Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells
Abstract
:1. Introduction
2. Dielectrophoresis
2.1. DC-DEP
2.2. AC-DEP
3. Applications of DEP
3.1. Particle Separation
3.2. Particle Capture
3.3. Particle Purification
3.4. Particle Focusing
3.5. Particle Assembly
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Terry, S.C.; Jerman, J.H.; Angell, J.B. Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer. IEEE Trans. Electron. Devices 1979, 26, 1880–1886. [Google Scholar] [CrossRef]
- Manz, A.; Graber, N.; Widmer, H.M. Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing. Sens. Actuators B Chem. 1990, 1, 244–248. [Google Scholar] [CrossRef]
- Paguirigan, A.L.; Beebe, D.J. Microfluidics Meet Cell Biology: Bridging the Gap by Validation and Application of Microscale Techniques for Cell Biological Assays. BioEssays 2008, 30, 811–821. [Google Scholar] [CrossRef] [PubMed]
- De Groot, T.E.; Veserat, K.S.; Berthier, E.; Beebe, D.J.; Theberge, A.B. Surface-Tension Driven Open Microfluidic Platform for Hanging Droplet Culture. Lab Chip 2016, 16, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Ober, T.J.; Foresti, D.; Lewis, J.A. Active Mixing of Complex Fluids at the Microscale. Proc. Natl. Acad. Sci. USA 2015, 112, 12293–12298. [Google Scholar] [CrossRef] [PubMed]
- Araci, I.E.; Brisk, P. Recent Developments in Microfluidic Large Scale Integration. Curr. Opin. Biotechnol. 2014, 25, 60–68. [Google Scholar] [CrossRef]
- Kobel, S.; Valero, A.; Latt, J.; Renaud, P.; Lutolf, M. Optimization of Microfluidic Single Cell Trapping for Long-Term On-Chip Culture. Lab Chip 2010, 10, 857–863. [Google Scholar] [CrossRef]
- Yandrapalli, N.; Robinson, T. Ultra-High Capacity Microfluidic Trapping of Giant Vesicles for High-Throughput Membrane Studies. Lab Chip 2019, 19, 626–633. [Google Scholar] [CrossRef]
- Magnusson, C.; Augustsson, P.; Lenshof, A.; Ceder, Y.; Laurell, T.; Lilja, H. Clinical-Scale Cell-Surface-Marker Independent Acoustic Microfluidic Enrichment of Tumor Cells from Blood. Anal. Chem. 2017, 89, 11954–11961. [Google Scholar] [CrossRef]
- Nasiri, R.; Shamloo, A.; Ahadian, S.; Amirifar, L.; Akbari, J.; Goudie, M.J.; Lee, K.J.; Ashammakhi, N.; Dokmeci, M.R.; Di Carlo, D.; et al. Microfluidic-Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small 2020, 16, e2000171. [Google Scholar] [CrossRef]
- Rashed, M.Z.; Williams, S.J. Advances and Applications of Isomotive Dielectrophoresis for Cell Analysis. Anal. Bioanal. Chem. 2020, 412, 3813–3833. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.A.; Ibrahim, F.; Yafouz, B. Dielectrophoresis for Biomedical Sciences Applications: A Review. Sensors 2017, 17, 449. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Cho, Y.K.; Lee, B.S.; Lee, J.G.; Ko, C. Multifunctional Microvalves Control by Optical Illumination on Nanoheaters and Its Application in Centrifugal Microfluidic Devices. Lab Chip 2007, 7, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Baron, V.O.; Chen, M.; Hammarstrom, B.; Hammond, R.J.H.; Glynne-Jones, P.; Gillespie, S.H.; Dholakia, K. Real-Time Monitoring of Live Mycobacteria with a Microfluidic Acoustic-Raman Platform. Commun. Biol. 2020, 3, 236. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of Pressure-Driven Microfluidic Networks Using Electric Circuit Analogy. Lab Chip 2012, 12, 515–545. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Hou, H.; Wang, Y.; Fu, L. Micro-Magnetofluidics in Microfluidic Systems: A Review. Sens. Actuators B Chem. 2016, 224, 1–15. [Google Scholar] [CrossRef]
- Petersson, F.; Lena, A.; Swa, A.; Laurell, T. Free Flow Acoustophoresis Microfluidic-Based Mode of Particle and Cell Separation. Anal. Chem. 2007, 79, 5117–5123. [Google Scholar] [CrossRef]
- Khoshmanesh, K.; Nahavandi, S.; Baratchi, S.; Mitchell, A.; Kalantar-zadeh, K. Dielectrophoretic Platforms for Bio-Microfluidic Systems. Biosens. Bioelectron. 2011, 26, 1800–1814. [Google Scholar] [CrossRef]
- Robert, D.; Pamme, N.; Conjeaud, H.; Gazeau, F.; Iles, A.; Wilhelm, C. Cell Sorting by Endocytotic Capacity in a Microfluidic Magnetophoresis Device. Lab Chip 2011, 11, 1902–1910. [Google Scholar] [CrossRef]
- Zhang, H.; Tu, E.; Hagen, N.D.; Schnabel, C.A.; Paliotti, M.J.; Hoo, W.S.; Nguyen, P.M.; Kohrumel, J.R.; Butler, W.F.; Chachisvillis, M.; et al. Time-of-Flight Optophoresis Analysis of Live Whole Cells in Microfluidic Channels. Biomed. Microdevices 2004, 6, 11–21. [Google Scholar] [CrossRef]
- Zhang, P.; Bachman, H.; Ozcelik, A.; Huang, T.J. Acoustic Microfluidics. Annu. Rev. Anal. Chem. 2020, 13, 17–43. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, M.; Lin, Y.; Xu, J. Acoustic Microfluidic Separation Techniques and Bioapplications: A Review. Micromachines 2020, 11, 921. [Google Scholar] [CrossRef] [PubMed]
