Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging
Abstract
:1. Introduction
2. Far-Red Fluorescent Proteins
2.1. Far-Red FPs from Reef Coral Discosoma sp.
Ex Peak a | Em Peak a | EC b | QY c | Brightness d | t0.5 for Maturation at 37 °C | t0.5 for Bleach e | pKa | Quarternary Structure | References | |
---|---|---|---|---|---|---|---|---|---|---|
Discosoma sp. | ||||||||||
DsRed | 558 | 583 | 75 | 0.79 | 59.25 | ~10 h | ND | 4.7 | tetramer | [29] |
mRFP1 | 584 | 607 | 50 | 0.25 | 12.5 | <1 h | 6.2 s | 4.5 | monomer | [29] |
mCherry | 587 | 610 | 72 | 0.22 | 15.84 | 15 min | 68 s | <4.5 | monomer | [29] |
mPlum | 590 | 649 | 41 | 0.1 | 4.1 | 1.6 h | 53 s | <4.5 | monomer | [30,36] |
mRasberry | 598 | 625 | 86 | 0.15 | 12.9 | 2.1 h | 15 s | <4.5 | monomer | [30,36] |
mGrape3 | 608 | 646 | 40 | 0.03 | 1.2 | ND | 5 s | 7.0 | monomer | [30] |
E2-Crimson | 611 | 646 | 126 | 0.23 | 28.98 | 26 min | ND | 4.5 | tetramer | [36] |
Entacmaea quadricolor | ||||||||||
eqFP611 | 559 | 611 | 116 | 0.45 | 52.2 | ND | ND | ND | tetramer | [37] |
mRuby | 558 | 605 | ND | 0.35 | ND | 2.8 h | ND | 4.4 | monomer | [38] |
eqFP578 | 552 | 578 | 102 | 0.54 | 55.08 | ND | ND | ND | dimer | [39] |
Katushka2S | 588 | 633 | 67 | 0.44 | 29.48 | 14 min | ND | 5.4 | dimer | [40] |
Katushka | 588 | 635 | 65 | 0.34 | 22.1 | 20 min | ND | 5.5 | dimer | [41] |
tdKatushka2 | 588 | 633 | 66.25 ∗ 2 | 0.37 | 49.2 | ND | ND | 5.4 | monomer | [42] |
mKate | 588 | 635 | 45 | 0.33 | 14.85 | 75 min | 82 s | 6.0 | monomer | [30,41] |
mLumin | 585 | 630 | 75 | 0.3 | 22.5 | 76 min | 327 s | 5.4 | monomer | [30,43] |
mKate S158C | 586 | 630 | 63 | 0.33 | 20.79 | 76 min | 220 s | 4.2 | monomer | [30,43] |
mKate2 | 588 | 630 | 50 | 0.4 | 20 | 38 min | 81 s | 6.5 | monomer | [44] |
FusionRed | 580 | 608 | 95 | 0.19 | 18.05 | 130 min | 131 s | 4.6 | monomer | [45,46] |
Neptune | 600 | 650 | 72 | 0.18 | 12.96 | 35 min | 158 s | 5.8 | dimer | [30] |
mNeptune | 600 | 650 | 67 | 0.2 | 13.4 | 28 min | 160 s | 5.4 | monomer | [30,44] |
mNeptune2 | 599 | 650 | 89 | 0.24 | 21.36 | 27 min | 373 s | 6.3 | monomer | [44] |
mNeptune2.5 | 599 | 643 | 95 | 0.28 | 26.6 | 26 min | 506 s | 5.8 | monomer | [44] |
Crimson | 588 | 617 | 77 | 0.42 | 32.34 | 14 min | 49 s | 4.2 | dimer | [46] |
Other species | ||||||||||
HcRed | 592 | 645 | 70 | 0.05 | 3.5 | 59 min | ND | 4.0 | dimer | [47,48] |
tKeima | 440 | 616 | 14.5 | 0.22 | 3.19 | ND | ND | 6.5 | tetramer | [49] |
mKeima | 440 | 620 | 14.4 | 0.24 | 3.456 | ND | ND | 6.5 | monomer | [49] |
plobRFP | 578 | 614 | 84 | 0.74 | 62.16 | ND | 80 s | ND | tetramer | [28] |
2.2. Far-Red FPs from Sea Anemone Entacmaea Quadricolor
2.3. Far Red Fluorescent Proteins from Other Species
3. Far-Red FP-Based Biosensors
3.1. FRET-Based Biosensors
3.2. Split Protein-Based Biosensors
3.3. Circularly Permuted Protein-Based Biosensors
3.4. pH Indicator
4. Far-Red FPs in Multi-Color Imaging
5. Far-Red FPs in Enhanced Resolution Imaging
5.1. Photoacoustic Imaging
5.2. Fluorescence Nanoscopy Imaging
6. Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calì, T.; Brini, M. Quantification of organelle contact sites by split-GFP-based contact site sensors (SPLICS) in living cells. Nat. Protoc. 2021, 16, 5287–5308. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.M.; Chi, W.Y.; Liang, J.; Takayanagi, S.; Iglesias, P.A.; Huang, C.H. Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell 2021, 184, 6193–6206. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Burdick, R.C.; Nagashima, K.; Hu, W.S.; Pathak, V.K. HIV-1 cores retain their integrity until minutes before uncoating in the nucleus. Proc. Natl. Acad. Sci. USA 2021, 118, e2019467118. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, O.; Johnson, F.H.; Saiga, Y. Extraction, purification and properties of Aequorin, a bioluminescent protein from luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 1962, 59, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Ando, R.; Shimozono, S.; Sugiyama, M.; Takeda, N.; Kurokawa, H.; Deguchi, R.; Endo, K.; Haga, K.; Takai-Todaka, R.; et al. A highly photostable and bright green fluorescent protein. Nat. Biotechnol. 2022, 40, 1132–1142. [Google Scholar] [CrossRef] [PubMed]
