Recent Progress in Biosensors for Depression Monitoring—Advancing Personalized Treatment
Abstract
:1. Introduction
1.1. Depression
1.2. Personalized Treatment and Biosensing
1.3. Summary
2. Biochemical Sensing
2.1. Hormone Sensing
2.1.1. Cortisol Sensing
2.1.2. Thyroid Hormone Sensing
2.1.3. Sex Hormone Sensing
2.1.4. Melatonin Sensing
2.1.5. Partial Summary in Hormone Sensing
2.2. Cytokine Sensing
2.2.1. Interleukin Sensing
2.2.2. Tumor Necrosis Factor Sensing
2.3. C-Reactive Protein Sensing
2.4. Neurotrophic Factor Sensing
2.5. Partial Summary in Biochemical Sensing
2.6. Neurotransmitter Sensing
2.6.1. Serotonin Sensing
2.6.2. Dopamine Sensing
Type | Method | Probes/Substrates | LOD | Sensing Range | Ref. |
---|---|---|---|---|---|
Electrochemical | Modified electrodes | Ga2O3⋅ZnO@SWCNT/GCE | 0.052 μM | 1.0–2056 μM | [173] |
MoO3/GS | 2.71 nM | 1–10 nM | [172] | ||
PTGCE/GCE | 0.64 μM | 0.70–19.48 μM | [164] | ||
2D CoTe2/GCE | 0.21 pM | / | [180] | ||
TM-CNT600/GCE | 1.42 μM | 10.7–24.2 μM | [174] | ||
ITO/glass substrate + CuO/CuO2 | 0.388 μM | 0–20μM | [192] | ||
CuAl-LDH/GCE | 0.33 μM | 4.194–1151.54 μM | [166] | ||
HA/CM/MWCNTs/GCE | 0.009 μM | 50–200 μM | [175] | ||
AgNP/CNF−Fe3O4NP/GCE | 0.18 μM | 0.2–550μM | [176] | ||
MIP | TiO2 NPs/GCE | 0.281μM | 1–10μM | [181] | |
Microneedles | Fe3O4-GO/CP | 90 nM | / | [170] | |
Composite materials | PdNPs/4AP N-GQDS | 21 pM | 250 pM–10 nM | [177] | |
NiSe2@CNT | / | 5 nM–640 μM | [171] | ||
Pt NWs/MXene/porous carbon | 28 nM | 0.1–200.0 μM | [179] | ||
BC@Cu-BTC | 1.572 μM | 1–100 μM | [168] | ||
Nanofilms | HfO2-200/Si | 0.4 pM | 0–1000 pM | [165] | |
Nanorods | CoP3/Cu3P NRs/CF | 0.51 mM | 0.2–2000 mM | [167] | |
Hollow Nanospheres | ZnO-CeO2 | 0.39 μM | 5–800 μM | [169] | |
Aptamer electrodes | Aptamer/CFE | 88 nM | 0.2–20 μM | [193] | |
Optical | LSPR | Laccase | 0.1 ng/mL | 0.01–189 μg/mL | [182] |
SMS optical fiber | / | 400 nM–50 μM | [184] | ||
Multimode fiber/gold film/CuO NPs | 1.43 nm | 1.11 nM–50 nM | [185] | ||
Surface-enhanced Raman Scattering (SERS) | CeO2@TiO2 nanocomposite terminated glass substrate/polyethylene glycol/AuNPs/AgNPs | 0.01 pM | 1 pM–1 M | [183] | |
Fluorescent | OPA | 0.015 µM | 0.5–3 µM | [186] | |
Cu NCs/PVP/L-AA | 1.32 μM | 5–200 μM | [187] | ||
liquid crystal | DBA/Glutaraldehyde/DMOAP | 10 pM | 1 pM-10 μM | [188] | |
5CB/3NPBA/DSP-GNP | 0.3 μM | 0.1–1.0 μM | [189] | ||
5CB/CTAB | 2.51 pM | 10 pM-1 μM | [190] |
2.6.3. Acetylcholine Sensing
2.6.4. Partial Summary in Neurotransmitter Sensing
2.7. Remaining Markers
2.8. Summary in Biochemical Sensing
Progress | Marker | Type | Probes/Substrates | LOD | Sensing Range | Ref. |
---|---|---|---|---|---|---|
Wearable sticker | Cortisol | Electrochemical | Antibodies + extended-gate AlGaN/GaN high electron mobility transistor (HEMT) + sapphire substrate | 100 fM | 1 nM–100 μM | [32] |
Smartphone | Cortisol | Fluorescent | Rhodamine | ~nm | 1 mM–1 pM | |
Microneedle patch | Cortisol | Fluorescent | Europium metal−organic frameworks (Eu-MOF) | 1 nM | 0.1 μM–1 mM | |
Mobile phone/smart watch | Cortisol | Electrochemical | MIP/CNT + fabric sensing system (FSS) | 1 pM | 1 pM–10 μM | [178] |
Naked eye | Thyroxine | LSPR | Gold triangular nanoplates (AuTNPs) | 200 nM | 0.02–5 μM | [49] |
Smartphone + miniaturized potentiostat (M-P) | Testosterone | Electrochemical | PoPD-MIPs/SPCE | 1 ng/dL | 1–25 ng/dL | [64] |
Portable test swabs + naked eye | Melatonin | Colorimetric/luminescence | Fe/Zn/Ir TAzyme | Ccolorimetric: 8.9 nM luminescence: 8.8 nM | 0.01–500 μM | [222] |
Smartphone | Melatonin | Fluorescent | Blue-emissive carbon dots (BCDs)/C3N4 nanosheets loaded with platinum/ruthenium nanoparticles (PtRu/CN)/OPD/H2O2 | 23.56 nM | 0.06–600 μM | [48] |
Band-aids | Melatonin | Electrochemical | Zn-MOF-Nb2CTx Mxene/carbon yarn (CY) | 215 nM | 1–100 μM | [74] |
Smartphone | Melatonin | Fluorescent | 3,6-Diaminocarbazole (DAC) | 1.46 µM | 0–78 μM | [75] |
Smartphone + NFC microchip | CRP | Electrochemical | Anti-CRP Nanobodies/Screenprinted graphene electrodes (SPGE) | 1.18 ng/mL | 0.01–100 μg/mL | |
Wearable devices | IL-6 | Electrochemical | LIG/G-PANI electrodes | 2.6234 pg/mL | 0.002–20 pg/mL | [96] |
Dopamine | LIG/G-PEDOT:PSS electrodes | 0.567 μM | 0.5–5 μM | |||
LIG/G-PANI electrodes | 0.4084 μM | 0.5–5 μM | ||||
Portable devices | Dopamine | Electrochemical | Graphene conductive polymer paper-based sensor (GCPPS) | 3.4 µM | 12.5–400 µM | [223] |
TNF-α | 5.97 pg/mL | 0.005–50 ng/mL | ||||
IL-6 | 9.55 pg/mL | 2 pg/mL–2 µg/mL | ||||
Miniaturized portable devices | IL-6 | Electrochemical | Boron nitride nanosheet/gold nanoparticle (BNNS/AuNP)/SPCE + anti-IL-6 | 5 pg/mL | 0.01–200 ng/mL | [97] |
Integrated portable devices | IL-6 | Photoelectrochemical | AuNPs@ dsDNA/CS/CdS QDs/ZnO NSs@OF (ADCCZ@OF) | 0.19 pg/mL | 1–100 pg/mL | [103] |
Wearable biosensor | Serotonin | Electrochemical | Graphite sheet/graphite ink (GI)/multi-walled carbon nanotube (MWCNT) | 45 nM | 100–900 nM | [150] |
Portable biosensor | Serotonin | Electrochemical | AgNPs-rGO/SPCE | 5.25 μM | 10–200 μM | [149] |
Dopamine | 4.36 μM | 10–200 μM | ||||
Serotonin & dopamine simultaneously | serotonin: 7 μM dopamine: 7.41 μM | 10–100 μM | ||||
Smartphone + portable biosensor | Serotonin | Fluorescent | 5-HT aptamer/ThT | 19 nM | 0.4–2 μM | [156] |
Portable biosensor | Dopamine | Electrochemical | Paper-based 2D CoTe2/GCE | 0.22 pM | / | [180] |
Wearable microneedle-based electrochemical sensor | Dopamine | Electrochemical | Fe3O4-GO/chi/carbon paste-filled hollow microneedles | 90 nM | 3–32 μM | [170] |
Detectable Biomarkers | Detection Method | LOD | Sensing Range | Ref. |
---|---|---|---|---|
Tyr; D-Tyr | GQDs and β-CDs modified GCE | 6.07 nM and 103 nM | \ | [224] |
Serotonin; Dopamine | GO and 5,15-pentafluorophenyl-10,20-p-aminophenylporphyrin | 3.5 × 10−2 μM and 4.9 × 10−3 μM | \ | [225] |
Serotonin; Dopamine | Electrografting-assisted site-selective functionalization of aptamers on graphene field-effect transistors (G-FETs) | 10 pM (Dopamine) | 10 pM–100 μM | [226] |
Serotonin; Dopamine and AA | Graphene and poly 4-amino-3-hydroxy-1-naphthalenesulphonic acid deposited on the surface of carbon-based SPE | 2.4 nM, 2.8 nM and 160 nM | 0.01–150 μM, 0.01–120 μM and 0.5–100 μM | [227] |
Dopamine, epinephrine and serotonin | A film electrode entirely composed of oppositely charged carbon nanoparticles | 0.4 mM, 1.0 mM and 0.8 mM | 0.4–350 mM, 1–49 mM and 0.8–100 mM | [228] |
All nine essential AAs as well as vitamins, metabolites and lipids commonly found in human sweat | Two carbachol-loaded iontophoresis electrodes, a multi-inlet microfluidic module, a multiplexed MIP nutrient sensor array, a temperature sensor and an electrolyte sensor | 702 nA mm−2 per decade of concentration | \ | [229] |
glucose, lactate, uric acid, sodium ions, potassium ions and ammonium | Carbachol hydrogel-loaded sweat-stimulation electrodes, three enzymatic biosensors, three ion-selective sensors (ISEs) | 98.7% classification rate | \ | [230] |
3. Wearable Physiological Signal Sensing
3.1. Heartbeat Monitoring
3.2. Limb Movement Sensing
3.3. Bioelectrical Sensing
3.4. Sleep and Circadian Monitoring
3.5. Daily Behavioral Monitoring
3.6. Integrated Wearable System
Sensors | Output | Indicators | Feature | Ref. |
---|---|---|---|---|
EOG sensor, ECG sensor. GSR sensor, breathing sensor | stress levels | 97% classification rate | heart rate and skin conductance signals are most closely related to driver stress | [306] |
ECG sensor, breathing sensor, skin conductance, and surface EMG sensor | stress levels | 74.5% classification rate | Use a variety of pressure sources | [307] |
total steps, calorie consumption, average heart rate, and activity time | stress levels and emotional recognition | AUROC over 0.717 | The system confirmed the feasibility of monitoring mental disorders using commercial wearable devices in large populations. | [315] |
EDA, heart rate, temperature, and accelerometers | stress levels and emotional recognition | 83.5% classification rate | combined with a backend IoT platform | [296] |
temperature, blood pressure, heart rate, GSR | Correlation with salivary cortisol levels | \ | LF/HF ratio of HRV and skin temperature may be good indices for the assessment of life stress | [317] |
ECG sensor, EMG sensor, GSR sensor | driving stress levels | 85.3% classification rate | build a model that can identify drivers’ stress accurately in real time | [311] |
HRV sensor, GSR sensor, temperature sensor | Changes in physiological signals before and after experiment | \ | GSR can be used as a pressure marker | [318] |
GSR, heart rate | stress levels | 99.5% classification rate | Psychological stress can be monitored using only two physiological signals | [319] |
GSR, HRV, respiration rate | stress levels in talk | \ | partners were more stressed when speaking with friends than to one another about relationship challenges | [320] |
EEG, GSR, respiration rate | stress levels in VR | 85% classification rate | VR video games can alleviate stress. | [321] |
ECG, EMG, HRV, GSR, temperature | depression levels | 93.5% classification rate | Multi-mode signal helps improve the recognition accuracy | [322] |
EEG, HRV, GSR, eye tracking data | mental fatigue and stress | \ | Assessment of mental fatigue and stress on electronic sports players with data fusion | [323] |
heart rate and its variability (HRV), pulse arrival time, GSR, blood oxygenation level (SpO2), respiratory rate | sympathetic nervous system activities | \ | A novel wearable biomedical device enabling the synchronous acquisition of PPG, ECG, GSR, and motion signals directly on the fingers | [324] |
GSR, HRV | stress levels in workspaces | 92.5% classification rate | Local maxima and minima (LMM) from HRV and GSR sensors can improve the detection performance | [325] |
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Kessler, R.C. The effects of stressful life events on depression. Annu. Rev. Psychol. 1997, 48, 191–214. [Google Scholar] [CrossRef]
- Thapar, A.; Eyre, O.; Patel, V.; Brent, D. Depression in young people. Lancet 2022, 400, 617–631. [Google Scholar] [CrossRef]
- Pridmore, S.; Auchincloss, S. Preventing suicide: A global imperative. Australas. Psychiatry 2015, 23, 81–82. [Google Scholar] [CrossRef]
- Bertolote, J.M.; Fleischmann, A. A global perspective in the epidemiology of suicide. Suicidology 2002, 7, 6–8. [Google Scholar] [CrossRef]