- Friend, J.; Yeo, L.Y. Microscale Acoustofluidics: Microfluidics Driven via Acoustics and Ultrasonics. Rev. Mod. Phys. 2011, 83, 647–704. [Google Scholar] [CrossRef]
- Lomeli-Martin, A.; Ernst, O.D.; Cardenas-Benitez, B.; Cobos, R.; Khair, A.S.; Lapizco-Encinas, B.H. Characterization of the Nonlinear Electrophoretic Behavior of Colloidal Particles in a Microfluidic Channel. Anal. Chem. 2023, 95, 6740–6747. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Onck, P.; den Toonder, J. A Concise Review of Microfluidic Particle Manipulation Methods. Microfluid. Nanofluidics 2020, 24, 24. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, H.; Neuzil, P. DEP-on-a-Chip: Dielectrophoresis Applied to Microfluidic Platforms. Micromachines 2019, 10, 423. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.; Weihua, L.; Jun, Z.; Gursel, A.; Weijia, W. A Review of Microfabrication Techniques and Dielectrophoretic Microdevices for Particle Manipulation and Separation. J. Phys. D Appl. Phys. 2014, 47, 063001. [Google Scholar]
- Lapizco-Encinas, B.H. On the Recent Developments of Insulator-Based Dielectrophoresis: A Review. Electrophoresis 2019, 40, 358–375. [Google Scholar] [CrossRef]
- Kim, D.; Sonker, M.; Ros, A. Dielectrophoresis: From Molecular to Micrometer-Scale Analytes. Anal. Chem. 2019, 91, 277–295. [Google Scholar] [CrossRef]
- Hejazian, M.; Li, W.; Nguyen, N.-T. Lab on a Chip for Continuous-Flow Magnetic Cell Separation. Lab Chip 2015, 15, 959–970. [Google Scholar] [CrossRef]
- Giouroudi, I.; Kokkinis, G. Recent Advances in Magnetic Microfluidic Biosensors. Nanomaterials 2017, 7, 171. [Google Scholar] [CrossRef] [PubMed]
- Pamme, N. Magnetism and Microfluidics. Lab Chip 2006, 6, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Pan, Y.-L.; Videen, G.; Wang, C. Optical Trapping and Manipulation of Single Particles in Air: Principles, Technical Details, and Applications. J. Quant. Spectrosc. Radiat. Transf. 2018, 214, 94–119. [Google Scholar] [CrossRef]
- Xie, X.; Wang, X.; Min, C.; Ma, H.; Yuan, Y.; Zhou, Z.; Zhang, Y.; Bu, J.; Yuan, X. Single-Particle Trapping and Dynamic Manipulation with Holographic Optical Surface-Wave Tweezers. Photonics Res. 2022, 10, 166–173. [Google Scholar] [CrossRef]
- Pohl, H.A. The Motion and Precipitation of Suspensoids in Divergent Electric Fields. J. Appl. Phys. 1951, 22, 869–871. [Google Scholar] [CrossRef]
- Martinez-Duarte, R. Microfabrication Technologies in Dielectrophoresis Applications—A Review. Electrophoresis 2012, 33, 3110–3132. [Google Scholar] [CrossRef]
- Liang, L.; Ai, Y.; Zhu, J.; Qian, S.; Xuan, X. Wall-Induced Lateral Migration in Particle Electrophoresis through a Rectangular Microchannel. J. Colloid Interface Sci. 2010, 347, 142–146. [Google Scholar] [CrossRef]
- Pethig, R. Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells. Crit. Rev. Biotechnol. 1996, 16, 331–348. [Google Scholar] [CrossRef]
- Chu, H.K.; Huan, Z.; Mills, J.K.; Yang, J.; Sun, D. Three-Dimensional Cell Manipulation and Patterning Using Dielectrophoresis via a Multi-Layer Scaffold Structure. Lab Chip 2015, 15, 920–930. [Google Scholar] [CrossRef]
- Braff, W.A.; Pignier, A.; Buie, C.R. High Sensitivity Three-Dimensional Insulator-Based Dielectrophoresis. Lab Chip 2012, 12, 1327–1331. [Google Scholar] [CrossRef]
- Morgan, H.; Green, N.G. AC Electrokinetics: Colloids and Nanoparticles; Research Studies Press: Boston, MA, USA, 2003. [Google Scholar] [CrossRef]
- Jones, T.B. Electromechanics of Particles; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wan, K.; Wu, M.; Guo, L.; Liu, X.; Wei, G. On the Design, Functions, and Biomedical Applications of High-Throughput Dielectrophoretic Micro-/Nanoplatforms: A Review. Nanoscale 2021, 13, 4330–4358. [Google Scholar] [CrossRef]
- Pesch, G.R.; Du, F. A Review of Dielectrophoretic Separation and Classification of Non-Biological Particles. Electrophoresis 2021, 42, 134–152. [Google Scholar] [CrossRef]
- Dongqing, L. AC Electrokinetics: Colloids and Nanoparticles; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, A.; Kim, E.; Ro, C.; Adams, T.; Flanagan, L.A.; Taylor, T.J.; Hayes, M.A. Identification of Neural Stem and Progenitor Cell Subpopulations Using DC Insulator-Based Dielectrophoresis. Analyst 2019, 144, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Kuhnell, D.; Borra, V.J.; Langevin, S.M.; Nakamura, T.; Esfandiari, L. Rapid and Label-Free Isolation of Small Extracellular Vesicles from Biofluids Utilizing a Novel Insulator Based Dielectrophoretic Device. Lab Chip 2019, 19, 3726–3734. [Google Scholar] [CrossRef]
- Crowther, C.V.; Hilton, S.H.; Kemp, L.K.; Hayes, M.A. Isolation and Identification of Listeria Monocytogenes Utilizing DC Insulator-Based Dielectrophoresis. Anal. Chim. Acta 2019, 1068, 41–51. [Google Scholar] [CrossRef]
