molecule 1 | Neuronal plasticity | Cognitive aging | |
| CLU | Clusterin (Apolipoprotein J) | Chaperone, amyloid clearance | Associated with neurodegenerative disease | |
| Metabolic/Live- Associated | APOE | Apolipoprotein E | Lipid metabolism | Associated with cognitive aging, dementia risk |
| IGFBP2 | Insulin-like growth factor binding protein 2 | Growth factor regulation | Aging-related decline in IGF signaling | |
| IGFBP4 | Insulin-like growth factor binding protein 4 | Growth factor regulation | IGF signaling control | |
| Immune/Inflammatory System | GDF15 | Growth/Differentiation Factor 15 | Stress and inflammation response | Strongly rises with age; linked to frailty and multimorbidity |
| CXCL17 | C-X-C motif chemokine ligand 17 | Immune cell chemotaxis | Marker of inflammaging | |
| LTF | Lactoferrin | Innate immune defense | Age-related inflammation | |
| SERPINA3 | Alpha-1 antichymotrypsin | Inflammation regulation | Increases with chronic inflammation | |
| B2M | Beta-2 microglobulin | Immune system component | Rises with age, linked to frailty and mortality | |
| Hormonal/Endocrine System | FSHB | Follicle-stimulating hormone subunit beta | Hormonal regulation | Reflects reproductive aging axis |
| INHBA | Inhibin subunit beta A | Hormone and growth factor | Regulates cell proliferation | |
| AGRP | Agouti-related protein | Appetite regulation | Declines with age; energy balance | |
| ECM/Connective Tissue | COL6A3 | Collagen type VI alpha 3 chain | ECM | Reflects tissue stiffness and fibrosis |
| ELN | Elastin | ECM | Declines with aging, reduced tissue elasticity | |
| MMP2 | Matrix metalloproteinase 2 | ECM remodeling | Tissue senescence and fibrosis | |
| TGFBI | Transforming growth factor beta-induced protein | ECM organization | Cellular senescence signaling |
| Abbreviation | Full Name | Meaning in Cancer Diagnosis |
|---|---|---|
| accuracy | Accuracy | Proportion of correctly classified cases (true positives + true negatives) among all samples. |
| AUC | Area Under the Receiver Operating Characteristic Curve | Overall diagnostic ability to discriminate cancer vs. non-cancer; higher AUC = better performance. |
| LoD | Limit of Detection | Lowest concentration of biomarker detectable above background, critical for early cancer detection. |
| SN/TPR | Sensitivity/True Positive Rate | Fraction of cancer cases correctly identified as positive (reduces false negatives). |
| SP/TNR | Specificity/True Negative Rate | Fraction of non-cancer cases correctly identified as negative (reduces false positives). |
| PPV | Positive Predictive Value | Probability that a positive result truly indicates cancer. |
| NPV | Negative Predictive Value | Probability that a negative result truly indicates absence of cancer. |
| Precision | Positive Predictive Accuracy | Fraction of predicted positives that are truly positive (closely related to PPV). |
| MAE | Mean Absolute Error | Regression error metric, sometimes applied in cancer risk or biological age prediction models. |
| RMSE | Root Mean Square Error | Another regression-based error metric, penalizes larger errors more heavily than MAE. |
| Biomarker Category | Representative Molecules | Sample Type | Detection Platform/Technology | Key Performance | Evidence Level |
|---|---|---|---|---|---|
| ctDNA | EGFR, KRAS, BRAF, PIK3CA, TP53 | Plasma, Serum | Digital PCR, NGS, BEAMing, ddPCR | LoD: 0.01–0.1%; SN 85–95%; SP 95–99% | FDA-approved (e.g., cobas EGFR v2) |
| CTCs | EpCAM, CK19, vimentin, HER2 | Whole Blood | Microfluidic capture, immunomagnetic separation, RT-PCR | Recovery > 80%, SP >90% | CE-IVD/FDA Class I (ClearCell® FX) |