- Zhdanava, M.; Pilon, D.; Ghelerter, I.; Chow, W.; Joshi, K.; Lefebvre, P.; Sheehan, J.J. The Prevalence and National Burden of Treatment-Resistant Depression and Major Depressive Disorder in the United States. J. Clin. Psychiatry 2021, 82, 29169. [Google Scholar] [CrossRef] [PubMed]
- Cenat, J.M.; Blais-Rochette, C.; Kokou-Kpolou, C.K.; Noorishad, P.-G.; Mukunzi, J.N.; McIntee, S.E.; Dalexis, R.D.; Goulet, M.-A.; Labelle, P.R. Prevalence of symptoms of depression, anxiety, insomnia, posttraumatic stress disorder, and psychological distress among populations affected by the COVID-19 pandemic: A systematic review and meta-analysis. Psychiatry Res. 2021, 295, 113599. [Google Scholar] [CrossRef] [PubMed]
- Herrman, H.; Patel, V.; Kieling, C.; Berk, M.; Buchweitz, C.; Cuijpers, P.; Furukawa, T.A.; Kessler, R.C.; Kohrt, B.A.; Maj, M.; et al. Time for united action on depression: A Lancet–World Psychiatric Association Commission. Lancet 2022, 399, 957–1022. [Google Scholar] [CrossRef] [PubMed]
- Santomauro, D.F.; Mantilla Herrera, A.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic epidemiology of major depression: Review and meta-analysis. Am. J. Psychiatry 2000, 157, 1552–1562. [Google Scholar] [CrossRef]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, Obesity, and Depression A Systematic Review and Meta-analysis of Longitudinal Studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Shuai, H.; Cai, Z.; Fu, X.; Liu, Y.; Xiao, X.; Zhang, W.; Krabbendam, E.; Liu, S.; et al. Mapping global prevalence of depression among postpartum women. Transl. Psychiatry 2021, 11, 543. [Google Scholar] [CrossRef]
- Baglioni, C.; Battagliese, G.; Feige, B.; Spiegelhalder, K.; Nissen, C.; Voderholzer, U.; Lombardo, C.; Riemann, D. Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies. J. Affect. Disord. 2011, 135, 10–19. [Google Scholar] [CrossRef]
- Avogaro, A. Diabetes and obesity: The role of stress in the development of cancer. Endocrine 2024, 84, 1–10. [Google Scholar] [CrossRef]
- Cohen, Z.D.; DeRubeis, R.J. Treatment Selection in Depression. Annu. Rev. Clin. Psychol. 2018, 14, 209–236. [Google Scholar] [CrossRef]
- Bjelland, I.; Dahl, A.A.; Haug, T.T.; Neckelmann, D. The validity of the Hospital Anxiety and Depression Scale—An updated literature review. J. Psychosom. Res. 2002, 52, 69–77. [Google Scholar] [CrossRef]
- Fournier, J.C.; DeRubeis, R.J.; Hollon, S.D.; Dimidjian, S.; Amsterdam, J.D.; Shelton, R.C.; Fawcett, J. Antidepressant Drug Effects and Depression Severity A Patient-Level Meta-analysis. JAMA-J. Am. Med. Assoc. 2010, 303, 47–53. [Google Scholar] [CrossRef]
- Chekroud, A.M.; Zotti, R.J.; Shehzad, Z.; Gueorguieva, R.; Johnson, M.K.; Trivedi, M.H.; Cannon, T.D.; Krystal, J.H.; Corlett, P.R. Cross-trial prediction of treatment outcome in depression: A machine learning approach. Lancet Psychiatry 2016, 3, 243–250. [Google Scholar] [CrossRef]
- Karyotaki, E.; Efthimiou, O.; Miguel, C.; Bermpohl, F.M.g.; Furukawa, T.A.; Cuijpers, P.; Individual Patient Data, M.-A. Internet-Based Cognitive Behavioral Therapy for Depression A Systematic Review and Individual Patient Data Network Meta-analysis. JAMA Psychiatry 2021, 78, 361–371. [Google Scholar] [CrossRef]
- Haroz, E.E.; Ritchey, M.; Bass, J.K.; Kohrt, B.A.; Augustinavicius, J.; Michalopoulos, L.; Burkey, M.D.; Bolton, P. How is depression experienced around the world? A systematic review of qualitative literature. Soc. Sci. Med. 2017, 183, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Calhoun, V.D.; Sui, J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neurosci. Ther. 2018, 24, 1037–1052. [Google Scholar] [CrossRef]
- Raison, C.L.; Capuron, L.; Miller, A.H. Cytokines sing the blues: Inflammation and the pathogenesis of depression. Trends Immunol. 2006, 27, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000, 23, 477–501. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.; Young, A.H. Antidepressant Effects of Hydrocortisone. Am. J. Psychiatry 2001, 158, 1536–1537. [Google Scholar] [CrossRef]
- Steckler, T.; Holsboer, F.; Reul, J.M.H.M. Glucocorticoids and depression. Best Pract. Res. Clin. Endocrinol. Metab. 1999, 13, 597–614. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.E.; Wyngaarden, J.B.; Guerra, S.L.; Brodie, B.B.; Bunim, J.J. The Physiological Disposition and Metabolic Fate of Hydrocortisone in Man. J. Clin. Investig. 1955, 34, 1779–1794. [Google Scholar] [CrossRef]
- Delahanty, D.L.; Gabert-Quillen, C.; Ostrowski, S.A.; Nugent, N.R.; Fischer, B.; Morris, A.; Pitman, R.K.; Bon, J.; Fallon, W. The efficacy of initial hydrocortisone administration at preventing posttraumatic distress in adult trauma patients: A randomized trial. CNS Spectr. 2013, 18, 103–111. [Google Scholar] [CrossRef]
- DeBattista, C.; Posener, J.A.; Kalehzan, B.M.; Schatzberg, A.F. Acute Antidepressant Effects of Intravenous Hydrocortisone and CRH in Depressed Patients: A Double-Blind, Placebo-Controlled Study. Am. J. Psychiatry 2000, 157, 1334–1337. [Google Scholar] [CrossRef]
- O’Dwyer, A.M.; Lightman, S.L.; Marks, M.N.; Checkley, S.A. Treatment of Major Depression with metyrapone and hydrocortisone. J. Affect. Disord. 1995, 33, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Krekeler, C.; Kropp, P.; Blacha, A.K.; Rahvar, A.-H.; Harbeck, B. Dual-release hydrocortisone and its benefits on cognitive function and quality of sleep. Endocrine 2021, 72, 223–233. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Li, C.M.; Huang, C.R. A facile electrochemical cortisol sensing based on zinc oxide nanostructures for monitoring stress and recovery in high-performance athletes. Alex. Eng. J. 2024, 88, 145–154. [Google Scholar] [CrossRef]
- Sharma, A.; Wulff, A.; Thomas, A.; Sonkusale, S. Ultrasensitive electrochemical sensor for detection of salivary cortisol in stress conditions. Microchim. Acta 2024, 191, 103. [Google Scholar] [CrossRef]
- Xu, B.; Chang, H.; Yang, G.; Xu, Z.; Li, J.; Gu, Z.; Li, J. An integrated wearable sticker based on extended-gate AlGaN/GaN high electron mobility transistors for real-time cortisol detection in human sweat. Analyst 2024, 149, 958–967. [Google Scholar] [CrossRef]
- Lv, T.; Chen, T.; Zhu, Z.; Haotian, R.; Luo, A.; Liang, A. Application of Oriented Molecular Imprinting Biosensors in Biomarker Detection. J. Anal. Test. 2024, 8, 1–16. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.X.; Yin, M.H.; Rui, B.; Liu, T.Z.; Song, W.; Sun, L.; Li, S.M.; Wang, J.; Han, M.D.; Gou, G.Y.; et al. A novel molecularly imprinted polymer sensor for sweat cortisol with embedded probe based on the co-deposition of Prussian Blue and Polypyrrole. Sens. Actuators Rep. 2024, 8, 100217. [Google Scholar] [CrossRef]
- Liu, K.; Wang, H.; Zhu, F.; Chang, Z.; Du, R.; Deng, Y.; Qi, X. Lab on the Microneedles: A Wearable Metal–organic Frameworks-Based Sensor for Visual Monitoring of Stress Hormone. ACS Nano 2024, 18, 14207–14217. [Google Scholar] [CrossRef]
- Pei, S.Y.; Ji, W.H.; Yang, Y.; Liu, T.W.; Yang, S.; Wu, J.Y.; Dai, J.X.; Hou, X.Y.; Wu, Q.; Li, L. Flexible Dual-Channel Molecularly Imprinted Electrochemical Sensor for Simultaneously Monitoring Sweat Cortisol and Lactate Levels. Anal. Sens. 2024, 4, e202400003. [Google Scholar] [CrossRef]
- Pacheco, J.G.; Rebelo, P.; Cagide, F.; Gonçalves, L.M.; Borges, F.; Rodrigues, J.A.; Delerue-Matos, C. Electrochemical sensing of the thyroid hormone thyronamine (T0AM) via molecular imprinted polymers (MIPs). Talanta 2019, 194, 689–696. [Google Scholar] [CrossRef]
- Mani, A.; Anirudhan, T.S. Electrochemical sensing of cortisol by gold nanoparticle incorporated carboxylated graphene oxide based molecularly imprinted polymer. Chem. Eng. J. 2024, 493, 152654. [Google Scholar] [CrossRef]
- Philip, A.; Kumar, A.R. The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: A review. Coord. Chem. Rev. 2022, 458, 214424. [Google Scholar] [CrossRef]
- Capelli, D.; Scognamiglio, V.; Montanari, R. Surface plasmon resonance technology: Recent advances, applications and experimental cases. TrAC Trends Anal. Chem. 2023, 163, 117079. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, L.; Liu, X.; Tan, G.; Yuan, F.; Nezamzadeh-Ejhieh, A.; Qi, N.; Liu, J.; Peng, Y. Fluorescence detection platform of metal-organic frameworks for biomarkers. Colloids Surf. B Biointerfaces 2023, 229, 113455. [Google Scholar] [CrossRef]
- The Huy, B.; Thangadurai, D.T.; Sharipov, M.; Ngoc Nghia, N.; Van Cuong, N.; Lee, Y.-I. Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis—A mechanistic approach. Microchem. J. 2022, 179, 107511. [Google Scholar] [CrossRef]
- Shen, X.; Xu, W.; Ouyang, J.; Na, N. Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems. Chin. Chem. Lett. 2022, 33, 4505–4516. [Google Scholar] [CrossRef]
- Liu, X.C.; Soares, S.; Silva, L.; Fernandes, A.J.; Singh, R.; Zhang, B.Y.; Kumar, S.; Marques, C. SFFO Cortisol Biosensor: Highly Sensitive S-Flex Fiber Optic Plasmonic Biosensor for Label-Free Cortisol Detection. IEEE Sens. J. 2024, 24, 1494–1501. [Google Scholar] [CrossRef]
- Lin, X.; Yi, Q.; Qing, B.; Lan, W.; Jiang, F.; Lai, Z.; Huang, J.; Liu, Q.; Jiang, J.; Wang, M.; et al. Two Fluorescent Probes for Recognition of Acetylcholinesterase: Design, Synthesis, and Comparative Evaluation. Molecules 2024, 29, 1961. [Google Scholar] [CrossRef]
- Santonocito, R.; Cavallaro, A.; Puglisi, R.; Pappalardo, A.; Tuccitto, N.; Petroselli, M.; Trusso Sfrazzetto, G. Smartphone-Based Sensing of Cortisol by Functionalized Rhodamine Probes. Chem. Eur. J. 2024, 30, e202401201. [Google Scholar] [CrossRef]
- Wang, M.; Luo, X.; Jiang, M.; Zhang, L.; Zhou, Q.; Wu, C.; He, Y. Ratio-fluorescence sensor based on carbon dots and PtRu/CN nanozyme for efficient detection of melatonin in tablet. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 321, 124699. [Google Scholar] [CrossRef]
- Ren, H.; Li, T.; Ling, R.; Bi, J.; Zhang, C.; Wu, Z.; Qin, W. Rational Calibration Strategy for Accurate and Sensitive Colorimetric Detection of Iodide and l-Thyroxine Based on Gold Triangular Nanoplates. ACS Sustain. Chem. Eng. 2019, 7, 15230–15237. [Google Scholar] [CrossRef]
- Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef]
- Yen, P.M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 2001, 81, 1097–1142. [Google Scholar] [CrossRef] [PubMed]
- Joffe, R.T.; Sokolov, S.T.; Singer, W. Thyroid hormone treatment of depression. Thyroid 1995, 5, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Henley, W.N.; Koehnle, T.J. Thyroid hormones and the treatment of depression: An examination of basic hormonal actions in the mature mammalian brain. Synapse 1997, 27, 36–44. [Google Scholar] [CrossRef]