- Bousmah, Y.; Valenta, H.; Bertolin, G.; Singh, U.; Nicolas, V.; Pasquier, H.; Tramier, M.; Merola, F.; Erard, M. tdLanYFP, a yellow, bright, photostable, and pH-insensitive fluorescent protein for live-cell imaging and Förster resonance energy transfer-based sensing strategies. ACS Sens. 2021, 6, 3940–3947. [Google Scholar] [CrossRef] [PubMed]
- Gadella, T.W.J.; van Weeren, L.; Stouthamer, J.; Hink, M.A.; Wolters, A.H.G.; Giepmans, B.G.; Aumonier, S.; Dupuy, J.; Royant, A. mScarlet3: A brilliant and fast-maturing red fluorescent protein. Nat. Methods 2023, 20, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.R.; Santpere, G.; Weinreb, A.; Barrett, A.; Reilly, M.B.; Xu, C.; Varol, E.; Oikonomou, P.; Glenwinkel, L.; McWhirter, R.; et al. Molecular topography of an entire nervous system. Cell 2021, 184, 4329–4347. [Google Scholar] [CrossRef] [PubMed]
- Sung, B.H.; von Lersner, A.; Guerrero, J.; Krystofiak, E.S.; Inman, D.; Pelletier, R.; Zijlstra, A.; Ponik, S.M.; Weaver, A.M. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat. Commun. 2020, 11, 2092. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.; Lázaro-Ibáñez, E.; Gunnarsson, A.; Dhande, A.; Daaboul, G.; Peacock, B.; Osteikoetxea, X.; Salmond, N.; Friis, K.P.; Shatnyeva, O.; et al. Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution. J. Extracell. Vesicles 2021, 10, e12130. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Zhou, J.; Dai, B.; Qian, T.; Zeng, J.; Li, X.; Zhuo, Y.; Zhang, Y.; Wang, Y.; Qian, C.; et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 2020, 17, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wang, A.; Huang, L.; Zhu, X.; Hu, Q.; Zhang, Y.; Chen, X.; Li, F.; Wang, Q.; Wang, H.; et al. Illuminating NAD+ metabolism in live cells and in vivo using a genetically encoded fluorescent sensor. Dev. Cell 2020, 53, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Nasu, Y.; Shen, Y.; Kramer, L.; Campbell, R.E. Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 2021, 17, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.L.; Lin, M.Z. Structure-guided wavelength tuning in far-red fluorescent proteins. Curr. Opin. Struct. Biol. 2016, 39, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, T.A.; Balalaeva, I.V.; Klimenko, M.O.; Brilkina, A.A.; Peskova, N.N.; Guryev, E.L.; Krysko, D.V.; Vedunova, M.V. Far-red fluorescent murine glioma model for accurate assessment of brain tumor progression. Cancers 2022, 14, 3822. [Google Scholar] [CrossRef] [PubMed]
- Peñate-Medina, O.; Tower, R.J.; Peñate-Medina, T.; Will, O.; Saris, P.E.J.; Suojanen, J.; Sorsa, T.; Huuskonen, L.; Hiippala, K.; Satokari, R.; et al. Universal membrane-labeling combined with expression of Katushka far-red fluorescent protein enables non-invasive dynamic and longitudinal quantitative 3D dual-color fluorescent imaging of multiple bacterial strains in mouse intestine. BMC Microbiol. 2019, 19, 167. [Google Scholar] [CrossRef] [PubMed]
- Tanida, I.; Kakuta, S.; Oliva Trejo, J.A.; Uchiyama, Y. Visualization of cytoplasmic organelles via in-resin CLEM using an osmium-resistant far-red protein. Sci. Rep. 2020, 10, 11314. [Google Scholar] [CrossRef]