| EVs | CD63, CD81, TSG101, Alix, HER2, PD-L1 | Plasma, Urine, Saliva | Nanoplasmonic sensors, microfluidic EV chips, electrochemical detection | LoD: 102–103 vesicles/mL; SN 90%, SP 95% | Exploratory/Clinical validation ongoing |
| cfRNA, miRNA, lncRNA | miR-21, miR-155, miR-210, HOTAIR, MALAT1 | Plasma, Serum, Urine | qRT-PCR, LAMP, NGS, NanoString | SN 80–95%; SP 85–98%; AUC 0.85–0.95 | Clinical research/ retrospective cohorts |
| Protein Biomarkers | CEA, CA15-3, CA19-9, AFP, PSA, HER2 | Plasma, Serum | ELISA, SERS, electrochemical biosensors, microfluidic immunoassay | SN 70–95%; SP 80–99%; LoD: pg–fg/mL | Multiple FDA-cleared assays |
| DNAm/Epigenetic Markers | SEPT9, SHOX2, RASSF1A, GSTP1 | Plasma, cfDNA | Methylation-specific PCR, bisulfite sequencing | SN 75–90%; SP 85–95%; AUC 0.88–0.95 | FDA-approved (Epi proColon) |
| Metabolites and Lipids | Choline, lactate, sphingomyelin | Plasma, Urine | LC–MS/MS, NMR spectroscopy, electrochemical sensors | SN 70–90%; SP 75–95% | Exploratory/ preclinical |
| Immune/Inflammatory Biomarkers | IL-6, CRP, TNF-α, YKL-40 | Plasma, Serum | Multiplex ELISA, electrochemical immunosensor | SN 80–95%; SP 85–98% | Clinical validation (Large cohort) |
| Multi-omics/Integrated Panels | ctDNA + miRNA + EV proteins | Plasma, cfDNA, EVs | Hybrid microfluidic–AI systems, SERS–electrochemical fusion | AUC > 0.95; turnaround time < 1 h | Translational/emerging POC diagnostics |
| Parameters | dPCR/ddPCR | NGS | Ref. |
|---|---|---|---|
| Detection Principle | Partition-based absolute quantification of mutant or methylated alleles | Sequencing of millions of cfDNA fragments with molecular barcodes | [483,484] |
| LoD | 0.0005~0.01% VAF (1 mutant in 104~106 copies) for KRAS mutation | ~0.1–6% Variant Allele Fraction for KRAS mutation | [485,486] |
| SN | KRAS detection: 81% Plasma HPV: 70% BRAFV600E mutation:100% | KRAS detection 65% Plasma HPV: 75% | [484,487,488] |
| SP | KRAS: 85% BRAF V600E:69.88% | KRAS: 88%, Advanced NGS:99.999% | [483,484,487] |
| Dynamic Range | 3–5 orders of magnitude | 3–8 orders of magnitude | [489,490,491,492] |
| Quantification Accuracy | Absolute quantification | Semiquantitative | [493] |
| Multiplexing Capacity | Low (≤10 targets/run) | High (>1000 targets/sample) | [488,489,493] |
| Turnaround Time | Short (~hours) (sample-to-result) | Long (~days) (library prep + sequencing) | [487,493] |
| Cost per Sample (approx.) | Low cost ($50~$300) | Less cost-effective for fewer than 20 targets ($300~$1500) | [486,494,495] |
| Instrumentation Complexity | Generally simpler equipment and straightforward data interpretation; POC feasible | extensive bioinformatics support and complex data interpretation; Laboratory-based | [493,495] |
| Clinical Applications | Minimal residual disease monitoring, targeted mutation tracking | Comprehensive mutation profiling, tumor heterogeneity analysis | [486,493,496,497] |
| Limitations | Limited multiplexing; requires prior mutation knowledge | Higher cost, longer TAT, bioinformatic complexity | [486,493] |
| Model | Type of Model | Input Features | Key Technical Approach | Overall HCC (All Stage) TPR * | Early-Stage HCC TPR | Notes |
|---|---|---|---|---|---|---|
| HES V2.0 | Machine learning regression (Generalized Estimating Equation (GEE)) | Age, ALT, platelets, etiology (viral/non-viral), AFP, AFP-L3, DCP, longitudinal changes in AFP/AFP-L3/DCP | GEE model + 10-fold cross-validation | 47.2% | 45.3% | Adds dynamic biomarker trends and clinical liver function indicators for improved SN |