- Cooper, R.; Lerer, B. The use of thyroid hormones in the treatment of depression. Harefuah 2010, 149, 529–534, 549, 550. [Google Scholar] [PubMed]
- Kalra, S.; Balhara, Y.P. Euthyroid depression: The role of thyroid hormone. Recent Pat. Endocr. Metab. Immune Drug Discov. 2014, 8, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Mradula; Raj, R.; Mishra, S. Voltammetric immunosensor for selective thyroxine detection using Cu-MOF@PANI composite. Electrochem. Sci. Adv. 2021, 2, e2100051. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, J.; Yim, G.; Jang, H.; Lee, Y.; Kim, S.M.; Park, C.; Lee, M.-H.; Lee, T. Fabrication of electrochemical biosensor composed of multi-functional DNA/rhodium nanoplate heterolayer for thyroxine detection in clinical sample. Colloids Surf. B Biointerfaces 2020, 195, 111240. [Google Scholar] [CrossRef]
- Singh, D.; Roy, S.; Mahindroo, N.; Mathur, A. Design and development of an electroanalytical sensor based on molecularly imprinted polyaniline for the detection of thyroxine. J. Appl. Electrochem. 2024, 54, 147–161. [Google Scholar] [CrossRef]
- Borah, N.; Kalita, A.J.; Guha, A.k.; Das, M.R.; Tamuly, C. Dual colorimetric sensing of ascorbic acid and thyroxine using Ag–EGCG–CTAB via a DFT approach. RSC Adv. 2021, 11, 36698–36706. [Google Scholar] [CrossRef]
- Mahmoud, R.; Wainwright, S.R.; Galea, L.A. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms. Front. Neuroendocr. 2016, 41, 129–152. [Google Scholar] [CrossRef]
- Chan, C.B.; Ye, K. Sex differences in brain-derived neurotrophic factor signaling and functions. J. Neurosci. Res. 2017, 95, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Mir, F.R.; Rivarola, M.A. Sex Differences in Anxiety and Depression: What Can (and Cannot) Preclinical Studies Tell Us? Sexes 2022, 3, 141–163. [Google Scholar] [CrossRef]
- Velayutham, J.; Hansda, S.; Sethy, N.K.; Vashist, A.; Manickam, P. DNA Aptamer Integrated Hydrogel Nanocomposites on Screen Printed Gold Electrodes for Point-of-Care Detection of Testosterone in Human Serum. Chembiochem Eur. J. Chem. Biol. 2024, e202400294. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Almirola, J.; Gage, A.; Lopez, R.; Yapell, D.; Mujawar, M.; Kamat, V.; Kaushik, A. Label and bio-active free electrochemical detection of testosterone hormone using MIP-based sensing platform. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2023, 296, 116670. [Google Scholar] [CrossRef]
- Tortolini, C.; Gigli, V.; Angeloni, A.; Isidori, A.; Antiochia, R. Simple and sensitive voltammetric sensor for in-situ clinical and environmental 17-β-estradiol monitoring. Electroanalysis 2024, 36, e202300417. [Google Scholar] [CrossRef]
- Cao, J.; Chen, X.Y. Stable and reproducible MIP-ECL sensors for ultra-sensitive and accurate quantitative detection of Estrone. Front. Bioeng. Biotechnol. 2024, 12, 1329129. [Google Scholar] [CrossRef]
- Reiter, R.J. The melatonin rhythm: Both a clock and a calendar. Experientia 1993, 49, 654–664. [Google Scholar] [CrossRef]
- Claustrat, B.; Brun, J.; Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 2005, 9, 11–24. [Google Scholar] [CrossRef]
- Dahl, K.; Avery, D.H.; Lewy, A.J.; Savage, M.V.; Brengelmann, G.L.; Larsen, L.H.; Vitiello, M.V.; Prinz, P.N. Dim light melatonin onset and circadian temperature during a constant routine in hypersomnic winter depression. Acta Psychiatr. Scand. 1993, 88, 60–66. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Srinivasan, V.; Brzezinski, A.; Brown, G.M. Melatonin and its analogs in insomnia and depression. J. Pineal Res. 2012, 52, 365–375. [Google Scholar] [CrossRef]
- Valdes-Tovar, M.; Estrada-Reyes, R.; Solis-Chagoyan, H.; Argueta, J.; Dorantes-Barron, A.M.; Quero-Chavez, D.; Cruz-Garduno, R.; Cercos, M.G.; Trueta, C.; Oikawa-Sala, J.; et al. Circadian modulation of neuroplasticity by melatonin: A target in the treatment of depression. Br. J. Pharmacol. 2018, 175, 3200–3208. [Google Scholar] [CrossRef] [PubMed]
- Hickie, I.B.; Rogers, N.L. Novel melatonin-based therapies: Potential advances in the treatment of major depression. Lancet 2011, 378, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Singh, J.; Pandi-Perumal, S.R.; Brown, G.M.; Spence, D.W.; Cardinali, D.P. Jet lag, circadian rhythm sleep disturbances, and depression: The role of melatonin and its analogs. Adv. Ther. 2010, 27, 796–813. [Google Scholar] [CrossRef]
- Richard, B.; Niyas, K.; Ankitha, M.; Rasheed, P.A. Biological Metal-Organic Framework-Embedded MXene Nanocomposite as a Wearable Transducer Patch for Real-Time Monitoring of the Sleep Hormone. ACS Appl. Nano Mater. 2024, 7, 9585–9597. [Google Scholar] [CrossRef]
- Kumar, H.; Obrai, S. Ratiometric fluorescent sensing of melatonin based on inner filter effect and smartphone established detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 304, 123309. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.L.; Chen, H.Y.; Poddar, M.; Lu, Y.J. Decoupling photonic and thermal contributions for photoelectrochemical sensing of melatonin via graphene oxide nanoribbons. Electrochem. Commun. 2024, 159, 107649. [Google Scholar] [CrossRef]
- Arai, K.I.; Lee, F.; Miyajima, A.; Miyatake, S.; Arai, N.; Yokota, T. Cytokines: Coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 1990, 59, 783–836. [Google Scholar] [CrossRef]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctot, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of Depression With C-Reactive Protein, IL-1, and IL-6: A Meta-Analysis. Psychosom. Med. 2009, 71, 171–186. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood 1996, 87, 2095–2147. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, P.C.; Castell, J.V.; Andus, T. Interleukin-6 and the acute phase response. Biochem. J. 1990, 265, 621–636. [Google Scholar] [CrossRef]
- Stein, M.; Keshav, S.; Harris, N.; Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J. Exp. Med. 1992, 176, 287–292. [Google Scholar] [CrossRef]
- Zheng, Y.; Valdez, P.A.; Danilenko, D.M.; Hu, Y.; Sa, S.M.; Gong, Q.; Abbas, A.R.; Modrusan, Z.; Ghilardi, N.; de Sauvage, F.J.; et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 2008, 14, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zou, S.; Yue, Y.; Fang, X.; Wu, Y.; Wu, S.; Wang, H.; Li, Z.; Zhao, X.; Yin, M.; et al. Peripheral Interleukin-18 is negatively correlated with abnormal brain activity in patients with depression: A resting-state fMRI study. BMC Psychiatry 2022, 22, 531. [Google Scholar] [CrossRef]
- Toft, H.; Bramness, J.G.; Lien, L. Levels of Peripheral Circulating IL-6 and IL-10 Decrease Over Time Despite High Depression Burden in PTSD Patients. Neuropsychiatr. Dis. Treat. 2022, 18, 737–747. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, F.; Li, P.; Song, C. Low-Dose IL-2 Attenuated Depression-like Behaviors and Pathological Changes through Restoring the Balances between IL-6 and TGF-β and between Th17 and Treg in a Chronic Stress-Induced Mouse Model of Depression. Int. J. Mol. Sci. 2022, 23, 13856. [Google Scholar] [CrossRef]
- Smaniotto, T.Â.; Casaril, A.M.; de Andrade Lourenço, D.; Sousa, F.S.; Seixas, F.K.; Collares, T.; Woloski, R.; da Silva Pinto, L.; Alves, D.; Savegnago, L. Intranasal administration of interleukin-4 ameliorates depression-like behavior and biochemical alterations in mouse submitted to the chronic unpredictable mild stress: Modulation of neuroinflammation and oxidative stress. Psychopharmacology 2023, 240, 935–950. [Google Scholar] [CrossRef]
- Irwin, M.R.; Olmstead, R.; Kruse, J.; Breen, E.C.; Haque, R. Association of interleukin-8 and risk of incident and recurrent depression in long-term breast cancer survivors. Brain Behav. Immun. 2022, 105, 131–138. [Google Scholar] [CrossRef]
- Min, Z.; Li, Y.; Ying, H. Blood T-helper 17 cells and interleukin-17A correlate with the elevated risk of postpartum depression and anxiety. J. Clin. Lab. Anal. 2022, 36, e24559. [Google Scholar] [CrossRef] [PubMed]
- Tabra, S.A.; abd Elghany, S.E.; Amer, R.A.; Fouda, M.H.; Abu-Zaid, M.H. Serum interleukin-23 levels: Relation to depression, anxiety, and disease activity in psoriatic arthritis patients. Clin. Rheumatol. 2022, 41, 3391–3399. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.e.; Liu, R.; Zhang, Y.; Zhu, L.; Shi, W.; Shan, Y.; Wu, S.; Li, Y.; Liu, G.; Ma, W. Downregulation of interleukin-1 beta via Jmjd3 inhibition improves post-myocardial infarction depression. Cardiovasc. Diagn. Ther. 2022, 12, 340–351. [Google Scholar] [CrossRef]
- Buckey, G.; Owens, O.E.; Richards, H.A.; Cliffel, D.E. Electrochemical immunomagnetic assay for interleukin-6 detection in human plasma. Sens. Diagn. 2024, 3, 1039–1043. [Google Scholar] [CrossRef]
- Narayanan, M.L.; Prabhu, K.; Ponpandian, N.; Viswanathan, C. Cu encrusted RF sputtered ZnO thin film based electrochemical immunosensor for highly sensitive detection of IL-6 in human blood serum. Microchem. J. 2024, 199, 110061. [Google Scholar] [CrossRef]
- Ghosh, D.; Tabassum, R.; Sarkar, P.P.; Rahman, M.A.; Jalal, A.H.; Islam, N.; Ashraf, A. Graphene Nanocomposite Ink Coated Laser Transformed Flexible Electrodes for Selective Dopamine Detection and Immunosensing. ACS Appl. Bio Mater. 2024, 7, 3143–3153. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.M.; Yang, Y.; Cheng, D.Y. Sensitive detection of exhaled breath condensate inflammation biomarkers using boron nitride nanosheet/gold nanoparticle hybrids. Alex. Eng. J. 2024, 93, 280–287. [Google Scholar] [CrossRef]
- Ting, W.T.; Wang, M.J.; Howlader, M.M.R. Interleukin-6 electrochemical sensor using poly (o-phenylenediamine)-based molecularly imprinted polymer. Sens. Actuators B-Chem. 2024, 404, 135282. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, Y.F.; Li, N.; Lv, Y.B.; Jin, Q.L.; Wang, L.; Shi, Y.C.; Zhang, Y.N.; Shen, H.B.; Li, L.S.; et al. Development of a Dual Fluorescence Signal-Enhancement Immunosensor Based on Substrate Modification for Simultaneous Detection of Interleukin-6 and Procalcitonin. Langmuir 2024, 40, 4447–4459. [Google Scholar] [CrossRef]
- Gaikwad, P.; Rahman, N.; Parikh, R.; Crespo, J.; Cohen, Z.; Williams, R.M. Optical Nanosensor Passivation Enables Highly Sensitive Detection of the Inflammatory Cytokine Interleukin-6. ACS Appl. Mater. Interfaces 2024, 16, 27102–27113. [Google Scholar] [CrossRef]
- Ryan, A.K.; Rahman, S.; Williams, R.M. Optical Aptamer-Based Cytokine Nanosensor Detects Macrophage Activation by Bacterial Toxins. ACS Sens. 2024, 9, 3697–3706. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Shetty, V. Ultrasensitive detection of interleukin-6 enabled by three-dimensional spatial amplification. Sens. Actuators Rep. 2024, 8, 100213. [Google Scholar] [CrossRef]