- Sun, K.H.; Chien, W.C.; Hsu, H.F. Fabrication of Rectification Nanosensors by Direct Current Dielectrophoresis Alignment of ZnO Nanowires. Nanoscale Res. Lett. 2021, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Mar, S.; Perez-Gonzalez, V.H.; Mata-Gómez, M.A.; Gallo-Villanueva, R.C.; González-Valdez, J. Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic-Enhanced PDMS-Based Microfluidics. Anal. Chem. 2019, 91, 14975–14982. [Google Scholar] [CrossRef]
- Gao, T.; Zhao, K.; Zhang, J.; Zhang, K. DC-Dielectrophoretic Manipulation and Isolation of Microplastic Particle-Treated Microalgae Cells in Asymmetric-Orifice-Based Microfluidic Chip. Micromachines 2023, 14, 229. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Han, X.; Li, D.; Liu, Q.; Li, D. Simultaneous and Continuous Particle Separation and Counting: Via Localized DC-Dielectrophoresis in a Microfluidic Chip. RSC Adv. 2021, 11, 3827–3833. [Google Scholar] [CrossRef]
- Lu, S.Y.; Malekanfard, A.; Beladi-Behbahani, S.; Zu, W.; Kale, A.; Tzeng, T.R.; Wang, Y.N.; Xuan, X. Passive Dielectrophoretic Focusing of Particles and Cells in Ratchet Microchannels. Micromachines 2020, 11, 451. [Google Scholar] [CrossRef]
- Li, D.; Lu, X.; Song, Y.; Wang, J.; Li, D.; Xuan, X. Sheathless Electrokinetic Particle Separation in a Bifurcating Microchannel. Biomicrofluidics 2016, 10, 054104. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, D. Continuous Separation of Nanoparticles by Type via Localized DC-Dielectrophoresis Using Asymmetric Nano-Orifice in Pressure-Driven Flow. Sens. Actuators B Chem. 2017, 250, 274–284. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, Y.; Lei, H.; Liu, S.; Xu, F.; Meng, X.; Bai, M.; Wang, X.; Yang, G. Dielectrophoresis Separation of Platelets Using a Novel Zigzag Microchannel. Micromachines 2020, 11, 890. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Wang, Z.; Liu, N.; Zhang, J.F.; Qu, Z.G. Nanopore-Based Active Oil Droplet Filtration under Negative DC Dielectrophoresis for Oily Wastewater Treatment. J. Phys. D Appl. Phys. 2021, 54, 345302. [Google Scholar] [CrossRef]
- Mohammadi, M.; Madadi, H.; Casals-Terré, J.; Sellarès, J. Hydrodynamic and Direct-Current Insulator-Based Dielectrophoresis (H-DC-IDEP) Microfluidic Blood Plasma Separation. Anal. Bioanal. Chem. 2015, 407, 4733–4744. [Google Scholar] [CrossRef]
- Abdallah, B.G.; Roy-Chowdhury, S.; Coe, J.; Fromme, P.; Ros, A. High Throughput Protein Nanocrystal Fractionation in a Microfluidic Sorter. Anal. Chem. 2015, 87, 4159–4167. [Google Scholar] [CrossRef]
- Zhao, K.; Peng, R.; Li, D. Separation of Nanoparticles by a Nano-Orifice Based DC-Dielectrophoresis Method in a Pressure-Driven Flow. Nanoscale 2016, 8, 18945–18955. [Google Scholar] [CrossRef]
- Barik, A.; Chen, X.; Maher, L.J.; Warrington, A.E.; Rodriguez, M.; Oh, S.H.; Wittenberg, N.J. Nanogap Dielectrophoresis Combined with Buffer Exchange for Detecting Protein Binding to Trapped Bioparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 611, 125829. [Google Scholar] [CrossRef]
- Oshiro, K.; Wakizaka, Y.; Takano, M.; Itoi, T.; Ohge, H.; Koba, K.; Yarimizu, K.; Fujiyoshi, S.; Maruyama, F. Fabrication of a New All-in-One Microfluidic Dielectrophoresis Integrated Chip and Living Cell Separation. iScience 2022, 25, 103776. [Google Scholar] [CrossRef]
- Hawari, A.H.; Alkhatib, A.M.; Das, P.; Thaher, M.; Benamor, A. Effect of the Induced Dielectrophoretic Force on Harvesting of Marine Microalgae (Tetraselmis sp.) in Electrocoagulation. J. Environ. Manag. 2020, 260, 110106. [Google Scholar] [CrossRef]
- Frusawa, H. Frequency-Modulated Wave Dielectrophoresis of Vesicles And Cells: Periodic U-Turns at the Crossover Frequency. Nanoscale Res. Lett. 2018, 13, 169. [Google Scholar] [CrossRef] [PubMed]
- Malekanfard, A.; Beladi-Behbahani, S.; Tzeng, T.R.; Zhao, H.; Xuan, X. AC Insulator-Based Dielectrophoretic Focusing of Particles and Cells in an “Infinite” Microchannel. Anal. Chem. 2021, 93, 5947–5953. [Google Scholar] [CrossRef]
- Modarres, P.; Tabrizian, M. Frequency Hopping Dielectrophoresis as a New Approach for Microscale Particle and Cell Enrichment. Sens. Actuators B Chem. 2019, 286, 493–500. [Google Scholar] [CrossRef]
- Punjiya, M.; Nejad, H.R.; Mathews, J.; Levin, M.; Sonkusale, S. A Flow through Device for Simultaneous Dielectrophoretic Cell Trapping and AC Electroporation. Sci. Rep. 2019, 9, 11988. [Google Scholar] [CrossRef]
- Takahashi, Y.; Miyata, S. Continuous ES/Feeder Cell-Sorting Device Using Dielectrophoresis and Controlled Fluid Flow. Micromachines 2020, 11, 734. [Google Scholar] [CrossRef]
- Derakhshan, R.; Ramiar, A.; Ghasemi, A. Numerical Investigation into Continuous Separation of Particles and Cells in a Two-Component Fluid Flow Using Dielectrophoresis. J. Mol. Liq. 2020, 310, 113211. [Google Scholar] [CrossRef]