- Dalangin, R.; Drobizhev, M.; Molina, R.S.; Aggarwal, A.; Patel, R.; Abdelfattah, A.S.; Zhao, Y.; Wu, J.; Podgorski, K.; Schreiter, E.R.; et al. Far-red fluorescent genetically encoded calcium ion indicators. Cold Spring Harb. Lab. 2020, 11, 380089. [Google Scholar]
- Corsi, S.R.; De Cicco, L.A.; Hansen, A.M.; Lenaker, P.L.; Bergamaschi, B.A.; Pellerin, B.A.; Dila, D.K.; Bootsma, M.J.; Spencer, S.K.; Borchardt, M.A.; et al. Optical properties of water for prediction of wastewater contamination, human-associated bacteria, and fecal indicator bacteria in surface water at three watershed scales. Environ. Sci. Technol. 2021, 55, 13770–13782. [Google Scholar] [CrossRef]
- Dervieux, E.; Bodinier, Q.; Uhring, W.; Théron, M. Measuring hemoglobin spectra: Searching for carbamino-hemoglobin. J. Biomed. Opt. 2020, 25, 105001. [Google Scholar] [CrossRef]
- Boitet, M.; Eun, H.; Lee, T.; Kim, J.; Grailhe, R. Non-invasive in vivo brain astrogenesis and astrogliosis quantification using a far-red E2-Crimson transgenic reporter mouse. Mol. Neurobiol. 2022, 59, 6740–6753. [Google Scholar] [CrossRef]
- Bidan, N.; Bailleul-Dubois, J.; Duval, J.; Winter, M.; Denoulet, M.; Hannebicque, K.; El-Sayed, I.Y.; Ginestier, C.; Forissier, V.; Charafe-Jauffret, E.; et al. Transcriptomic analysis of breast cancer stem cells and development of a pALDH1A1: mNeptune reporter system for live tracking. Proteomics 2019, 19, e1800454. [Google Scholar] [CrossRef]
- Yuan, Y.; Yan, Z.; Miao, J.; Cai, R.; Zhang, M.; Wang, Y.; Wang, L.; Dang, W.; Wang, D.; Xiang, D.; et al. Autofluorescence of NADH is a new biomarker for sorting and characterizing cancer stem cells in human glioma. Stem Cell Res. Ther. 2019, 10, 330. [Google Scholar] [CrossRef]
- Reichert, D.; Wadiura, L.I.; Erkkilae, M.T.; Gesperger, J.; Lang, A.; Roetzer-Pejrimovsky, T.; Makolli, J.; Woehrer, A.; Wilzbach, M.; Hauger, C.; et al. Flavin fluorescence lifetime and autofluorescence optical redox ratio for improved visualization and classification of brain tumors. Front. Oncol. 2023, 13, 1105648. [Google Scholar] [CrossRef]
- Subach, O.M.; Subach, F.V. GAF-CaMP3–sfGFP, an enhanced version of the near-infrared genetically encoded positive phytochrome-based calcium indicator for the visualization of neuronal activity. Int. J. Mol. Sci. 2020, 21, 6883. [Google Scholar] [CrossRef]
- Lishko, P.V.; Qian, Y.; Cosio, D.M.O.; Piatkevich, K.D.; Aufmkolk, S.; Su, W.-C.; Celiker, O.T.; Schohl, A.; Murdock, M.H.; Aggarwal, A.; et al. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging. PLoS Biol. 2020, 18, e3000965. [Google Scholar]
- Shemetov, A.A.; Monakhov, M.V.; Zhang, Q.; Canton-Josh, J.E.; Kumar, M.; Chen, M.; Matlashov, M.E.; Li, X.; Yang, W.; Nie, L.; et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 2020, 39, 368–377. [Google Scholar] [CrossRef]
- Bridges, M.C.; Woodley, C.M.; Peters, E.C.; May, L.A.; Galloway, S.B. Expression and characterization of a bright far-red fluorescent protein from the pink-pigmented tissues of Porites lobata. Mar. Biotechnol. 2020, 22, 67–80. [Google Scholar] [CrossRef]
- Shaner, N.C.; Campbell, R.E.; Steinbach, P.A.; Giepmans, B.N.G.; Palmer, A.E.; Tsien, R.Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 2004, 22, 1567–1572. [Google Scholar] [CrossRef]
- Lin, M.Z.; McKeown, M.R.; Ng, H.L.; Aguilera, T.A.; Shaner, N.C.; Campbell, R.E.; Adams, S.R.; Gross, L.A.; Ma, W.; Alber, T.; et al. Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem. Biol. 2009, 16, 1169–1179. [Google Scholar] [CrossRef]
- Campbell, R.E.; Tour, O.; Palmer, A.E.; Steinbach, P.A.; Baird, G.S.; Zacharias, D.A.; Tsien, R.Y. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 2002, 99, 7877–7882. [Google Scholar] [CrossRef]
- Wang, M.; Da, Y.; Tian, Y. Fluorescent proteins and genetically encoded biosensors. Chem. Soc. Rev. 2023, 52, 1189–1214. [Google Scholar] [CrossRef]