- Zou, H.Y.; Wu, W.M.; Zhou, J.J.; Deng, C.Y. SILAR Growth of ZnO NSs/CdS QDs on the Optical Fiber-Based Opto-Electrode with Guided In Situ Light and Its Application for the “Signal-On” Detection of Inflammatory Cytokine. Anal. Chem. 2024, 96, 5446–5454. [Google Scholar] [CrossRef]
- Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. Endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 1975, 72, 3666–3670. [Google Scholar] [CrossRef]
- Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell 2001, 104, 487–501. [Google Scholar] [CrossRef]
- Conraads, V.M.; Denollet, J.; De Clerck, L.S.; Stevens, W.J.; Bridts, C.; Vrints, C.J. Type D personality is associated with increased levels of tumour necrosis factor (TNF)-α and TNF-α receptors in chronic heart failure. Int. J. Cardiol. 2006, 113, 34–38. [Google Scholar] [CrossRef]
- Grassi-Oliveira, R.; Brietzke, E.; Pezzi, J.C.; Lopes, R.P.; Teixeira, A.L.; Bauer, M.E. Increased soluble tumor necrosis factor-α receptors in patients with major depressive disorder. Psychiatry Clin. Neurosci. 2009, 63, 202–208. [Google Scholar] [CrossRef]
- Kaster, M.P.; Gadotti, V.M.; Calixto, J.B.; Santos, A.R.S.; Rodrigues, A.L.S. Depressive-like behavior induced by tumor necrosis factor-α in mice. Neuropharmacology 2012, 62, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Zhang, H.; Baloch, Z. Pathogenetic and Therapeutic Applications of Tumor Necrosis Factor-α (TNF-α) in Major Depressive Disorder: A Systematic Review. Int. J. Mol. Sci. 2016, 17, 733. [Google Scholar] [CrossRef] [PubMed]
- Ushiroyama, T.; Ikeda, A.; Sakuma, K.; Ueki, M. Changes in serum tumor necrosis factor (TNF-α) with kami-shoyo-san administration in depressed climacteric patients. Am. J. Chin. Med. 2004, 32, 621–629. [Google Scholar] [CrossRef]
- Ondevilla, N.A.P.; Liu, P.W.; Huang, W.T.; Weng, T.P.; Lee, N.Y.; Ma, S.C.; Huang, J.J.; Wong, T.W.; Chang, H.C. A point-of-care electrochemical biosensor for the rapid and sensitive detection of biomarkers in murine models with LPS-induced sepsis. Biosens. Bioelectron. 2024, 254, 116202. [Google Scholar] [CrossRef]
- Khachornsakkul, K.; Del-Rio-Ruiz, R.; Chheang, L.; Zeng, W.X.; Sonkusale, S. Distance-based paper analytical device for multiplexed quantification of cytokine biomarkers using carbon dots integrated with molecularly imprinted polymer. Lab Chip 2024, 24, 2262–2271. [Google Scholar] [CrossRef] [PubMed]
- Borg, K.N.; Jaffiol, R.; Ho, Y.-P.; Zeng, S. Enhanced biosensing of tumor necrosis factor-alpha based on aptamer-functionalized surface plasmon resonance substrate and Goos–Hänchen shift. Analyst 2024, 149, 3017–3025. [Google Scholar] [CrossRef]
- Battaglia, F.; Torrini, F.; Palladino, P.; Scarano, S.; Minunni, M. Serotonin: A new super effective functional monomer for molecular imprinting. The case of TNF-α detection in real matrix by Surface Plasmon Resonance. Biosens. Bioelectron. 2023, 242, 115713. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, T.H.; Allin, K.H.; Keefer, L.; Ananthakrishnan, A.N.; Jess, T. Depression and anxiety in inflammatory bowel disease: Epidemiology, mechanisms and treatment. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Danner, M.; Kasl, S.V.; Abramson, J.L.; Vaccarino, V. Association Between Depression and Elevated C-Reactive Protein. Psychosom. Med. 2003, 65, 347–356. [Google Scholar] [CrossRef]
- Ford, D.E.; Erlinger, T.P. Depression and C-Reactive Protein in US Adults. Arch. Intern. Med. 2004, 164, 1010–1014. [Google Scholar] [CrossRef]
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol. Med. 2019, 49, 1958–1970. [Google Scholar] [CrossRef] [PubMed]
- Wium-Andersen, M.K.; Ørsted, D.D.; Nielsen, S.F.; Nordestgaard, B.G. Elevated C-Reactive Protein Levels, Psychological Distress, and Depression in 73 131 Individuals. JAMA Psychiatry 2013, 70, 176–184. [Google Scholar] [CrossRef]
- Dessoki, H.H.; Khattab, R.A.E.R.; Moris, W.; Abdelhakim, A.A.E.; Lotfy, A.M.M.; Salah, H. C-reactive protein as a biomarker for unipolar versus bipolar depression: A cross-sectional study. Middle East Curr. Psychiatry 2023, 30, 69. [Google Scholar] [CrossRef]
- Boonkaew, S.; Szot-Karpińska, K.; Niedziółka-Jönsson, J.; de Marco, A.; Jönsson-Niedziółka, M. NFC Smartphone-Based Electrochemical Microfluidic Device Integrated with Nanobody Recognition for C-Reactive Protein. ACS Sens. 2024, 9, 3066–3074. [Google Scholar] [CrossRef]
- Gao, H.L.; Bai, Y.C.; He, B.X.; Tan, C.S. A Simple Label-Free Aptamer-Based Electrochemical Biosensor for the Sensitive Detection of C-Reactive Proteins. Biosensors 2022, 12, 1180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Liu, S.Y.; Shi, Z.; Lu, D.X.; Li, Z.H.; Zhu, Z.G. Electrochemical biosensor based on RNA aptamer and ferrocenecarboxylic acid signal probe for C-reactive protein detection. Talanta 2024, 277, 126318. [Google Scholar] [CrossRef]
- Whitehouse, W.L.; Lo, L.H.Y.; Kinghorn, A.B.; Shiu, S.C.C.; Tanner, J.A. Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless, and Single-Step Nanomolar Detection of C-Reactive Protein. ACS Appl. Bio Mater. 2024, 7, 3721–3730. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Chen, L.Y.; Huang, Y.C.; Kumar, P.; Guo, Y.Z.; Wu, C.H.; Wang, L.M.; Chen, K.L. Improving Sensitivity and Reproducibility of Surface-Enhanced Raman Scattering Biochips Utilizing Magnetoplasmonic Nanoparticles and Statistical Methods. ACS Sens. 2024, 9, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1545–1564. [Google Scholar] [CrossRef]
- Chao, M.V.; Rajagopal, R.; Lee, F.S. Neurotrophin signalling in health and disease. Clin. Sci. 2006, 110, 167–173. [Google Scholar] [CrossRef]
- Mitre, M.; Mariga, A.; Chao, M.V. Neurotrophin signalling: Novel insights into mechanisms and pathophysiology. Clin. Sci. 2017, 131, 13–23. [Google Scholar] [CrossRef]
- Castren, E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biol. Psychiatry 2021, 90, 128–136. [Google Scholar] [CrossRef]
- Karege, F.; Perret, G.; Bondolfi, G.; Schwald, M.; Bertschy, G.; Aubry, J.M. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002, 109, 143–148. [Google Scholar] [CrossRef]
- Sen, S.; Duman, R.; Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: Meta-analyses and implications. Biol. Psychiatry 2008, 64, 527–532. [Google Scholar] [CrossRef]
- Akhtar, M.H.; Hussain, K.K.; Gurudatt, N.G.; Chandra, P.; Shim, Y.-B. Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens. Bioelectron. 2018, 116, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Sun, B.; Li, Y.; Wang, Y.; Chen, Y.; Guo, M.; Mo, X.; Hu, F.; Du, Y. Electrochemical immunosensor AuNPs/NG-PANI/ITO-PET for the determination of BDNF in depressed mice serum. Microchim. Acta 2023, 190, 1–12. [Google Scholar] [CrossRef]
- Yoo, Y.K.; Lee, J.; Kim, J.; Kim, G.; Kim, S.; Kim, J.; Chun, H.; Lee, J.H.; Lee, C.J.; Hwang, K.S. Ultra-sensitive detection of brain-derived neurotrophic factor (BDNF) in the brain of freely moving mice using an interdigitated microelectrode (IME) biosensor. Sci. Rep. 2016, 6, 33694. [Google Scholar] [CrossRef]
- Kidakova, A.; Reut, J.; Boroznjak, R.; Opik, A.; Syritski, V. Advanced sensing materials based on molecularly imprinted polymers towards developing point-of-care diagnostics devices. Proc. Est. Acad. Sci. 2019, 68, 158–167. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Boroznjak, R.; Reut, J.; Tuvikene, J.; Timmusk, T.; Syritski, V. Electrochemical sensor based on molecularly imprinted polymer for rapid quantitative detection of brain-derived neurotrophic factor. Sens. Actuators B-Chem. 2023, 397, 134656. [Google Scholar] [CrossRef]
- Li, Z.; Cui, L.; Zhao, H.; Du, J.; Gopinath, S.C.B.; Lakshmipriya, T.; Xin, X. Aluminum Microcomb Electrodes on Silicon Wafer for Detecting Val66Met Polymorphism in Brain-Derived Neurotrophic Factor. Dev. Neurosci. 2021, 43, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Elfving, B.; Plougmann, P.H.; Wegener, G. Detection of brain-derived neurotrophic factor (BDNF) in rat blood and brain preparations using ELISA: Pitfalls and solutions. J. Neurosci. Methods 2010, 187, 73–77. [Google Scholar] [CrossRef]
- Mandel, A.L.; Ozdener, H.; Utermohlen, V. Brain-derived neurotrophic factor in human saliva: Elisa optimization and biological correlates. J. Immunoass. Immunochem. 2011, 32, 18–30. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Collins, J.M.; Gell, D.A.; Perry, S.; Breadmore, M.C.; Shigdar, S.; King, A.E. Isolation and Identification of the High-Affinity DNA Aptamer Target to the Brain-Derived Neurotrophic Factor (BDNF). ACS Chem. Neurosci. 2023, 15, 346–356. [Google Scholar] [CrossRef]
- Nakajima, T.; Sato, M.; Akaza, N.; Umezawa, Y. Cell-based fluorescent indicator to visualize brain-derived neurotrophlic factor secreted from living neurons. ACS Chem. Biol. 2008, 3, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Anisman, H.; Merali, Z.; Hayley, S. Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: Comorbidity between depression and neurodegenerative disorders. Prog. Neurobiol. 2008, 85, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Crow, T.J.; Cross, A.J.; Cooper, S.J.; Deakin, J.F.W.; Ferrier, I.N.; Johnson, J.A.; Joseph, M.H.; Owen, F.; Poulter, M.; Lofthouse, R.; et al. Neurotransmitter receptors and monoamine metabolites in the brains of patients with alzheimer-type dementia and depression, and suicides. Neuropharmacology 1984, 23, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 2019, 102, 75–90. [Google Scholar] [CrossRef]
- Werner, F.-M.; Covenas, R. Classical Neurotransmitters and Neuropeptides Involved in Major Depression: A Review. Int. J. Neurosci. 2010, 120, 455–470. [Google Scholar] [CrossRef]
- Duman, R.S.; Heninger, G.R.; Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry 1997, 54, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol. Psychiatry 2023, 28, 3243–3256. [Google Scholar] [CrossRef]
- He, X.; Ma, S.; Sun, N.; Hou, M.; Tan, Z.; Cao, R. Hierarchical TiO2–Ag/hydrogel coating used for outstanding antifouling detection of serotonin. Macromol. Res. 2024, 32, 553–563. [Google Scholar] [CrossRef]
- Moslah, M.; Dridi, C. Development of An Eco-Friendly and Cost-Effective Electrochemical Sensor for the Simultaneous Detection of Dopamine and Serotonin. J. Electrochem. Soc. 2024, 171, 067506. [Google Scholar] [CrossRef]