- Han, J.; Niroui, F.; Lang, J.H.; Bulović, V. Scalable Self-Limiting Dielectrophoretic Trapping for Site-Selective Assembly of Nanoparticles. Nano Lett. 2022, 22, 8258–8265. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.; Ren, Y.; Yan, Y.; Wu, A. Numerical Simulation of Circulating Tumor Cell Separation in a Dielectrophoresis Based Y-Y Shaped Microfluidic Device. Sep. Purif. Technol. 2021, 255, 117343. [Google Scholar] [CrossRef]
- Lv, B.; Cai, J. Simulation and Analysis of Geometric Parameters Based on Taguchi Method in Y-Y Microfluidic Device for Circulating Tumor Cell Separation by Alternating Current Dielectrophoresis. J. Chromatogr. A 2023, 1693, 463894. [Google Scholar] [CrossRef]
- Liu, J.; Jin, Q.; Geng, J.; Xia, J.; Wu, Y.; Chen, H. Fast Capture and Efficient Removal of Bloom Algae Based on Improved Dielectrophoresis Process. Int. J. Environ. Res. Public Health 2023, 20, 832. [Google Scholar] [CrossRef]
- Jones, P.V.; Salmon, G.L.; Ros, A. Continuous Separation of DNA Molecules by Size Using Insulator-Based Dielectrophoresis. Anal. Chem. 2017, 89, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Agarwal, P.; Zhao, S.; Zhao, Y.; Lu, X.; He, X. Continuous On-Chip Cell Separation Based on Conductivity-Induced Dielectrophoresis with 3D Self-Assembled Ionic Liquid Electrodes. Anal. Chem. 2016, 88, 8264–8271. [Google Scholar] [CrossRef] [PubMed]
- Zemánek, J.; Michálek, T.; Hurák, Z. Phase-Shift Feedback Control for Dielectrophoretic Micromanipulation. Lab Chip 2018, 18, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Anand, R.K. High-Throughput Selective Capture of Single Circulating Tumor Cells by Dielectrophoresis at a Wireless Electrode Array. J. Am. Chem. Soc. 2017, 139, 8950–8959. [Google Scholar] [CrossRef]
- Pendharkar, G.; Lu, Y.T.; Chang, C.M.; Lu, M.P.; Liu, C.H. A High Throughput Biocompatible Insulator Based Dielectrophoretic (IDEP) Lab Chip for Patterning and Fusion of Biological Cells. Sens. Actuators B Chem. 2022, 354, 131109. [Google Scholar] [CrossRef]
- Liu, B.; Xia, Q.; Zhao, Y.; Gao, G. Dielectrophoresis-Based Universal Membrane Antifouling Strategy toward Colloidal Foulants. Environ. Sci. Technol. 2022, 56, 10997–11005. [Google Scholar] [CrossRef]
- Zhao, K.; Larasati; Duncker, B.P.; Li, D. Continuous Cell Characterization and Separation by Microfluidic Alternating Current Dielectrophoresis. Anal. Chem. 2019, 91, 6304–6314. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, K.; Tong, N.; Wang, J. Separation of Microalgae Cells in a Microfluidic Chip Based on AC Dielectrophoresis. J. Chem. Technol. Biotechnol. 2023, 98, 140–150. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Shen, M.; Shi, J.; Wu, C.; Song, Z.; Zhao, Y. Dielectrophoretic Characterization and Selection of Non-Spherical Flagellate Algae in Parallel Channels with Right-Angle Bipolar Electrodes. Lab Chip 2024, 24, 2506–2517. [Google Scholar] [CrossRef]
- Zhou, T.; He, J.; Wu, Z.; Bian, Q.; He, X.; Zhou, S.; Zhao, J.; Wu, T.; Shi, L.; Yan, H. Dielectrophoretic-Inertial Microfluidics for Symbiodinium Separation and Enrichment. Phys. Fluids 2024, 36, 032018. [Google Scholar] [CrossRef]
- Julius, L.A.N.; Akgül, D.; Krishnan, G.; Falk, F.; Korvink, J.; Badilita, V. Portable Dielectrophoresis for Biology: ADEPT Facilitates Cell Trapping, Separation, and Interactions. Microsyst. Nanoeng. 2024, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Weirauch, L.; Lorenz, M.; Hill, N.; Lapizco-Encinas, B.H.; Baune, M.; Pesch, G.R.; Thöming, J. Material-Selective Separation of Mixed Microparticles via Insulator-Based Dielectrophoresis. Biomicrofluidics 2019, 13, 064112. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yu, W.; Zhou, T.; Li, M.; Song, Y.; Li, D. Conductivity-Difference-Enhanced DC Dielectrophoretic Particle Separation in a Microfluidic Chip. Analyst 2022, 147, 1106–1116. [Google Scholar] [CrossRef]
- Zhao, K.; Li, D. Manipulation and Separation of Oil Droplets by Using Asymmetric Nano-Orifice Induced DC Dielectrophoretic Method. J. Colloid Interface Sci. 2018, 512, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, D. Direct Current Dielectrophoretic Manipulation of the Ionic Liquid Droplets in Water. J. Chromatogr. A 2018, 1558, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, D. Numerical Studies of Manipulation and Separation of Janus Particles in Nano-Orifice Based DC-Dielectrophoretic Microfluidic Chips. J. Micromechanics Microengineering 2017, 27, 095007. [Google Scholar] [CrossRef]
- Liu, Z.; Li, D.; Saffarian, M.; Tzeng, T.R.; Song, Y.; Pan, X.; Xuan, X. Revisit of Wall-Induced Lateral Migration in Particle Electrophoresis through a Straight Rectangular Microchannel: Effects of Particle Zeta Potential. Electrophoresis 2019, 40, 955–960. [Google Scholar] [CrossRef]