| GALAD | Logistic regression | Gender, age, AFP, AFP-L3, DCP | Fixed regression equation | 41.1% | 39.8% | Widely validated; higher false-positive rate (~26% at common threshold) |
| ASAP | Logistic regression | Age, sex, AFP, DCP | Fixed regression equation | 42.4% | 40.7% | Performs better in viral cirrhosis; excludes AFP-L3 |
| AFP alone | 20 ng/mL in plasma | 38.4% | 39.8% | Baseline comparator |
| Feature | 510(k) Premarket Notification | De Novo Classification | PMA |
|---|---|---|---|
| Applicable Device Class | Class I–II (low to moderate risk) | Class I–II (novel, low-to-moderate risk without predicate) | Class III (high risk, life-supporting or sustaining) |
| Predicate Requirement | Required—substantial equivalence to a predicate device | No predicate—creates a new classification | Not applicable—new high-risk device |
| Regulatory Basis | Section 510(k) of the FD&C Act | 1997 FD&C Act Amendment (Automatic Class III Designation) | Section 515 of the FD&C Act |
| Purpose | Demonstrate substantial equivalence to an existing marketed device | Reclassify novel but low-risk devices into Class I/II | Demonstrate safety and effectiveness through valid scientific evidence |
| Evidence Requirements | Bench and analytical testing; limited human data if necessary | More data than 510(k), possibly limited clinical data | Comprehensive preclinical and clinical studies (IDE trials) |
| Regulatory Review Intensity | Moderate; performance and equivalence-based | Moderate; risk-based review of novel technology | Highest; includes clinical and manufacturing inspection |
| Regulatory Outcome | FDA Clearance | FDA Grant (new classification and product code) | FDA Approval |
| Typical Review Time | ~90 days | ~120 days | ≥180 days (often >1 year) |
| Post-market Controls | General and special controls | General and special controls | General/special controls + post-approval studies |
| Representative Devices | Glucose meter, blood pressure monitor, standard ELISA kits. | Guardant SHIELD™ (ctDNA-based early cancer detection). | FoundationOne CDx (tumor genomic profiling), Cobas EGFR Mutation Test. |
| Assay/ Platform | Analyte/ Biomarker(s) | Specimen Type | Regulatory Pathway/Region | Indication/ Context of Use | Evidence Level/ Validation Stage |
|---|---|---|---|---|---|
| Epi proColon® (Epigenomics AG) | Methylated SEPT9 gene (cfDNA) | Plasma (blood) | FDA PMA (2016, U.S.); CE-IVD (EU) | CRC screening for average-risk adults ≥ 50 years | Prospective multi-center clinical trial (N ≈ 7900); post-market surveillance |
| Cologuard® (mt-sDNA) (Exact Sciences) | Methylated NDRG4, BMP3, mutant K-ras, hemoglobin (Hb) | Stool | FDA PMA (2014, U.S.)—Class III device | Non-invasive CRC screening | Large pivotal trial > 10,000 participants; CMS-covered benefit |
| CellSearch® (Menarini Silicon Biosystems) | CTC (EpCAM+/CK+/DAPI+/CD45−) | Whole blood | FDA 510(k) clearance (2004); CE-IVD | Prognosis and therapy monitoring in metastatic breast, prostate, CRC | Multicenter prospective validation; CLIA-certified deployment |
| FoundationOne CDx (Foundation Medicine Inc.) | 300+ gene NGS panel—somatic mutations, CNAs, MSI, TMB | FFPE tissue | FDA PMA (2017, U.S.); EMA CE-IVD | Comprehensive genomic profiling/companion diagnostic for targeted therapies | Clinical bridging to multiple drug labels (≥30 oncology indications) |
| Guardant360 CDx (Guardant Health Inc.) | cfDNA mutations (>70 genes including EGFR, KRAS) | Plasma | FDA PMA (2020, U.S.)—liquid biopsy NGS panel | Genomic profiling for advanced solid tumors/therapy selection | Prospective and retrospective studies (N ≈ 5000); analytical cross-validation vs. tissue |