- Liao, Z.Y.; Shang, J.X.; Nohgi, T.; Kameoka, J. Electrochemical Biosensor Enhanced With Graphite Ink and Multiwalled Carbon Nanotube for High Sensitivity Detection of Serotonin. IEEE Sens. Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Li, R.; Li, X.; Su, L.; Qi, H.; Yue, X.; Qi, H. Label-free Electrochemical Aptasensor for the Determination of Serotonin. Electroanalysis 2021, 34, 1048–1053. [Google Scholar] [CrossRef]
- Li, J.; Si, Y.; Park, Y.E.; Choi, J.-S.; Jung, S.M.; Lee, J.E.; Lee, H.J. A serotonin voltammetric biosensor composed of carbon nanocomposites and DNA aptamer. Microchim. Acta 2021, 188, 1–8. [Google Scholar] [CrossRef]
- Zhan, S.S.; Zhang, J.Y.; Gao, C.R.; Yin, Z.Z.; Liu, H.Y. An electrochemical microbiosensor for serotonin based on surface imprinted layer coordinated bimetal functionalized acupuncture needle. Talanta 2024, 277, 126334. [Google Scholar] [CrossRef] [PubMed]
- Avci, B.; Akpinar, Y.; Ertas, G.; Volkan, M. Sialic Acid-Functionalized Gold Nanoparticles for Sensitive and Selective Colorimetric Determination of Serotonin. ACS Omega 2024, 9, 23832–23842. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.J.; Jang, C.H. A liquid crystal-based sensor exploiting the aptamer-mediated recognition at the aqueous/liquid crystal interface for sensitive detection of serotonin. Biotechnol. Appl. Biochem. 2023, 70, 1972–1982. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Song, G.; Yang, Z.; Kang, K.; Liu, X. A label-free fluorescence aptamer sensor for point-of-care serotonin detection. Talanta 2024, 277, 126363. [Google Scholar] [CrossRef]
- Nestler, E.J.; Carlezon, W.A., Jr. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 2006, 59, 1151–1159. [Google Scholar] [CrossRef]
- Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 2004, 5, 483–494. [Google Scholar] [CrossRef]
- Brown, A.S.; Gershon, S. Dopamine and depression. J. Neural Transm. Gen. Sect. 1993, 91, 75–109. [Google Scholar] [CrossRef]
- Berridge, K.C.; Robinson, T.E. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 1998, 28, 309–369. [Google Scholar] [CrossRef]
- Dunlop, B.W.; Nemeroff, C.B. The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry 2007, 64, 327–337. [Google Scholar] [CrossRef]
- Dailly, E.; Chenu, F.; Renard, C.E.; Bourin, M. Dopamine, depression and antidepressants. Fundam. Clin. Pharmacol. 2004, 18, 601–607. [Google Scholar] [CrossRef]
- Tye, K.M.; Mirzabekov, J.J.; Warden, M.R.; Ferenczi, E.A.; Tsai, H.C.; Finkelstein, J.; Kim, S.Y.; Adhikari, A.; Thompson, K.R.; Andalman, A.S.; et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 2013, 493, 537–541. [Google Scholar] [CrossRef]
- Elugoke, S.E.; Fayemi, O.E.; Adekunle, A.S.; Adesanya, F.A.; Ebenso, E.E. Electrochemical Detection of Dopamine at a Novel poly(2,4,6-trihydroxybenzaldehyde) Film Modified Electrode. Chemelectrochem 2024, 11, e202400021. [Google Scholar] [CrossRef]
- Abraham, D.A.; Li, A.D.; Sanmugam, A.; Wadaan, M.A.; Baabbad, A.; Kanagaraj, K.; Karuppasamy, K.; Maiyalagan, T.; Kim, H.S.; Vikraman, D. Highly sensitive and selective detection of dopamine using atomic layer deposited HfO2 ultra-thin films. Electrochim. Acta 2024, 497, 144574. [Google Scholar] [CrossRef]
- Shahparast, S.; Asadpour-Zeynali, K. Development of an efficient electrochemical sensor based on CuAl-LDH using an electrostatic repulsion approach for the selective determination of dopamine in the presence of uric acid and ascorbic acid species. Electrochem. Commun. 2024, 165, 107756. [Google Scholar] [CrossRef]
- Doan, T.L.L.; Tran, M.X.; Nguyen, D.L.T.; Nguyen, D.C. Urchin-like CoP3Cu3P heterostructured nanorods supported on a 3D porous copper foam for high-performance non-enzymatic electrochemical dopamine sensors. Phys. Chem. Chem. Phys. 2024, 26, 18449–18458. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Y.Q.; Guo, H.; Feng, H.Y.; Yang, Y.Q.; Lu, Y.J.; Wei, Y.J.; Su, J.S.; Ben, Y.Y.; Yuan, J.W.; et al. Metal organic framework and the bamboo charcoal composite for sensitive and selective detection of dopamine. Results Chem. 2024, 7, 101386. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Yan, X.X.; Chen, Y.F.; Deng, D.M.; He, H.B.; Lei, Y.Y.; Luo, L.Q. ZnO-CeO2 Hollow Nanospheres for Selective Determination of Dopamine and Uric Acid. Molecules 2024, 29, 1786. [Google Scholar] [CrossRef] [PubMed]
- Keerthanaa, M.R.; Panicker, L.R.; Narayan, R.; Kotagiri, Y.G. Biopolymer-protected graphene-Fe3O4 nanocomposite based wearable microneedle sensor: Toward real-time continuous monitoring of dopamine. RSC Adv. 2024, 14, 7131–7141. [Google Scholar] [CrossRef]
- Singh, H.; Wu, J.D.; Lagemann, K.A.L.; Nath, M. Highly Efficient Dopamine Sensing with a Carbon Nanotube-Encapsulated Metal Chalcogenide Nanostructure. ACS Appl. Nano Mater. 2024, 7, 4814–4823. [Google Scholar] [CrossRef]
- Aldughaylibi, F.S.; Ulla, H.; Allag, N.; Alam, M.W.; BaQais, A.; Al-Othoum, M.A.; Sadaf, S. Development of molybdenum trioxide based modified graphite sheet electrodes for enhancing the electrochemical sensing of dopamine. Mater. Sci. Semicond. Process. 2024, 173, 108107. [Google Scholar] [CrossRef]
- Ahmed, J.; Faisal, M.; Algethami, J.S.; Rahman, M.M.; Harraz, F.A. A novel Ga2O3-doped ZnO decorated SWCNT nanocomposite based amperometric sensor for efficient detection of dopamine in real samples. J. Sci. Adv. Mater. Devices 2024, 9, 100668. [Google Scholar] [CrossRef]
- Jaryal, V.B.; Kumar, S.; Singh, D.; Gupta, N. Thiourea-Modified Multiwalled Carbon Nanotubes as Electrochemical Biosensor for Ultra-Precise Detection of Dopamine. Chemnanomat 2024, 10, e202300637. [Google Scholar] [CrossRef]
- Xi, W.Y.; Kong, Z.M.; Zhang, Z.J.; Chen, Y.; Huang, X.Y.; Deng, Z.X.; Li, Z.; Xu, X.X.; Cui, X.F.; Zheng, W. Effect of protein adsorption on hyaluronic acid/curcumin/multi-walled carbon nanotube based electrochemical sensor for detection of dopamine. Inorg. Chem. Commun. 2024, 167, 112763. [Google Scholar] [CrossRef]
- Yashil, H.; Koçoglu, I.O. Amperometric dopamine sensor based on carbon nanofiber, Fe3O4 nanoparticles, and silver nanoparticles modified glassy carbon electrode. Monatshefte Fur Chem. 2024, 155, 663–672. [Google Scholar] [CrossRef]
- Kabas, S.Y. Novel palladium nanoparticles/4-aminophenol functionalized nitrogen-doped graphene quantum dots-based nanocomposite electrochemical sensor: Synthesis, characterization, capacitance, and dopamine sensing. J. Electroanal. Chem. 2024, 964, 118316. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Y.; Wang, X.; Jia, K.; Zhang, H.; Wang, Y.; Chu, H.; Zhong, X.; Lin, M.; Chen, P.; et al. Wearable and Regenerable Electrochemical Fabric Sensing System Based on Molecularly Imprinted Polymers for Real-Time Stress Management. Adv. Funct. Mater. 2024, 34, 2312897. [Google Scholar] [CrossRef]
- Xiao, X.Q.; Ni, W.; Yang, Y.; Chen, Q.H.; Zhang, Y.L.; Sun, Y.J.; Liu, Q.M.; Zhang, G.J.; Yao, Q.F.; Chen, S.W. Platinum nanowires/MXene nanosheets/porous carbon ternary nanocomposites for in situ monitoring of dopamine released from neuronal cells. Talanta 2024, 278, 126496. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ipaves, B.; de Oliveira, C.C.; Negedu, S.D.; Sarkar, S.; Lahiri, B.; Autreto, P.A.S.; Tiwary, C.S. Subpicomolar Dopamine Detection Using Two-Dimensional Cobalt Telluride. ACS Appl. Eng. Mater. 2024, 2, 1935–1947. [Google Scholar] [CrossRef]
- Mabrouk, C.; Barhoumi, H.; Renault, N.J. Electrochemical Dopamine-Imprinted Sensor Based on TiO2 Nanoparticles and Polypyrrole-Chitosan Composites Modified Glassy Carbon Electrode. Port. Electrochim. Acta 2024, 42, 455–474. [Google Scholar] [CrossRef]
- Jabbari, S.; Dabirmanesh, B.; Daneshjou, S.; Khajeh, K. The potential of a novel enzyme-based surface plasmon resonance biosensor for direct detection of dopamine. Sci. Rep. 2024, 14, 14303. [Google Scholar] [CrossRef] [PubMed]
- Kayalik, A.; Saçmaci, S. A novel dopamine platform based on CeO2@TiO2 nanocomposite modified AuNPs/AgNPs nanoparticle and SERS application. J. Mol. Struct. 2024, 1304, 137644. [Google Scholar] [CrossRef]
- Sharma, P.S.; Choudhary, K.; Gupta, V.K.; Raghuwanshi, S.K.; Kumar, S. Optical fiber-based LSPR biosensor for enhanced dopamine detection: Advancing personalized healthcare. In Proceedings of the Conference on Optical Fibers and Sensors for Medical Diagnostics, Treatment, and Environmental Applications XXIV, San Francisco, CA, USA, 27–29 January 2024. [Google Scholar]
- Vikas; Weitz, I.S.; Nobili, L.G.; Magagnin, L.; Saccomandi, P. Fiber Optic SPR Sensor Modified With Copper Oxide Nanoparticles for Highly Sensitive and Selective Detection of Dopamine. IEEE Sens. J. 2024, 24, 6121–6128. [Google Scholar] [CrossRef]
- Sliesarenko, V.; Bren, U.; Lobnik, A. Fluorescence based dopamine detection. Sens. Actuators Rep. 2024, 7, 100199. [Google Scholar] [CrossRef]
- Tian, M.M.; Wang, Y.; Liu, G. Polyvinylpyrrolidone-Stabilized Blue-Emitting Copper Nanoclusters as Fluorescence Probe for Selective Detection of Dopamine. Chemistryselect 2024, 9, e202401550. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Jang, C.-H. Label-free liquid crystal-based biosensor for detection of dopamine using DNA aptamer as a recognition probe. Anal. Biochem. 2020, 605, 113807. [Google Scholar] [CrossRef]
- Nandi, R.; Loitongbam, L.; De, J.; Jain, V.; Pal, S.K. Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine. Analyst 2019, 144, 1110–1114. [Google Scholar] [CrossRef]
- Huang, R.; Xia, L.; Jiang, L.; Shui, Q.; Deng, J.; Yang, J. Construction of aptamer-based liquid crystal-aqueous sensing interface for the sensitive detection of dopamine. Liq. Cryst. 2024, 51, 1–9. [Google Scholar] [CrossRef]
- Ahn, J.-S.; Jang, C.-H. Sensitive detection of 17β-estradiol at a picomolar level using an aptamer-assisted liquid crystal–based optical sensor. Anal. Bioanal. Chem. 2023, 415, 6323–6332. [Google Scholar] [CrossRef]
- Mondal, R.; Show, B.; Ahmed, S.F.; Mukherjee, N. Electrochemically selective detection of dopamine over serotonin by CuO/Cu2O bulk heterostructure electrode. Bull. Mater. Sci. 2024, 47, 1–10. [Google Scholar] [CrossRef]
- Chen, J.T.; Xia, F.Y.; Ding, X.T.; Zhang, D.D. Universal Covalent Grafting Strategy of an Aptamer on a Carbon Fiber Microelectrode for Selective Determination of Dopamine In Vivo. Anal. Chem. 2024, 96, 10322–10331. [Google Scholar] [CrossRef] [PubMed]
- Partridge, J.G.; Apparsundaram, S.; Gerhardt, G.A.; Ronesi, J.; Lovinger, D.M. Nicotinic acetylcholine receptors interact with dopamine in induction of striatal long-term depression. J. Neurosci. 2002, 22, 2541–2549. [Google Scholar] [CrossRef] [PubMed]