- Crowther, C.V.; Hayes, M.A. Refinement of Insulator-Based Dielectrophoresis. Analyst 2017, 142, 1608–1618. [Google Scholar] [CrossRef]
- Becker, F.F.; Wang, X.B.; Huang, Y.; Pethig, R.; Vykoukal, J.; Gascoyne, P.R. Separation of Human Breast Cancer Cells from Blood by Differential Dielectric Affinity. Proc. Natl. Acad. Sci. USA 1995, 92, 860–864. [Google Scholar] [CrossRef]
- Siebman, C.; Velev, O.D.; Slaveykova, V.I. Probing Contaminant-Induced Alterations in Chlorophyll Fluorescence by AC-Dielectrophoresis-Based 2D-Algal Array. Biosensors 2018, 8, 15. [Google Scholar] [CrossRef]
- Zhao, K.; Li, D. Tunable Droplet Manipulation and Characterization by Ac-DEP. ACS Appl. Mater. Interfaces 2018, 10, 36572–36581. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chattaraj, R.; Ren, Y.; Jiang, H.; Lee, D. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces. Anal. Chem. 2021, 93, 7635–7646. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Fan, L.; Zeng, Y.; Liu, Y.; Chen, S.; Tan, Q.; Lam, R.H.W.; Sun, D. A Simplified Sheathless Cell Separation Approach Using Combined Gravitational-Sedimentation-Based Prefocusing and Dielectrophoretic Separation. Lab Chip 2018, 18, 1521–1532. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, D.; Zhao, Q.; Yan, S.; Tang, S.Y.; Tan, S.H.; Guo, J.; Xia, H.; Nguyen, N.T.; Li, W. Tunable Particle Separation in a Hybrid Dielectrophoresis (DEP)-Inertial Microfluidic Device. Sens. Actuators B Chem. 2018, 267, 14–25. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, Y.; Tao, Y.; Hou, L.; Jiang, H. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array. Anal. Chem. 2018, 90, 11461–11469. [Google Scholar] [CrossRef]
- Wang, D.; Yang, S.; Wang, N.; Guo, H.; Feng, S.; Luo, Y.; Zhao, J. A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy. Biosensors 2024, 14, 174. [Google Scholar] [CrossRef]
- Soong, W.J.; Wang, C.H.; Chen, C.; Lee, G. Bin Nanoscale Sorting of Extracellular Vesicles via Optically-Induced Dielectrophoresis on an Integrated Microfluidic System. Lab Chip 2024, 24, 1965–1976. [Google Scholar] [CrossRef]
- Chu, P.-Y.; Wu, A.-Y.; Tsai, K.-Y.; Hsieh, C.-H.; Wu, M.-H. Combination of an Optically Induced Dielectrophoresis (ODEP) Mechanism and a Laminar Flow Pattern in a Microfluidic System for the Continuous Size-Based Sorting and Separation of Microparticles. Biosensors 2024, 14, 297. [Google Scholar] [CrossRef]
- Barik, A.; Zhang, Y.; Grassi, R.; Nadappuram, B.P.; Edel, J.B.; Low, T.; Koester, S.J.; Oh, S.H. Graphene-Edge Dielectrophoretic Tweezers for Trapping of Biomolecules. Nat. Commun. 2017, 8, 1867. [Google Scholar] [CrossRef]
- Ertsgaard, C.T.; Wittenberg, N.J.; Klemme, D.J.; Barik, A.; Shih, W.C.; Oh, S.H. Integrated Nanogap Platform for Sub-Volt Dielectrophoretic Trapping and Real-Time Raman Imaging of Biological Nanoparticles. Nano Lett. 2018, 18, 5946–5953. [Google Scholar] [CrossRef]
- Shi, L.; Rana, A.; Esfandiari, L. A Low Voltage Nanopipette Dielectrophoretic Device for Rapid Entrapment of Nanoparticles and Exosomes Extracted from Plasma of Healthy Donors. Sci. Rep. 2018, 8, 6751. [Google Scholar] [CrossRef] [PubMed]
- Kwak, T.J.; Lee, H.; Lee, S.W.; Woehl, J.C.; Chang, W.J. Size-Selective Particle Trapping in Dielectrophoretic Corral Traps. J. Phys. Chem. C 2021, 125, 6278–6286. [Google Scholar] [CrossRef]
- Weber, M.U.; Petkowski, J.J.; Weber, R.E.; Krajnik, B.; Stemplewski, S.; Panek, M.; Dziubak, T.; Mrozinska, P.; Piela, A.; Paluch, E. Chip for Dielectrophoretic Microbial Capture, Separation and Detection II: Experimental Study. Nanotechnology 2023, 34, 175502. [Google Scholar] [CrossRef]
- Islam, M.N.; Jaiswal, B.; Gagnon, Z.R. High-Throughput Continuous Free-Flow Dielectrophoretic Trapping of Micron-Scale Particles and Cells in Paper Using Localized Nonuniform Pore-Scale-Generated Paper-Based Electric Field Gradients. Anal. Chem. 2024, 96, 1084–1092. [Google Scholar] [CrossRef]
- Weirauch, L.; Giesler, J.; Baune, M.; Pesch, G.R.; Thöming, J. Shape-Selective Remobilization of Microparticles in a Mesh-Based DEP Filter at High Throughput. Sep. Purif. Technol. 2022, 300, 121792. [Google Scholar] [CrossRef]
- Chu, P.Y.; Hsieh, C.H.; Wu, M.H. The Combination of Immunomagnetic Bead-Based Cell Isolation and Optically Induced Dielectrophoresis (ODEP)-Based Microfluidic Device for the Negative Selection-Based Isolation of Circulating Tumor Cells (CTCs). Front. Bioeng. Biotechnol. 2020, 8, 921. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Chen, J.; Yang, F.; Li, G. Separation of Macrophages Using a Dielectrophoresis-Based Microfluidic Device. Biochip J. 2020, 14, 185–194. [Google Scholar] [CrossRef]