- Park, S.; Cho, E.; Chueng, S.D.; Yoon, J.S.; Lee, T.; Lee, J.H. Aptameric fluorescent biosensors for liver cancer diagnosis. Biosensors 2023, 13, 617. [Google Scholar] [CrossRef]
- Chen, J.; Huang, D.; She, M.; Wang, Z.; Chen, X.; Liu, P.; Zhang, S.; Li, J. Recent progress in fluorescent sensors for drug-induced liver injury assessment. ACS Sens. 2021, 6, 628–640. [Google Scholar] [CrossRef]
- Matz, M.V.; Fradkov, A.F.; Labas, Y.A.; Savitsky, A.P.; Zaraisky, A.G.; Markelov, M.L.; Lukyanov, S.A. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 1999, 17, 969–973. [Google Scholar] [CrossRef]
- Strack, R.L.; Hein, B.; Bhattacharyya, D.; Hell, S.W.; Keenan, R.J.; Glick, B.S. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 2009, 48, 8279–8281. [Google Scholar] [CrossRef]
- Kredel, S.; Nienhaus, K.; Oswald, F.; Wolff, M.; Ivanchenko, S.; Cymer, F.; Jeromin, A.; Michels, F.J.; Spindler, K.D.; Heilker, R.; et al. Optimized and far-red-emitting variants of fluorescent protein eqFP611. Chem. Biol. 2008, 15, 224–233. [Google Scholar] [CrossRef]
- Kredel, S.; Oswald, F.; Nienhaus, K.; Deuschle, K.; Rocker, C.; Wolff, M.; Heilker, R.; Nienhaus, G.U.; Wiedenmann, J. mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS ONE 2009, 4, e4391. [Google Scholar] [CrossRef]
- Merzlyak, E.M.; Goedhart, J.; Shcherbo, D.; Bulina, M.E.; Shcheglov, A.S.; Fradkov, A.F.; Gaintzeva, A.; Lukyanov, K.A.; Lukyanov, S.; Gadella, T.W.J.; et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Methods 2007, 4, 555–557. [Google Scholar] [CrossRef]
- Luker, K.E.; Pata, P.; Shemiakina, I.I.; Pereverzeva, A.; Stacer, A.C.; Shcherbo, D.S.; Pletnev, V.Z.; Skolnaja, M.; Lukyanov, K.A.; Luker, G.D.; et al. Comparative study reveals better far-red fluorescent protein for whole body imaging. Sci. Rep. 2015, 5, 10332. [Google Scholar] [CrossRef] [PubMed]
- Shcherbo, D.; Merzlyak, E.M.; Chepurnykh, T.V.; Fradkov, A.F.; Ermakova, G.V.; Solovieva, E.A.; Lukyanov, K.A.; Bogdanova, E.A.; Zaraisky, A.G.; Lukyanov, S.; et al. Bright far-red fluorescent protein for whole-body imaging. Nat. Methods 2007, 4, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Shcherbo, D.; Murphy, C.S.; Ermakova, G.V.; Solovieva, E.A.; Chepurnykh, T.V.; Shcheglov, A.S.; Verkhusha, V.V.; Pletnev, V.Z.; Hazelwood, K.L.; Roche, P.M.; et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 2009, 418, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Zhang, Z.H.; Zheng, Y.; Yang, J.; Qin, L.S.; Lu, J.L.; Huang, Z.L.; Zeng, S.Q.; Luo, Q.M. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosens. Bioelectron. 2009, 25, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Haynes, R.D.; Corbel, S.Y.; Li, P.P.; Gonzalez-Gonzalez, E.; Burg, J.S.; Ataie, N.J.; Lam, A.J.; Cranfill, P.J.; Baird, M.A.; et al. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat. Methods 2014, 11, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Shemiakina, I.I.; Ermakova, G.V.; Cranfill, P.J.; Baird, M.A.; Evans, R.A.; Souslova, E.A.; Staroverov, D.B.; Gorokhovatsky, A.Y.; Putintseva, E.V.; Gorodnicheva, T.V.; et al. A monomeric red fluorescent protein with low cytotoxicity. Nat. Commun. 2012, 3, 1204. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Geng, Y.; Lovett-Barron, M.; Niu, X.M.; Deng, M.Y.; Wang, L.; Ataie, N.; Sens, A.; Ng, H.L.; Chen, S.D.; et al. A bright, nontoxic, and non-aggregating red fluorescent protein for long-term labeling of fine structures in neurons. Front. Cell Dev. Biol. 2022, 10, 893468. [Google Scholar] [CrossRef] [PubMed]
- Wannier, T.M.; Gillespie, S.K.; Hutchins, N.; McIsaac, R.S.; Wu, S.Y.; Shen, Y.; Campbell, R.E.; Brown, K.S.; Mayo, S.L. Monomerization of far-red fluorescent proteins. Proc. Natl. Acad. Sci. USA 2018, 115, E11294–E11301. [Google Scholar] [CrossRef] [PubMed]