- Higley, M.J.; Picciotto, M.R. Neuromodulation by acetylcholine: Examples from schizophrenia and depression. Curr. Opin. Neurobiol. 2014, 29, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Mitic, M.; Lazarevic-Pasti, T. Does the application of acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease lead to depression? Expert Opin. Drug Metab. Toxicol. 2021, 17, 841–856. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S. Targeting Brain Nicotinic Acetylcholine Receptors to Treat Major Depression and Co-Morbid Alcohol or Nicotine Addiction. CNS Neurol. Disord.-Drug Targets 2015, 14, 647–653. [Google Scholar] [CrossRef]
- Chen, J.; Lin, K.C.; Prasad, S.; Schmidtke, D.W. Label free impedance based acetylcholinesterase enzymatic biosensors for the detection of acetylcholine. Biosens. Bioelectron. 2023, 235, 115340. [Google Scholar] [CrossRef]
- Jing, C.; Kuang, Y.; Gu, X.; Xu, M.; Wu, Y.; Wang, X. An Acetylcholine Electrochemical Biosensor Based on Bi-Enzyme Functionalized Nanofiber Composites. J. Electrochem. Soc. 2023, 170, 077513. [Google Scholar] [CrossRef]
- Ivanov, A.; Shamagsumova, R.; Larina, M.; Evtugyn, G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer’s Disease Drug Determination. Biosensors 2024, 14, 93. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Zhou, X.; Gong, P.; Zhao, Y. U-fiber-based biosensor for temperature-compensated acetylcholine-specific measurement. Opt. Lett. 2023, 48, 2138–2141. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, L.; Wang, S.; Jiang, X.; Ma, F.; Zhao, J.; Meng, W.; Gao, L. A New Acetylcholine Optical Fiber Biosensor Based on Gold Film-GNRs Resonance Coupling Enhancement. IEEE Sens. J. 2024, 24, 4557–4564. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, L.; Zhao, J.; Jiang, X.; Ma, F. Localized Surface Plasmon Resonance- Based Fiber Optic Biosensor for Acetylcholine Detection. IEEE Sens. J. 2023, 23, 25987–25995. [Google Scholar] [CrossRef]
- Pitiphattharabun, S.; Auewattanapun, K.; Htet, T.L.; Thu, M.M.; Panomsuwan, G.; Techapiesancharoenkij, R.; Ohta, J.; Jongprateep, O. Reduced graphene oxide/zinc oxide composite as an electrochemical sensor for acetylcholine detection. Sci. Rep. 2024, 14, 1–17. [Google Scholar] [CrossRef]
- Poolakkandy, R.R.; Ramalakshmi, N.A.; Padmalayam, K.A.; Krishnamurthy, R.G.; Menamparambath, M.M. Braided copper cobaltite/MWCNT composites enable acetylcholine detection at sub-nanomolar levels in vitro. Sens. Diagn. 2023, 2, 726–735. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, W.; Wu, Y.; Tang, Y.; Liu, M.; Sha, M.; Li, J.; Xiao, R.; Hu, L.; Lin, Y.; et al. Bifunctional enzyme-mimicking metal-organic frameworks for sensitive acetylcholine analysis. Talanta 2024, 275, 126112. [Google Scholar] [CrossRef]
- Mineur, Y.S.; Picciotto, M.R. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. J. Neurochem. 2023, 167, 3–15. [Google Scholar] [CrossRef]
- Amirghasemi, F.; Soleimani, A.; Bawarith, S.; Tabassum, A.; Morrel, A.; Mousavi, M.P.S. FAST (Flexible Acetylcholine Sensing Thread): Real-Time Detection of Acetylcholine with a Flexible Solid-Contact Potentiometric Sensor. Bioengineering 2023, 10, 655. [Google Scholar] [CrossRef]
- Sudalaimani, S.; Arun, S.; Esokkiya, A.; Kumar, K.S.; Sivakumar, C.; Giribabu, K. Disposable-micropipette tip supported electrified liquid-organogel interface as a platform for sensing acetylcholine. Analyst 2023, 148, 1451–1459. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Yue, Y.; Yin, Y.; Zhang, Y.; Liang, J.; Li, S.; Wang, J.; Lu, J.; Geng, D.; et al. The protein and mRNA expression levels of glial cell line-derived neurotrophic factor in post stroke depression and major depressive disorder. Sci. Rep. 2017, 7, 8674. [Google Scholar] [CrossRef]
- Lundberg, M.; Eriksson, A.; Tran, B.; Assarsson, E.; Fredriksson, S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011, 39, e102. [Google Scholar] [CrossRef]
- Fan, J.; Guo, F.; Mo, R.; Chen, L.-Y.; Mo, J.-W.; Lu, C.-L.; Ren, J.; Zhong, Q.-L.; Kuang, X.-J.; Wen, Y.-L.; et al. O-GlcNAc transferase in astrocytes modulates depression-related stress susceptibility through glutamatergic synaptic transmission. J. Clin. Investig. 2023, 133, e160016. [Google Scholar] [CrossRef] [PubMed]
- Carvalho Silva, R.; Martini, P.; Hohoff, C.; Mattevi, S.; Bortolomasi, M.; Menesello, V.; Gennarelli, M.; Baune, B.T.; Minelli, A. DNA methylation changes in association with trauma-focused psychotherapy efficacy in treatment-resistant depression patients: A prospective longitudinal study. Eur. J. Psychotraumatol. 2024, 15, 2314913. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Li, Y.; Meng, X.; Chi, Y.; Liu, M. Gut Microbiota and Its Metabolites: The Emerging Bridge Between Coronary Artery Disease and Anxiety and Depression? Aging Dis. 2024, 15. [Google Scholar] [CrossRef]
- Mann, J.J.; Huang, Y.Y.; Underwood, M.D.; Kassir, S.A.; Oppenheim, S.; Kelly, T.M.; Dwork, A.J.; Arango, V. A serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical binding in major depression and suicide. Arch. Gen. Psychiatry 2000, 57, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Karg, K.; Burmeister, M.; Shedden, K.; Sen, S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Arch. Gen. Psychiatry 2011, 68, 444–454. [Google Scholar] [CrossRef]
- Verhagen, M.; van der Meij, A.; van Deurzen, P.A.; Janzing, J.G.; Arias-Vasquez, A.; Buitelaar, J.K.; Franke, B. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: Effects of gender and ethnicity. Mol. Psychiatry 2010, 15, 260–271. [Google Scholar] [CrossRef]
- Klengel, T.; Pape, J.; Binder, E.B.; Mehta, D. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology 2014, 80, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Bakusic, J.; Schaufeli, W.; Claes, S.; Godderis, L. Stress, burnout and depression: A systematic review on DNA methylation mechanisms. J. Psychosom. Res. 2017, 92, 34–44. [Google Scholar] [CrossRef]
- Dong, T.; Yu, C.; Mao, Q.; Han, F.; Yang, Z.; Yang, Z.; Pires, N.; Wei, X.; Jing, W.; Lin, Q.; et al. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens. Bioelectron. 2024, 258, 116291. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Chen, W.; Ma, B.; Ju, H. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 2023, 1, 346–360. [Google Scholar] [CrossRef]
- Yin, L.; Xing, B.X.; Liu, Z.Y.; Lu, L.H. Facilely fabricating triple-atom Fe/Zn/Ir luminescent nanozymes with peroxidase-like activity for dual mode melatonin detection. Chem. Eng. J. 2024, 493, 152663. [Google Scholar] [CrossRef]
- Rahman, M.A.; Pal, R.K.; Islam, N.; Freeman, R.; Berthiaume, F.; Mazzeo, A.; Ashraf, A. A Facile Graphene Conductive Polymer Paper Based Biosensor for Dopamine, TNF-α, and IL-6 Detection. Sensors 2023, 23, 8115. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Bi, Q.; Qiao, C.; Sun, Y.; Zhang, X.; Lu, X.; Zhao, L. Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and β-cyclodextrins composites. Talanta 2017, 173, 94–100. [Google Scholar] [CrossRef]
- Han, H.S.; Lee, H.K.; You, J.-M.; Jeong, H.; Jeon, S. Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin. Sens. Actuators B Chem. 2014, 190, 886–895. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, G.; Song, Y.; Li, H.; Zhang, Y.; Schneider, M.J.; Qiang, Y.; Kaszas, J.; Weng, Z.; Sun, H.; et al. Multiplexed Monitoring of Neurochemicals via Electrografting-Enabled Site-Selective Functionalization of Aptamers on Field-Effect Transistors. Anal. Chem. 2022, 94, 8605–8617. [Google Scholar] [CrossRef] [PubMed]
- Asadi Samie, H.; Arvand, M. RuO2 nanowires on electrospun CeO2-Au nanofibers/functionalized carbon nanotubes/graphite oxide nanocomposite modified screen-printed carbon electrode for simultaneous determination of serotonin, dopamine and ascorbic acid. J. Alloys Compd. 2019, 782, 824–836. [Google Scholar] [CrossRef]
- Kundys, M.; Szot, K.; Rozniecka, E.; Jönsson-Niedziółka, M.; Lawrence, R.; Bull, S.D.; Marken, F.; Opallo, M. Electrochemical determination of selected neurotransmitters at electrodes modified with oppositely charged carbon nanoparticles. Anal. Methods 2014, 6, 7532–7539. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.S.; et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 2022, 6, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Song, Y.; Sempionatto, J.R.; Solomon, S.A.; Yu, Y.; Nyein, H.Y.Y.; Tay, R.Y.; Li, J.; Heng, W.; Min, J.; et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 2024, 7, 168–179. [Google Scholar] [CrossRef]
- Kim, A.Y.; Jang, E.H.; Choi, K.W.; Jeon, H.J.; Byun, S.; Sim, J.Y.; Choi, J.H.; Yu, H.Y. Skin conductance responses in Major Depressive Disorder (MDD) under mental arithmetic stress. PLoS ONE 2019, 14, e0213140. [Google Scholar] [CrossRef]
- Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nature 2008, 455, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.L.; Ha, Y.; Saisch, S.; Ellison, Z.; Fombonne, E. Tricyclic antidepressants in adolescent depression. A case report. Eur. Child Adolesc. Psychiatry 1998, 7, 166–171. [Google Scholar] [CrossRef]
- Roh, T.; Hong, S.; Yoo, H.J. Wearable depression monitoring system with heart-rate variability. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 562–565. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Huang, C.-Y.; Liu, S.-I. Hybrid intelligent methods for arrhythmia detection and geriatric depression diagnosis. Appl. Soft Comput. 2014, 14, 38–46. [Google Scholar] [CrossRef]
- Carney, R.M.; Freedland, K.E.; Steinmeyer, B.C.; Rubin, E.H.; Stein, P.K.; Rich, M.W. Nighttime heart rate predicts response to depression treatment in patients with coronary heart disease. J. Affect. Disord. 2016, 200, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Costantini, S.; Chiappini, M.; Malerba, G.; Dei, C.; Falivene, A.; Arlati, S.; Colombo, V.; Biffi, E.; Storm, F.A. Wrist-Worn Sensor Validation for Heart Rate Variability and Electrodermal Activity Detection in a Stressful Driving Environment. Sensors 2023, 23, 8423. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.T.; Lee, S.W.; Park, S.; Lee, J. Association between heart rate variability metrics from a smartwatch and self-reported depression and anxiety symptoms: A four-week longitudinal study. Front. Psychiatry 2024, 15, 1371946. [Google Scholar] [CrossRef]
- Vaishali, P.N.; Kumari, P.L.S. Predicting Depression Risk from Facial Video-Derived Heart Rate Estimates. Rev. d’Intell. Artif. 2023, 37, 997–1004. [Google Scholar] [CrossRef]
- Zavanelli, N.; Lee, S.H.; Guess, M.; Yeo, W.H. Continuous real-time assessment of acute cognitive stress from cardiac mechanical signals captured by a skin-like patch. Biosens. Bioelectron. 2024, 248, 115983. [Google Scholar] [CrossRef]