| Lumipulse G β-Amyloid 1-42/1-40 (Fujirebio) | Aβ1-42/Aβ1-40 ratio in CSF | CSF | FDA De Novo (2022, U.S.); CE-IVD | Aid in diagnosis of AD | Clinical performance ≥94% AUC vs. PET; multi-center validation |
| Lumipulse G p-tau217/Aβ1-42 (plasma) (Fujirebio) | Phosphorylated tau 217 and Aβ1-42 | Plasma | FDA 510(k) clearance (May 2025, U.S.) | Blood-based aid to diagnose AD in symptomatic adults | Prospective cohort (N ≈ 1200); bridging to CSF/PET standards |
| Grail Galleri™ (MCED) | cfDNA methylation patterns (>100,000 CpG sites) | Plasma | CLIA LDT (2021, U.S.); FDA IDE trial ongoing | Multi-cancer early detection (screening) | Large case–control (>15,000)/PATHFINDER prospective study (NCT04241796) |
| Olink Explore 3072 Proteomics | 3072 proteins (panel) | Plasma/ Serum | Research-use-only (RUO); under clinical validation | Aging and multi-disease risk stratification (‘Inflammaging’) | Longitudinal population cohorts (SCANDAT, UK Biobank); pre-regulatory stage |
| Previous Approach | Improved Technology | Key Advancements | Impact | Ref. |
|---|---|---|---|---|
| Conventional imaging (mammography, CT, MRI, PET) interpreted manually by radiologists | AI-augmented imaging using CNN and LSTM | Automatically extracts hierarchical image features; reduced subjectivity and fatigue-related errors | Higher diagnostic accuracy and efficiency; enables early detection of subtle lesions missed by humans | [553,554,555,569,585,592,683] |
| Single-biomarker tests (e.g., protein-based tumor markers) | Liquid biopsy using ctDNA, CTCs, EVs | Detects multiple tumor-derived analytes in blood ono-invasively | Enables earlier, minimally invasive cancer detection and real-time treatment monitoring | [409,464,465] |
| Tissue biopsy for molecular profiling | Multi-omics integration (genomics, proteomics, metabolomics) with AI | Combines large-scale molecular datasets; distinguishes normal aging vs. pathology | Improves precision of diagnosis and risk stratification in both cancer and aging | [546,599,601,602] |
| Manual feature engineering in ML models | Automated feature extraction using DL | Learns complex, high-dimensional patterns from data (images, genomics) | Eliminates bias from manual selection; boosts accuracy and scalability | [612,677,714] |
| Chronological age-based risk assessment | BAG models from MRI | Estimates biological brain age to detect accelerated aging and cognitive decline risk | Allows earlier intervention before clinical symptoms appear | [258] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ki, M.-R.; Kim, D.H.; Abdelhamid, M.A.A.; Pack, S.P. Cancer and Aging Biomarkers: Classification, Early Detection Technologies and Emerging Research Trends. Biosensors 2025, 15, 737. https://doi.org/10.3390/bios15110737
Ki M-R, Kim DH, Abdelhamid MAA, Pack SP. Cancer and Aging Biomarkers: Classification, Early Detection Technologies and Emerging Research Trends. Biosensors. 2025; 15(11):737. https://doi.org/10.3390/bios15110737
Chicago/Turabian StyleKi, Mi-Ran, Dong Hyun Kim, Mohamed A. A. Abdelhamid, and Seung Pil Pack. 2025. "Cancer and Aging Biomarkers: Classification, Early Detection Technologies and Emerging Research Trends" Biosensors 15, no. 11: 737. https://doi.org/10.3390/bios15110737
APA StyleKi, M.-R., Kim, D. H., Abdelhamid, M. A. A., & Pack, S. P. (2025). Cancer and Aging Biomarkers: Classification, Early Detection Technologies and Emerging Research Trends. Biosensors, 15(11), 737. https://doi.org/10.3390/bios15110737