- Park, J.; Komori, T.; Uda, T.; Miyajima, K.; Fujii, T.; Kim, S.H. Sequential Cell-Processing System by Integrating Hydrodynamic Purification and Dielectrophoretic Trapping for Analyses of Suspended Cancer Cells. Micromachines 2020, 11, 47. [Google Scholar] [CrossRef]
- Kiryo, T.; Takahashi, Y.; Miyata, S. Purification of Pluripotent Embryonic Stem Cells Using Dielectrophoresis and a Flow Control System. Eng. Life Sci. 2022, 22, 417–426. [Google Scholar] [CrossRef]
- Bian, Q.; Wu, T.; Wu, Z.; He, J.; Wang, T.; Liu, Z.; Liu, X.; Yan, H.; Zhou, T.; Shi, L. Optically Induced Dielectrophoresis for Continuous Separation and Purification of C. vulgaris and H. pluvialis. Phys. Fluids 2024, 36, 042006. [Google Scholar] [CrossRef]
- Chen, J.K.; Wang, Y.X.; Huang, C.F.; Liu, H.W. Acceleration of Adsorption of Heavy Metal Ion Micelles onto Iron/Polyvinyltetrazole Adsorbents with Dielectrophoresis Force under Polarization. J. Water Process Eng. 2024, 58, 104793. [Google Scholar] [CrossRef]
- Faraghat, S.A.; Fatoyinbo, H.O.; Hoettges, K.F.; Hughes, M.P. Low-Cost, High-Throughput and Rapid-Prototyped 3D-Integrated Dielectrophoretic Channels for Continuous Cell Enrichment and Separation. Electrophoresis 2023, 44, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Montoya Mira, J.; Sapre, A.A.; Walker, B.S.; Alvarez, J.B.; Gustafson, K.T.; Tu, E.; Fischer, J.M.; Wong, M.H.; Esener, S.; Chiu, Y.J. Label-Free Enrichment of Rare Unconventional Circulating Neoplastic Cells Using a Microfluidic Dielectrophoretic Sorting Device. Commun. Biol. 2021, 4, 1130. [Google Scholar] [CrossRef]
- Keck, D.; Stuart, C.; Duncan, J.; Gullette, E.; Martinez-Duarte, R. Highly Localized Enrichment of Trypanosoma Brucei Parasites Using Dielectrophoresis. Micromachines 2020, 11, 625. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, Y.; Liu, Y.; Dong, S.; Chen, X.; Bai, F.; Song, S.; Fu, J. Dielectrophoresis-Based Protein Enrichment for a Highly Sensitive Immunoassay Using Ag/SiO2 Nanorod Arrays. Small 2018, 14, e1703265. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.V.; Jen, C.P. Impedance Detection Integrated with Dielectrophoresis Enrichment Platform for Lung Circulating Tumor Cells in a Microfluidic Channel. Biosens. Bioelectron. 2018, 121, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Famularo, N.R.; Hendley, R.S.; Boehm, S.J.; Guo, X.; Mayer, T.S.; Bevan, M.A.; Keating, C.D. Segmentation-Dependent Dielectrophoretic Assembly of Multisegment Metal/Dielectric Particles. J. Phys. Chem. C 2020, 124, 18755–18769. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, H.; Yang, W.; Wen, Y.; Wang, Z.; Li, W.J.; Liu, L. Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis. ACS Appl. Mater. Interfaces 2017, 9, 16715–16724. [Google Scholar] [CrossRef]
- Zheng, F.; Yang, X.; Wu, Y.; Zhou, Z.; Liu, Z. Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices by Alternating Current Coupling Dielectrophoresis. Carbon 2017, 124, 693–699. [Google Scholar] [CrossRef]
- Vijayaraghavan, A.; Blatt, S.; Weissenberger, D.; Oron-Carl, M.; Hennrich, F.; Gerthsen, D.; Hahn, H.; Krupke, R. Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices. Nano Lett. 2007, 7, 1556–1560. [Google Scholar] [CrossRef]
- Sire, C.; Ardiaca, F.; Lepilliet, S.; Seo, J.W.T.; Hersam, M.C.; Dambrine, G.; Happy, H.; Derycke, V. Flexible Gigahertz Transistors Derived from Solution-Based Single-Layer Graphene. Nano Lett. 2012, 12, 1184–1188. [Google Scholar] [CrossRef] [PubMed]
- Burg, B.R.; Schneider, J.; Maurer, S.; Schirmer, N.C.; Poulikakos, D. Dielectrophoretic Integration of Single- and Few-Layer Graphenes. J. Appl. Phys. 2010, 107, 034302. [Google Scholar] [CrossRef]
- Burg, B.R.; Lütolf, F.; Schneider, J.; Schirmer, N.C.; Schwamb, T.; Poulikakos, D. High-Yield Dielectrophoretic Assembly of Two-Dimensional Graphene Nanostructures. Appl. Phys. Lett. 2009, 94, 053110. [Google Scholar] [CrossRef]
- Frisenda, R.; Giovanelli, E.; Mishra, P.; Gant, P.; Flores, E.; Sánchez, C.; Ares, J.R.; de Lara, D.P.; Ferrer, I.J.; Pérez, E.M.; et al. Dielectrophoretic Assembly of Liquid-Phase-Exfoliated TiS3 Nanoribbons for Photodetecting Applications. Chem. Commun. 2017, 53, 6164–6167. [Google Scholar] [CrossRef] [PubMed]
- Inaba, M.; Oda, T.; Kono, M.; Phansiri, N.; Morita, T.; Nakahara, S.; Nakano, M.; Suehiro, J. Effect of Mixing Ratio on NO2 Gas Sensor Response with SnO2-Decorated Carbon Nanotube Channels Fabricated by One-Step Dielectrophoretic Assembly. Sens. Actuators B Chem. 2021, 344, 130257. [Google Scholar] [CrossRef]
- Seo, S.; Oh, I.H.; Chang, S.T. On-Chip Micro-Supercapacitor with High Areal Energy Density Based on Dielectrophoretic Assembly of Nanoporous Metal Microwire Electrodes. Small 2024, 20, 2311726. [Google Scholar] [CrossRef]