- Park, J.H.; Jang, D.G.; Park, J.W.; Youm, S.K. Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor. Sensors 2015, 15, 23402–23417. [Google Scholar] [CrossRef]
- Hong, J.; Kim, J.; Kim, S.; Oh, J.; Lee, D.; Lee, S.; Uh, J.; Yoon, J.; Choi, Y. Depressive Symptoms Feature-Based Machine Learning Approach to Predicting Depression Using Smartphone. Healthcare 2022, 10, 1189. [Google Scholar] [CrossRef]
- Tiwari, A.; Narayanan, S.; Falk, T.H. Breathing Rate Complexity Features for “In-the-Wild” Stress and Anxiety Measurement. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019. [Google Scholar]
- Gouveia, C.; Tome, A.; Barros, F.; Soares, S.C.; Vieira, J.; Pinho, P. Study on the usage feasibility of continuous-wave radar for emotion recognition. Biomed. Signal Process. Control 2020, 58, 101835. [Google Scholar] [CrossRef]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait Analysis Using Wearable Sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bu, M.; Xiu, K.; Sun, J.; Hu, N.; Zhao, L.; Gao, L.; Kong, F.; Zhu, H.; Song, J.; et al. A flexible, stretchable and triboelectric smart sensor based on graphene oxide and polyacrylamide hydrogel for high precision gait recognition in Parkinsonian and hemiplegic patients. Nano Energy 2022, 104, 107978. [Google Scholar] [CrossRef]
- Sant’Anna, A.; Wickstrom, N.; Zugner, R.; Tranberg, R. A Wearable Gait Analysis System Using Inertial Sensors Part I. Evaluation of Measures of Gait Symmetry and Normality against 3D Kinematic Data. In Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing (BIOSIGNALS 2012), Algarve, Portugal, 1–4 February 2012; pp. 180–188. [Google Scholar]
- Liu, S.; Zhang, J.; Zhang, Y.; Zhu, R. A wearable motion capture device able to detect dynamic motion of human limbs. Nat. Commun. 2020, 11, 5615. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Qin, Q.; Wang, X.; Xiang, H.; Zheng, J.; Lu, Y.; Lv, C.; Wu, K.; Yan, L.; Wang, N.; et al. Piezoelectric Nanogenerator for Highly Sensitive and Synchronous Multi-Stimuli Sensing. ACS Nano 2021, 15, 19783–19792. [Google Scholar] [CrossRef] [PubMed]
- Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef]
- Radovanovic, S.; Jovicic, M.; Maric, N.P.; Kostic, V. Gait characteristics in patients with major depression performing cognitive and motor tasks while walking. Psychiatry Res. 2014, 217, 39–46. [Google Scholar] [CrossRef]
- Shao, W.; You, Z.; Liang, L.; Hu, X.; Li, C.; Wang, W.; Hu, B. A Multi-Modal Gait Analysis-Based Detection System of the Risk of Depression. IEEE J. Biomed. Health Inform. 2022, 26, 4859–4868. [Google Scholar] [CrossRef]
- Garbarino, M.; Lai, M.; Bender, D.; Picard, R.W.; Tognetti, S. Empatica E3-A wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare—Transforming Healthcare through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, Greece, 3–5 November 2014; pp. 39–42. [Google Scholar]
- Tronstad, C.; Amini, M.; Bach, D.R.; Martinsen, O.G. Current trends and opportunities in the methodology of electrodermal activity measurement. Physiol. Meas. 2022, 43, 02TR01. [Google Scholar] [CrossRef]
- Dehzangi, O.; Rajendra, V.; Taherisadr, M. Wearable Driver Distraction Identification On-The-Road via Continuous Decomposition of Galvanic Skin Responses. Sensors 2018, 18, 503. [Google Scholar] [CrossRef]
- Anmella, G.; Mas, A.; Sanabra, M.; Valenzuela-Pascual, C.; Valentí, M.; Pacchiarotti, I.; Benabarre, A.; Grande, I.; De Prisco, M.; Oliva, V.; et al. Electrodermal activity in bipolar disorder: Differences between mood episodes and clinical remission using a wearable device in a real-world clinical setting. J. Affect. Disord. 2024, 345, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Ming-Zher, P.; Swenson, N.C.; Picard, R.W. A Wearable Sensor for Unobtrusive, Long-Term Assessment of Electrodermal Activity. IEEE Trans. Biomed. Eng. 2010, 57, 1243–1252. [Google Scholar] [CrossRef]
- Boucsein, W.; Fowles, D.C.; Grimnes, S.; Ben-Shakhar, G.; Rroth, W.T.; Dawson, M.E.; Filion, D.L.; Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures. Publication recommendations for electrodermal measurements. Psychophysiology 2012, 49, 1017–1034. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, Y.-S.; Mahmood, M.; Kwon, S.; Epps, F.; Rim, Y.S.; Yeo, W.-H. Wireless, continuous monitoring of daily stress and management practice via soft bioelectronics. Biosens. Bioelectron. 2021, 173, 112764. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef]
- Haddad, P.A. Flexible Film and Breathable Textile Electrodes for Electrodermal Activity Monitoring. Doctoral Dissertation, University of British Columbia, British Columbia, Canada, 2018; pp. 1–151. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Rood, R.; Noh, Y.; Burnham, K.; Pennace, J.; Chon, K.H. Dry carbon/salt adhesive electrodes for recording electrodermal activity. Sens. Actuators A Phys. 2017, 257, 84–91. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, S.; Seo, S.; Park, K. Highly Wearable Galvanic Skin Response Sensor using Flexible and Conductive Polymer Foam. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014. [Google Scholar] [CrossRef]
- Nittala, A.S.; Khan, A.; Kruttwig, K.; Kraus, T.; Steimle, J. PhysioSkin: Rapid Fabrication of Skin-Conformal Physiological Interfaces. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–10. [Google Scholar]
- Posada-Quintero, H.F.; Florian, J.P.; Orjuela-Canon, A.D.; Aljama-Corrales, T.; Charleston-Villalobos, S.; Chon, K.H. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Ann. Biomed. Eng. 2016, 44, 3124–3135. [Google Scholar] [CrossRef]
- Twisk, F. Association between cognitive performance, physical fitness, and physical activity level in women with chronic fatigue syndrome. J. Rehabil. Res. Dev. 2013, 50, 795–809. [Google Scholar]
- da Silva Souto, C.F.; Pätzold, W.; Paul, M.; Debener, S.; Wolf, K.I. Pre-gelled Electrode Grid for Self-Applied EEG Sleep Monitoring at Home. Front. Neurosci. 2022, 16, 883966. [Google Scholar] [CrossRef]
- Ershad, F.; Houston, M.; Patel, S.; Contreras, L.; Koirala, B.; Lu, Y.; Rao, Z.; Liu, Y.; Dias, N.; Haces-Garcia, A.; et al. Customizable, reconfigurable, and anatomically coordinated large-area, high-density electromyography from drawn-on-skin electrode arrays. Proc. Natl. Acad. Sci. USA Nexus 2023, 2, pgac291. [Google Scholar] [CrossRef]
- Tian, F.; Zhu, L.; Shi, Q.; Wang, R.; Zhang, L.; Dong, Q.; Qian, K.; Zhao, Q.; Hu, B. The Three-Lead EEG Sensor: Introducing an EEG-Assisted Depression Diagnosis System Based on Ant Lion Optimization. IEEE Trans. Biomed. Circuits Syst. 2023, 17, 1305–1318. [Google Scholar] [CrossRef]
- Liu, Y.S.; Sourina, O.; Nguyen, M.K. Real-Time EEG-Based Emotion Recognition and Its Applications. In Proceedings of the International Conference on Cyberworlds (CW), Singapore, Singapore, 20–22 October 2010; pp. 256–277. [Google Scholar]
- Kaur, C.; Singh, P.; Sahni, S. Electroencephalography-Based Source Localization for Depression Using Standardized Low Resolution Brain Electromagnetic Tomography—Variational Mode Decomposition Technique. Eur. Neurol. 2019, 81, 63–75. [Google Scholar] [CrossRef]
- Rahman, L.; Oyama, K. A Comparison of EEG and NIRS Biomarkers for Assessment of Depression Risk. In Proceedings of the 42nd Annual IEEE-Computer-Society Computers, Software and Applications (COMPSAC) Conference—Staying Smarter in a Smartening World, Tokyo, Japan, 23–27 July 2018; pp. 831–832. [Google Scholar]
- Veeranki, Y.R.; Diaz, L.R.M.; Swaminathan, R.; Posada-Quintero, H.F. Nonlinear Signal Processing Methods for Automatic Emotion Recognition Using Electrodermal Activity. IEEE Sens. J. 2024, 24, 8079–8093. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Y.; Liang, H.; Zhao, Z.; Zhu, K.; Qian, K.; Dong, Q.; Zhang, X.; Hu, B. Signals Using an Adaptive Channel Fusion Method via Improved Focal Loss. IEEE J. Biomed. Health Inform. 2023, 27, 3234–3245. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Parashar, A.; Joshi, A.M. DepHNN: A novel hybrid neural network for electroencephalogram (EEG)-based screening of depression. Biomed. Signal Process. Control 2021, 66, 102393. [Google Scholar] [CrossRef]
- Yasin, S.; Othmani, A.; Raza, I.; Hussain, S.A. Machine learning based approaches for clinical and non-clinical depression recognition and depression relapse prediction using audiovisual and EEG modalities: A comprehensive review. Comput. Biol. Med. 2023, 159, 106741. [Google Scholar] [CrossRef]
- Choi, Y.S.; Jeong, H.; Yin, R.T.; Avila, R.; Pfenniger, A.; Yoo, J.; Lee, J.Y.; Tzavelis, A.; Lee, Y.J.; Chen, S.W.; et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 2022, 376, 1006. [Google Scholar] [CrossRef]
- Zaki, N.F.W.; Spence, D.W.; BaHammam, A.S.; Pandi-Perumal, S.R.; Cardinali, D.P.; Brown, G.M. Chronobiological theories of mood disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 107–118. [Google Scholar] [CrossRef]
- Edgar, N.; McClung, C.A. Major depressive disorder: A loss of circadian synchrony? Bioessays 2013, 35, 940–944. [Google Scholar] [CrossRef]
- Hasler, B.P.; Buysse, D.J.; Kupfer, D.J.; Germain, A. Phase relationships between core body temperature, melatonin, and sleep are associated with depression severity: Further evidence for circadian misalignment in non-seasonal depression. Psychiatry Res. 2010, 178, 205–207. [Google Scholar] [CrossRef]
- Bunney, B.G.; Bunney, W.E. Rapid-acting antidepressant strategies: Mechanisms of action. Int. J. Neuropsychopharmacol. 2012, 15, 695–713. [Google Scholar] [CrossRef] [PubMed]
- Robillard, R.; Hermens, D.F.; Naismith, S.L.; White, D.; Rogers, N.L.; Ip, T.K.; Mullin, S.J.; Alvares, G.A.; Guastella, A.J.; Smith, K.L.; et al. Ambulatory sleep-wake patterns and variability in young people with emerging mental disorders. J. Psychiatry Neurosci. 2015, 40, 28–37. [Google Scholar] [CrossRef]
- Migliorini, M.; Mendez, M.O.; Bianchi, A.M. Study of Heart Rate Variability in Bipolar Disorder: Linear and Non-Linear Parameters during Sleep. Front. Neuroeng. 2011, 4, 22. [Google Scholar] [CrossRef]
- Parak, J.; Tarniceriu, A.; Renevey, P.; Bertschi, M.; Delgado-Gonzalo, R.; Korhonen, I. Evaluation of the Beat-to-Beat Detection Accuracy of PulseOn Wearable Optical Heart Rate Monitor. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 8099–8102. [Google Scholar] [CrossRef]
- Mantua, J.; Gravel, N.; Spencer, R.M. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography. Sensors 2016, 16, 646. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, H.S.; Kwon, K.; Kim, H.; Kim, Y.S.; Lee, S.H.; Kwon, Y.T.; Jeong, J.W.; Trotti, L.M.; Duarte, A.; et al. At-home wireless sleep monitoring patches for the clinical assessment of sleep quality and sleep apnea. Sci. Adv. 2023, 9, eadg9671. [Google Scholar] [CrossRef]