- Gurskaya, N.G.; Fradkov, A.F.; Terskikh, A.; Matz, M.V.; Labas, Y.A.; Martynov, V.I.; Yanushevich, Y.G.; Lukyanov, K.A.; Lukyanov, S.A. GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett. 2001, 507, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Kogure, T.; Karasawa, S.; Araki, T.; Saito, K.; Kinjo, M.; Miyawaki, A. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 2006, 24, 577–581. [Google Scholar] [CrossRef]
- Kimura, S.; Noda, T.; Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007, 3, 452–460. [Google Scholar] [CrossRef]
- Lee, J.H.; Yang, D.S.; Goulbourne, C.N.; Im, E.; Stavrides, P.; Pensalfini, A.; Chan, H.; Bouchet-Marquis, C.; Bleiwas, C.; Berg, M.J.; et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques. Nat. Neurosci. 2022, 25, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Prakash, P.S.; Barwary, N.J.S.; Weber, M.H.W.; Wan, D.; Conejeros, I.; Moreira, B.P.; Alharbi, W.S.; van Hellemond, J.J.; Akinwale, J.; Falcone, F.H. The humanised NPY-mRFP RBL reporter cell line is a fast and inexpensive tool for detection of allergen-specific IgE in human sera. Diagnostics 2022, 12, 2063. [Google Scholar] [CrossRef] [PubMed]
- Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282, 24131–24145. [Google Scholar] [CrossRef] [PubMed]
- Nassef, M.Z.; Kopp, S.; Wehland, M.; Melnik, D.; Sahana, J.; Krüger, M.; Corydon, T.J.; Oltmann, H.; Schmitz, B.; Schütte, A.; et al. Real microgravity influences the cytoskeleton and focal adhesions in human breast cancer cells. Int. J. Mol. Sci. 2019, 20, 3156. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, M.; Zhong, Y.Q.; Ma, X.; Sun, S.M.; Xu, C.Z.; Peng, L.Y.; Li, G.; Zhang, L.T.; Liu, Z.J.; et al. A Glb1-2A-mCherry reporter monitors systemic aging and predicts lifespan in middle-aged mice. Nat. Commun. 2022, 13, 7028. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jackson, W.C.; Steinbach, P.A.; Tsien, R.Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA 2004, 101, 16745–16749. [Google Scholar] [CrossRef] [PubMed]
- Lyu, T.; Sohn, S.H.; Jimenez, R.; Joo, T. Temperature-dependent fluorescence of mPlum fluorescent protein from 295 to 20 K. J. Phys. Chem. B 2022, 126, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.; Konold, P.E.; Lee, J.; Joo, T.; Jimenez, R. Far-red emission of mPlum fluorescent protein Results from excited-state interconversion between chromophore hydrogen-bonding states. J. Phys. Chem. Lett. 2016, 7, 2170–2174. [Google Scholar] [CrossRef] [PubMed]
- Konold, P.; Regmi, C.K.; Chapagain, P.P.; Gerstman, B.S.; Jimenez, R. Hydrogen bond flexibility correlates with Stokes shift in mPlum variants. J. Phys. Chem. B 2014, 118, 2940–2948. [Google Scholar] [CrossRef]
- Wiedenmann, J.; Schenk, A.; Rocker, C.; Girod, A.; Spindler, K.D.; Nienhaus, G.U. A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc. Natl. Acad. Sci. USA 2002, 99, 11646–11651. [Google Scholar] [CrossRef]
- Petersen, J.; Wilmann, P.G.; Beddoe, T.; Oakley, A.J.; Devenish, R.J.; Prescott, M.; Rossjohn, J. The 2.0-Å crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J. Biol. Chem. 2003, 278, 44626–44631. [Google Scholar] [CrossRef] [PubMed]
- Nienhaus, K.; Nar, H.; Heilker, R.; Wiedenmann, J.; Nienhaus, G.U. Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611. J. Am. Chem. Soc. 2008, 130, 12578–12579. [Google Scholar] [CrossRef] [PubMed]
- Wiedenmann, J.; Vallone, B.; Renzi, F.; Nienhaus, K.; Ivanchenko, S.; Rocker, C.; Nienhaus, G.U. Red fluorescent protein eqFP611 and its genetically engineered dimeric variants. J. Biomed. Opt. 2005, 10, 14003. [Google Scholar] [CrossRef] [PubMed]