Technique | Working Mechanism | Advantage | Limitations | Refs. | |
---|---|---|---|---|---|
Acoustic | Acoustic radiation pressure transfers momentum from an acoustic wave to a particle | Large number of particles can be processed at the same time with high efficiency, wide operating range in the channel space, contactless operation, wide versatility, good biocompatibility, high precision, adjustable control, and flexible function | Relatively high equipment cost, need for frequency-specific acoustic sources, need for precise control of acoustic sources and microfluidic structures, design complexity, induced thermal energy increases temperature, relatively low throughput, problems associated with wavelength and diffraction | Zhang et al. [21], Gao et al. [22], Friend et al. [23] | |
Electrical | Electrphoresis (EP) | The electrophoretic force drives charged particles to move in the direction of the electric field | Suitable for rapid separation of charged particles, low voltage is sufficient for operation, simple equipment, easy to build and control, low cost | Limited to charged particles, the electric field conditions need to be optimized to avoid particle aggregation | Lomeli-Martin et al. [24], Zhang et al. [25] |
Dielectrophoresis (DEP) | Interactions involving the electrical polarization of particles and a non-uniform electrical field | Highly selective and sensitive to the electrical properties of particles, manipulating neutral particles, precise operation, label-free, real-time control, automated, microfluidic, and electronic compatible | Requires frequency-specific voltages, sophisticated electrode design, and complexelectric field control, higher cost, joule heat effect, low, and side effects affecting cell viability | Zhang et al. [26], Li et al. [27], Encinas [28], Kim et al. [29] | |
Magnetica | Homogeneous/inhomogeneous magnetic field | Magnetic particles can be manipulated for specific applications, high purity, highly specific cell separation based on magnetic labeling, or label-free cell manipulation based on negative magnetic electrophoresis | High cost of equipment, requires specific types of magnetic particles, additional cost of magnetic markers and magnetic fluids, relatively low throughput | Hejazian et al. [30], Giouroudi et al. [31], Pamme [32] | |
Optical | Manipulation of particles by radiation pressure exerted by a focused laser beam | Non-contact operation for precise manipulation of individual particles and high efficiency | Requires expensive laser systems and precision optical components with high alignment requirements, high equipment costs, may be damaging to particles, and requires complex optical system design | Gong et al. [33], Xie et al. [34] |
Method | Structure | Sample | Medium | Application | Flow Rate or Throughput | Efficiency or Purity | Ref. |
---|---|---|---|---|---|---|---|
DC-DEP | Sawtooth-shaped structure | HEK 293 cells, NSPCs | DEP buffer | Distinguishing and characterizing | - | >99.99% | Liu et al. [46] |
Non-uniform electric field generated at the tip of the microtubule | Small extracellular vesicles (30–150 nm) | Biofluid | Isolation | 0.6 mL/h Throughput | >90% | Shi et al. [47] | |
Sawtooth microchannel | Listeria monocytogenes | Phosphate buffer | Separation and identification | 1.18 × 108 bacteria/s/m2 Throughput | 95% | Crowther et al. [48] | |
Metal-Semiconductor-Metal | ZnO nanowires (NWs) | Zinc acetate, HMTA | Arrangement | 1.28 A/s Forward Bias 20,000 A/s Reverse Bias | >90% | Sun et al. [49] | |
Two electrically insulated columns with different clearances | Exosomes from MCF-7 cells (104.02 ± 6.99 nm) | Bidistilled water | Separation | 0.3 mL/min Throughput | >90% | Ayala-Mar et al. [50] | |
Asymmetric orifice | Chlorella (3 μm, 6 μm) | PBS | Separation | - | 100% | Gao et al. [51] | |
Asymmetric orifice | PS (3 μm, 4 μm, 6–7 μm) | PBS | Separation and counting | 10–20 particle/min Throughput | >90% | Song et al. [52] | |
Symmetric/Asymmetric ratchet | PS (3 μm, 5 μm, 10 μm) | PBS | Focusing | 1.86 × 10−8 m2/(V·s) | Survival rate 98% | Lu et al. [53] | |
Bifurcating microchannel | PS (5 μm, 15 μm) | PBS, 0.5% Tween 20 | Separation | 12 μL/h Throughput | nearly 100% | Li et al. [54] | |
Asymmetric nano-orifice | PS (140 nm, 490 nm, 7 μm, 15 μm), magnetic nanoparticles (150 nm), magnetic-coated PS (470 nm, 5.2 μm), sliver-coated hollow glass beads (14 μm) | K2HPO4 | Continuous separation | 0.468 × 10−4 μL/s, 1.315 × 10−3 μL/s | - | Zhao et al. [55] | |
Zigzag | PLT (1–5 μm), RBC (4–15 μm) | PBS | Separation | 200 μm/s | >99.4% | Guan et al. [56] | |
Nano-orifice | Oil droplet | KCl aqueous solution | Oil/water separation | 175.2 µm3/s | - | Ren et al. [57] | |
Dead-end branches | Droplet of fresh human blood | Blood plasma, RBCs | Blood plasma separation | 0.857 μL/h Throughput | 99% | Mohammadi et al. [58] | |