- Hu, Y.Z.; Chen, J.; Chen, J.X.; Wang, W.; Zhao, S.; Hu, X.P. An Ensemble Classification Model for Depression Based on Wearable Device Sleep Data. IEEE J. Biomed. Health Inform. 2024, 28, 2602–2612. [Google Scholar] [CrossRef] [PubMed]
- Hori, H.; Koga, N.; Hidese, S.; Nagashima, A.; Kim, Y.; Higuchi, T.; Kunugi, H. 24-h activity rhythm and sleep in depressed outpatients. J. Psychiatr. Res. 2016, 77, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Avery, D.H.; Shah, S.H.; Eder, D.N.; Wildschiodtz, G. Nocturnal sweating and temperature in depression. Acta Psychiatr. Scand. 1999, 100, 295–301. [Google Scholar] [CrossRef]
- Raymann, R.J.; Swaab, D.F.; Van Someren, E.J. Cutaneous warming promotes sleep onset. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2005, 288, R1589–R1597. [Google Scholar] [CrossRef]
- Lorenz, N.; Spada, J.; Sander, C.; Riedel-Heller, S.G.; Hegerl, U. Circadian skin temperature rhythms, circadian activity rhythms and sleep in individuals with self-reported depressive symptoms. J. Psychiatr. Res. 2019, 117, 38–44. [Google Scholar] [CrossRef]
- Engert, V.; Merla, A.; Grant, J.A.; Cardone, D.; Tusche, A.; Singer, T. Exploring the use of thermal infrared imaging in human stress research. PLoS ONE 2014, 9, e90782. [Google Scholar] [CrossRef] [PubMed]
- Seoane, F.; Mohino-Herranz, I.; Ferreira, J.; Alvarez, L.; Buendia, R.; Ayllon, D.; Llerena, C.; Gil-Pita, R. Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 2014, 14, 7120. [Google Scholar] [CrossRef]
- Lee, M.-H.; Yang, G.; Lee, H.-K.; Bang, S. Development Stress monitoring System based on Personal Digital Assistant (PDA). In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 2364–2367. [Google Scholar] [CrossRef]
- Airij, A.G.; Bakhteri, R.; Khalil-Hani, M. Smart Wearable Stress Monitoring Device for Autistic Children. J. Teknol. 2016, 78. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Fang, H.; Wang, H. An Integrated Wearable Sensor for Unobtrusive Continuous Measurement of Autonomic Nervous System. IEEE Internet Things J. 2019, 6, 1104–1113. [Google Scholar] [CrossRef]
- Price, G.D.; Heinz, M.V.; Collins, A.C.; Jacobson, N.C. Detecting major depressive disorder presence using passively-collected wearable movement data in a nationally-representative sample. Psychiatry Res. 2024, 332, 115693. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Tao, J.; Liu, B.; Huang, J.; Lian, Z. Multimodal Spatiotemporal Representation for Automatic Depression Level Detection. IEEE Trans. Affect. Comput. 2023, 14, 294–307. [Google Scholar] [CrossRef]
- Soto, F.A.; Beevers, C.G. Perceptual Observer Modeling Reveals Likely Mechanisms of Face Expression Recognition Deficits in Depression. Biol. Psychiatry-Cogn. Neurosci. Neuroimaging 2024, 9, 597–605. [Google Scholar] [CrossRef]
- Ho, T.C.; Kharrat, F.; Abid, A.; Karray, F.; Koubaa, A. REMONI: An Autonomous System Integrating Wearables and Multimodal Large Language Models for Enhanced Remote Health Monitoring. In Proceedings of the 2024 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Eindhoven, The Netherlands, 26–28 June 2024. [Google Scholar]
- Beames, J.R.; Han, J.; Shvetcov, A.; Zheng, W.Y.; Slade, A.; Dabash, O.; Rosenberg, J.; O’Dea, B.; Kasturi, S.; Hoon, L.; et al. Use of smartphone sensor data in detecting and predicting depression and anxiety in young people (12–25 years): A scoping review. Heliyon 2024, 10, e35472. [Google Scholar] [CrossRef]
- Ertin, E.; Stohs, N.; Kumar, S.; Raij, A.; Al’Absi, M.; Shah, S. AutoSense: Unobtrusively Wearable Sensor Suite for Inferring the Onset, Causality, and Consequences of Stress in the Field. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems (SenSys ’11), Seattle, WA, USA, 1–4 November 2011; pp. 274–287. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, B.; Lee, M. Wearable Sensor Glove Based on Conducting Fabric Using Electrodermal Activity and Pulse-Wave Sensors for e-Health Application. Telemed. e-Health 2010, 16, 209–217. [Google Scholar] [CrossRef]
- Subramanian, R.; Wache, J.; Abadi, M.K.; Vieriu, R.L.; Winkler, S.; Sebe, N. ASCERTAIN: Emotion and Personality Recognition Using Commercial Sensors. IEEE Trans. Affect. Comput. 2018, 9, 147–160. [Google Scholar] [CrossRef]
- Pedrelli, P.; Fedor, S.; Ghandeharioun, A.; Howe, E.; Ionescu, D.F.; Bhathena, D.; Fisher, L.B.; Cusin, C.; Nyer, M.; Yeung, A.; et al. Monitoring Changes in Depression Severity Using Wearable and Mobile Sensors. Front. Psychiatry 2020, 11, 584711. [Google Scholar] [CrossRef] [PubMed]
- Healey, J.A.; Picard, R.W. Detecting Stress During Real-World Driving Tasks Using Physiological Sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Wijsman, J.; Grundlehner, B.; Liu, H.; Penders, J.; Hermens, H. Wearable Physiological Sensors Reflect Mental Stress State in Office-Like Situations. In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2–5 September 2013; pp. 600–605. [Google Scholar]
- Choi, J.; Ahmed, B.; Gutierrez-Osuna, R. Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 279–286. [Google Scholar] [CrossRef]
- Smets, E.; Rios Velazquez, E.; Schiavone, G.; Chakroun, I.; D’Hondt, E.; De Raedt, W.; Cornelis, J.; Janssens, O.; Van Hoecke, S.; Claes, S.; et al. Large-scale wearable data reveal digital phenotypes for daily-life stress detection. NPJ Digit. Med. 2018, 1, 67. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chikersal, P.; Doryab, A.; Villalba, D.K.; Dutcher, J.M.; Tumminia, M.J.; Althoff, T.; Cohen, S.; Creswell, K.G.; Creswell, J.D.; et al. Leveraging Routine Behavior and Contextually-Filtered Features for Depression Detection among College Students. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–33. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Park, J. Development of a statistical model to classify driving stress levels using galvanic skin responses. Hum. Factors Ergon. Manuf. Serv. Ind. 2020, 30, 321–328. [Google Scholar] [CrossRef]
- King, Z.D.; Moskowitz, J.; Egilmez, B.; Zhang, S.; Zhang, L.; Bass, M.; Rogers, J.; Ghaffari, R.; Wakschlag, L.; Alshurafa, N. Micro-Stress EMA: A Passive Sensing Framework for Detecting in-the-wild Stress in Pregnant Mother. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–22. [Google Scholar] [CrossRef]
- Kurniawan, H.; Maslov, A.V.; Pechenizkiy, M. Stress Detection from Speech and Galvanic Skin Response Signals. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, Porto, Portugal, 20–22 June 2013; pp. 209–214. [Google Scholar] [CrossRef]
- Adams, P.; Rabbi, M.; Rahman, T.; Matthews, M.; Voida, A.; Gay, G.; Choudhury, T.; Voida, S. Towards Personal Stress Informatics: Comparing Minimally Invasive Techniques for Measuring Daily Stress in the Wild. In Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, Oldenburg Germany, 20–23 May 2014. [Google Scholar] [CrossRef]
- Dai, R.; Kannampallil, T.; Kim, S.; Thornton, V.; Bierut, L.; Lu, C. Detecting Mental Disorders with Wearables: A Large Cohort Study. In Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation (IoTDI ’23), San Antonio, TX, USA, 9–12 May 2023; pp. 39–51. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, Z.; Gao, X.; Bian, Y.; Wu, R.S.S.; Park, G.; Lou, Z.; Zhang, Z.; Xu, X.; Chen, X.; et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. 2024, 42, 1–10. [Google Scholar] [CrossRef]
- Park, S.; Kim, D. Relationship between Physiological Response and Salivary Cortisol Level to Life Stress 생활 스트레스에 대한 인간의 생리적 반응과 타액 코티졸과의 관계. J. Ergon. Soc. Korea 2007, 26, 11–18. [Google Scholar]
- Al Abdi, R.M.; Alhitary, A.E.; Hay, E.W.A.; Al-bashir, A.K. Objective detection of chronic stress using physiological parameters. Med. Biol. Eng. Comput. 2018, 56, 2273–2286. [Google Scholar] [CrossRef]
- de Santos Sierra, A.; Sanchez Avila, C.; Guerra Casanova, J.; Bailador del Pozo, G. A Stress-Detection System Based on Physiological Signals and Fuzzy Logic. IEEE Trans. Ind. Electron. 2011, 58, 4857–4865. [Google Scholar] [CrossRef]
- Jensen, J.F.; Fish, M.; Blocker, D.; Collins, M.; Brown, B.; Kose, O. Psychophysiological Arousal While Discussing Romantic Challenges with Partners and Friends. Am. J. Fam. Ther. 2018, 46, 213–226. [Google Scholar] [CrossRef]
- Ishaque, S.; Rueda, A.; Nguyen, B.; Khan, N.; Krishnan, S. Physiological Signal Analysis and Classification of Stress from Virtual Reality Video Game. In Proceedings of the 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society: Enabling Innovative Technologies for Global Healthcare EMBC’20, Montreal, QC, Canada, 20–24 July 2020; pp. 867–870. [Google Scholar]
- Karthikeyan, P.; Murugappan, M.; Yaacob, S. Multiple Physiological Signal-Based Human Stress Identification Using Non-Linear Classifiers. Elektron. Elektrotechnika 2013, 19, 80–85. [Google Scholar] [CrossRef]
- Gundogdu, S.; Colak, O.H.; Dogan, E.A.; Gulbetekin, E.; Polat, O. Assessment of mental fatigue and stress on electronic sport players with data fusion. Med. Biol. Eng. Comput. 2021, 59, 1691–1707. [Google Scholar] [CrossRef] [PubMed]
- Volpes, G.; Valenti, S.; Genova, G.; Bara, C.; Parisi, A.; Faes, L.; Busacca, A.; Pernice, R. Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements. Biosensors 2024, 14, 205. [Google Scholar] [CrossRef]
- Khowaja, S.A.; Prabono, A.G.; Setiawan, F.; Yahya, B.N.; Lee, S.-L. Toward soft real-time stress detection using wrist-worn devices for human workspaces. Soft Comput. 2021, 25, 2793–2820. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Jia, X.; Li, H.; Zhao, B.; Yang, Y.; Ren, T.-L. Recent Progress in Biosensors for Depression Monitoring—Advancing Personalized Treatment. Biosensors 2024, 14, 422. https://doi.org/10.3390/bios14090422
Yin J, Jia X, Li H, Zhao B, Yang Y, Ren T-L. Recent Progress in Biosensors for Depression Monitoring—Advancing Personalized Treatment. Biosensors. 2024; 14(9):422. https://doi.org/10.3390/bios14090422
Chicago/Turabian StyleYin, Jiaju, Xinyuan Jia, Haorong Li, Bingchen Zhao, Yi Yang, and Tian-Ling Ren. 2024. "Recent Progress in Biosensors for Depression Monitoring—Advancing Personalized Treatment" Biosensors 14, no. 9: 422. https://doi.org/10.3390/bios14090422
APA StyleYin, J., Jia, X., Li, H., Zhao, B., Yang, Y., & Ren, T. -L. (2024). Recent Progress in Biosensors for Depression Monitoring—Advancing Personalized Treatment. Biosensors, 14(9), 422. https://doi.org/10.3390/bios14090422