- Mino, R.E.; Chen, Z.; Mettlen, M.; Schmid, S.L. An internally eGFP-tagged α-adaptin is a fully functional and improved fiduciary marker for clathrin-coated pit dynamics. Traffic 2020, 21, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Veselov, M.S.; Ivanenkov, Y.A.; Yamidanov, R.S.; Osterman, I.A.; Sergiev, P.V.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Ayginin, A.A.; Skvortsov, D.A.; et al. Identification of pyrrolo-pyridine derivatives as novel class of antibacterials. Mol. Divers. 2020, 24, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Osterman, I.A.; Komarova, E.S.; Shiryaev, D.I.; Korniltsev, I.A.; Khven, I.M.; Lukyanov, D.A.; Tashlitsky, V.N.; Serebryakova, M.V.; Efremenkova, O.V.; Ivanenkov, Y.A.; et al. Sorting out antibiotics’ mechanisms of action: A double fluorescent protein reporter for high-throughput screening of ribosome and DNA biosynthesis inhibitors. Antimicrob. Agents Chemother. 2016, 60, 7481–7489. [Google Scholar] [CrossRef] [PubMed]
- Barrasso, A.P.; Tong, X.F.; Poché, R.A. The mito::mKate2 mouse: A far-red fluorescent reporter mouse line for tracking mitochondrial dynamics in vivo. Genesis 2018, 56, 23087. [Google Scholar] [CrossRef] [PubMed]
- Pletneva, N.V.; Pletnev, V.Z.; Shemiakina, I.I.; Chudakov, D.M.; Artemyev, I.; Wlodawer, A.; Dauter, Z.; Pletnev, S. Crystallographic study of red fluorescent protein eqFP578 and its far-red variant Katushka reveals opposite pH-induced isomerization of chromophore. Protein Sci. 2011, 20, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Pletnev, S.; Shcherbo, D.; Chudakov, D.M.; Pletneva, N.; Merzlyak, E.M.; Wlodawer, A.; Dauter, Z.; Pletnev, V. A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. J. Biol. Chem. 2008, 283, 28980–28987. [Google Scholar] [CrossRef]
- Tanida, I.; Ueno, T.; Uchiyama, Y. A super-ecliptic, pHluorin-mKate2, tandem fluorescent protein-tagged human LC3 for the monitoring of mammalian autophagy. PLoS ONE 2014, 9, e110600. [Google Scholar] [CrossRef]
- Orlov, N.A.; Ignatova, A.A.; Kryukova, E.V.; Yakimov, S.A.; Kirpichnikov, M.P.; Nekrasova, O.V.; Feofanov, A.V. Combining mKate2-Kv1.3 channel and Atto488-hongotoxin for the studies of peptide pore blockers on living eukaryotic cells. Toxins 2022, 14, 858. [Google Scholar] [CrossRef]
- García-Bayona, L.; Coyne, M.J.; Hantman, N.; Montero-Llopis, P.; Von, S.S.; Ito, T.; Malamy, M.H.; Basler, M.; Barquera, B.; Comstock, L.E. Nanaerobic growth enables direct visualization of dynamic cellular processes in human gut symbionts. Proc. Natl. Acad. Sci. USA 2020, 117, 24484–24493. [Google Scholar] [CrossRef] [PubMed]
- Muslinkina, L.; Pletnev, V.Z.; Pletneva, N.V.; Ruchkin, D.A.; Kolesov, D.V.; Bogdanov, A.M.; Kost, L.A.; Rakitina, T.V.; Agapova, Y.K.; Shemyakina, I.I.; et al. Two independent routes of post-translational chemistry in fluorescent protein FusionRed. Int. J. Biol. Macromol. 2020, 155, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Acharya, A.R.; Larsen, L.E.; Delbeke, J.; Wadman, W.J.; Vonck, K.; Meurs, A.; Boon, P.; Raedt, R. In vivo inhibition of epileptiform afterdischarges in rat hippocampus by light-activated chloride channel, stGtACR2. CNS Neurosci. Ther. 2023, 29, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Grabert, K.; Sehgal, A.; Irvine, K.M.; Wollscheid-Lengeling, E.; Ozdemir, D.D.; Stables, J.; Luke, G.A.; Ryan, M.D.; Adamson, A.; Humphreys, N.E.; et al. A transgenic line that reports CSF1R protein expression provides a definitive marker for the mouse mononuclear phagocyte system. J. Immunol. 2020, 205, 3154–3166. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Hung, S.T.; Douglas, N.; Manna, P.; Thomas, C.; Ekrem, A.; Palmer, A.E.; Jimenez, R. Engineering of a brighter variant of the FusionRed fluorescent protein using lifetime flow cytometry and structure-guided mutations. Biochemistry 2020, 59, 3669–3682. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.; Hung, S.T.; Mukherjee, S.; Friis, P.; Simpson, D.M.; Lo, M.N.; Palmer, A.E.; Jimenez, R. Directed evolution of excited state lifetime and brightness in FusionRed using a microfluidic sorter. Integr. Biol. 2018, 10, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Thomas, C.; Wilson, R.; Simmerman, E.; Hung, S.T.; Jimenez, R. Characterizing dark state kinetics and single molecule fluorescence of FusionRed and FusionRed-MQ at low irradiances. Phys. Chem. Chem. Phys. 2022, 24, 14310–14323. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Liao, Z.W.; Yang, C.R.; Zhang, Y.A.; Su, J.G. Grass carp reovirus VP56 allies VP4, recruits, blocks, and degrades RIG-I to more effectively attenuate IFN responses and facilitate viral evasion. Microbiol. Spectr. 2021, 9, e0100021. [Google Scholar] [CrossRef] [PubMed]
- Wegner, W.; Ilgen, P.; Gregor, C.; van Dort, J.; Mott, A.C.; Steffens, H.; Willig, K.I. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins. Sci. Rep. 2017, 7, 11781. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.W.; Shi, D.Q.; Chavarha, M.; Plitt, M.H.; Taxidis, J.; Madruga, B.; Fan, J.L.; Hwang, F.J.; van Keulen, S.C.; Suomivuori, C.M.; et al. A positively tuned voltage indicator for extended electrical recordings in the brain. Nat. Methods 2023, 20, 1104–1113. [Google Scholar] [CrossRef]
- Wilmann, P.G.; Petersen, J.; Pettikiriarachchi, A.; Buckle, A.M.; Smith, S.C.; Olsen, S.; Perugini, M.A.; Devenish, R.J.; Prescott, M.; Rossjohn, J. The 2.1A crystal structure of the far-red fluorescent protein HcRed: Inherent conformational flexibility of the chromophore. J. Mol. Biol. 2005, 349, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Mudalige, K.; Habuchi, S.; Goodwin, P.M.; Pai, R.K.; De Schryver, F.; Cotlet, M. Photophysics of the red chromophore of HcRed: Evidence for cis-trans isomerization and protonation-state changes. J. Phys. Chem. B 2010, 114, 4678–4685. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Z.; Lan, Z.G.; Pfisterer, C.; Doerr, M.; Fischer, S.; Smith, S.C.; Thiel, W. Isomerization mechanism of the HcRed fluorescent protein chromophore. Phys. Chem. Chem. Phys. 2012, 14, 11413–11424. [Google Scholar] [CrossRef]
- Lessard, G.A.; Habuchi, S.; Werner, J.H.; Goodwin, P.M.; De Schryver, F.; Hofkens, J.; Cotlet, M. Probing dimerization and intraprotein fluorescence resonance energy transfer in a far-red fluorescent protein from the sea anemone Heteractis crispa. J. Biomed. Opt. 2008, 13, 031212. [Google Scholar] [CrossRef]
- Rahimi, Y.; Shrestha, S.; Banerjee, T.; Deo, S.K. Copper sensing based on the far-red fluorescent protein, HcRed, from Heteractis crispa. Anal. Biochem. 2007, 370, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Violot, S.; Carpentier, P.; Blanchoin, L.; Bourgeois, D. Reverse pH-dependence of chromophore protonation explains the large Stokes shift of the red fluorescent protein mKeima. J. Am. Chem. Soc. 2009, 131, 10356–10357. [Google Scholar] [CrossRef]
- Nadal-Ferret, M.; Gelabert, R.; Moreno, M.; Lluch, J.M. How does the environment affect the absorption spectrum of the fluorescent protein mKeima? J. Chem. Theory Comput. 2013, 9, 1731–1742. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Moss, L.G.; Phillips, G.N.J. The molecular structure of green fluorescent protein. Nat. Biotechnol. 1996, 14, 1246–1251. [Google Scholar] [CrossRef]