Constricted channel region | Protein Crystals (100 nm–2.5 μm) | Pluronic F108 aqueous solution | Sorting | >70 μL/h | >90% | Abdallah et al. [59] | |
Asymmetric orifice | PS (0.5 μm, 1 μm, 3 μm), Fluorescent (51 nm, 140 nm) | DI water, K2HPO4 | Separation | 4.758–6.717 μL/h | >90% | Zhao et al. [60] | |
AC-DEP | Nanogap electrodes | SSLBs, brain-derived myelin particles | DI water, PBS | Trapping and immobilization | 10 μL/min | > 90% | Barik et al. [61] |
Inclined, comb-shaped electrodes | PS (8 μm, 10 μm, 12 μm) Bacillus cereus, S. aureus, E. coli, MCF7, Jurkat | CROSSORTERTM Buffer, PBS | Separation and enrichment | 1–2 mL/h | 92.3% | Oshiro et al. [62] | |
Asymmetrical aluminum electrodes | Tetraselmis sp. | Artificial seawater medium | Harvesting of microalgae biomass | 2.5 mL/min | 90.9% | Hawari et al. [63] | |
Microelectrode Needles | T cell (10–15 μm), B cell (7.5–10 μm), MLV | DI water, Sucrose solution | Directed Movement, Periodic U-Turns, Trapping, and Release | 5 μL/min | >90% | Frusawa et al. [64] | |
Triangular ratchets | PS (3 μm, 5 μm, 10 μm), yeast cells (7 μm) | PBS | Focusing and separation | 144 μm/s | 90% | Malekanfard et al. [65] | |
Interdigitated gold electrodes | PS (3 μm, 5 μm, 10 μm) | PBS, sucrose, etc. | Focusing and separation | 40 μL/h | PS: 98.7%, MCF7: 82.2% | Modarres et al. [66] | |
Dual electrodes | PS (10 μm), HEK-293 | Sucrose solution | Cell capture and electroporation transfection | 20–140 nL/min | 80% | Punjiya et al. [67] | |
Transparent parallel-line electrode array | MESCs (5–8 µm), MEFs (10–20 µm) | LCB, HEPES, CaCl2, sucrose solution | Separation | 24 μL/min | 90% | Takahashi et al. [68] | |
Circular channel with electrodes on the sidewalls | PS (2 μm, 3 μm, 3.5 μm), RBCs, WBCs, MDA-MB-231 | PBS | Separation | 200 μm/s | - | Derakhshan et al. [69] | |
Nanogap Electrodes | AuNW | Gold Nanowire Suspension | Single Nanowire Assembly | - | 70% | Han et al. [70] | |
Y-Y shaped microchannel, alternating triangular electrodes | NSCLC, RBC (5 μm), CTCs | Blood sample, Buffer solution | Separation of CTCs | 200 μm/s | 99% | Zhang et al. [71] | |
Y-Y microfluidic | RBC, CTCs | DEP buffe | Isolation of CTCs from PB | 200 μm/s | 100% | Lv et al. [72] | |
Stainless-steel wire mesh electrodes | Anabaena | Artificially prepared eutrophic water | Capture and removal of Anabaena algae | 0.168–0.838 L/h | 89.79% | Liu et al. [73] | |
AC Insulator-based DEP | DNA | PBS | DNA Size Separation | 1.3 μL/h | 92% | Jones et al. [74] | |
3D self-assembled ionic liquid electrodes | PS, PC-3, live cells, dead cells, ADSCs, and MDA-MB-231 | DEP buffe | Separation | 15 μL/h | PS, PC-3: 94.7%, live/dead cells: 89.8%, ADSCs: 81.8%, MDA-MB-231: 82.5% | Sun et al. [75] | |
Four-sector electrode array | PS (50 μm) | DI water | Positioning, and Aggregation, Separation | 200 μm/s | >90% | Zemánek et al. [76] | |
BPE | CTCs | Buffer | Separation | 0.1 mL/h | >80% | Li et al. [77] | |
Microwells | CT26, BMDC | Buffer | Cell pairing and fusion | 2.5 μL/min | 86% | Pendharkar et al. [78] | |
Porous Ni@PVDF conductive membrane | SiO2, Al2O3, BaTiO3 | DI water, NaCl | Membrane antifouling | - | 90.1% | Liu et al. [79] | |
Asymmetric Orifice | Yeast cells | DI water, K2HPO4 | Continuous cell characterization and separation | 13.5 μL/h | - | Zhao et al. [80] | |
3D electrodes | Chlorella (3–5 μm), Closterium | PBS | Separation | 300 μm/s | >90% | Wang et al. [81] | |
Right-angle bipolar electrodes | Euglena, H. pluvialis, C. reinhardtii, Dunaliella salina, and Platymonas | DEP buffe | High-efficiency selection of non-spherical flagellate algae | 54 μL/h 72 μL/h 48 μL/h | 92.06% 92.78% 99.06% | Chen et al. [82] | |
Integrated DEP and inertial forces | Cladocopim (10 μm), Effrenium (15 μm) | PBS | Separation and enrichment | 200 μm/min, 300 μm/min | 90% | Zhou et al. [83] | |
Microelectrodes | Yeast cells | TES, CaCl2, sucrose | Capture and separation | 1 μL/min | >94% | Julius et al. [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Zhao, K.; Lou, J.; Zhang, K. Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells. Biosensors 2024, 14, 417. https://doi.org/10.3390/bios14090417
Yao J, Zhao K, Lou J, Zhang K. Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells. Biosensors. 2024; 14(9):417. https://doi.org/10.3390/bios14090417
Chicago/Turabian StyleYao, Junzhu, Kai Zhao, Jia Lou, and Kaihuan Zhang. 2024. "Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells" Biosensors 14, no. 9: 417. https://doi.org/10.3390/bios14090417
APA StyleYao, J., Zhao, K., Lou, J., & Zhang, K. (2024). Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells. Biosensors, 14(9), 417. https://doi.org/10.3390/bios14090417