- Ormö, M.; Cubitt, A.B.; Kallio, K.; Gross, L.A.; Tsien, R.Y.; Remington, S.J. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996, 273, 1392–1395. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Hu, Y.; Yang, X.T.; Tang, Y.Y.; Han, S.Y.; Kang, A.; Deng, H.S.; Chi, Y.M.; Zhu, D.; Lu, Y. Förster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens. Bioelectron. 2019, 138, 111314. [Google Scholar] [CrossRef]
- Hochreiter, B.; Kunze, M.; Moser, B.; Schmid, J.A. Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells. Sci. Rep. 2019, 9, 8233. [Google Scholar] [CrossRef]
- Hochreiter, B.; Chong, C.S.; Hartig, A.; Maurer-Stroh, S.; Berger, J.; Schmid, J.A.; Kunze, M. A novel FRET approach quantifies the interaction strength of peroxisomal targeting signals and their receptor in living cells. Cells 2020, 9, 2381. [Google Scholar] [CrossRef]
- Yoon, S.; Pan, Y.J.; Shung, K.; Wang, Y.X. FRET-based Ca2+ biosensor single cell imaging interrogated by high-frequency ultrasound. Sensors 2020, 20, 4998. [Google Scholar] [CrossRef]
- Watabe, T.; Terai, K.; Sumiyama, K.; Matsuda, M. Booster, a red-shifted genetically encoded Förster resonance energy transfer (FRET) biosensor compatible with cyan fluorescent protein/yellow fluorescent protein-based FRET biosensors and blue light-responsive optogenetic tools. ACS Sens. 2020, 5, 719–730. [Google Scholar] [CrossRef]
- Farhadi, S.A.; Restuccia, A.; Sorrentino, A.; Cruz-Sánchez, A.; Hudalla, G.A. Heterogeneous protein co-assemblies with tunable functional domain stoichiometry. Mol. Syst. Des. Eng. 2022, 7, 44–57. [Google Scholar] [CrossRef]
- Zlobovskaya, O.A.; Sergeeva, T.F.; Shirmanova, M.V.; Dudenkova, V.V.; Sharonov, G.V.; Zagaynova, E.V.; Lukyanov, K.A. Genetically encoded far-red fluorescent sensors for caspase-3 activity. Biotechniques 2016, 60, 62–68. [Google Scholar] [CrossRef]
- Shirmanova, M.V.; Gavrina, A.I.; Kovaleva, T.F.; Dudenkova, V.V.; Zelenova, E.E.; Shcheslavskiy, V.I.; Mozherov, A.M.; Snopova, L.B.; Lukyanov, K.A.; Zagaynova, E.V. Insight into redox regulation of apoptosis in cancer cells with multiparametric live-cell microscopy. Sci. Rep. 2022, 12, 4476. [Google Scholar] [CrossRef]
- Kodama, Y.; Hu, C.D. Bimolecular fluorescence complementation (BiFC): A 5-year update and future perspectives. Biotechniques 2012, 53, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, X.Y.; Yang, J.; Zhang, Z.H. Low False-Positives in an mLumin-Based Bimolecular Fluorescence Complementation System with a Bicistronic Expression Vector. Sensors 2014, 14, 3284–3292. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, S.F.; Zhang, Z.P.; Ma, X.H.; Li, W.; Zhang, X.W.; Deng, J.Y.; Wei, H.P.; Li, Z.Y.; Zhang, X.E.; et al. In vivo imaging of protein-protein and RNA-protein interactions using novel far-red fluorescence complementation systems. Nucleic Acids Res. 2014, 42, e103. [Google Scholar] [CrossRef] [PubMed]
- Kostyuk, A.I.; Demidovich, A.D.; Kotova, D.A.; Belousov, V.V.; Bilan, D.S. Circularly permuted fluorescent protein-based indicators: History, principles, and classification. Int. J. Mol. Sci. 2019, 20, 4200. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Pang, Y.; Ai, H.W. Circularly permuted far-red fluorescent proteins. Biosensors 2021, 11, 438. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Kumar, M.; Zhang, J.; Zhao, S.; Drobizhev, M.; McCollum, M.; Anderson, C.T.; Wang, Y.; Pokorny, A.; Tian, X.; et al. A genetically encoded far-red fluorescent indicator for imaging synaptically released Zn2+. Sci. Adv. 2023, 9, eadd2058. [Google Scholar] [CrossRef] [PubMed]
- Kost, L.A.; Nikitin, E.S.; Ivanova, V.O.; Sung, U.; Putintseva, E.V.; Chudakov, D.M.; Balaban, P.M.; Lukyanov, K.A.; Bogdanov, A.M. Insertion of the voltage-sensitive domain into circularly permuted red fluorescent protein as a design for genetically encoded voltage sensor. PLoS ONE 2017, 12, e0184225. [Google Scholar] [CrossRef] [PubMed]
- Dana, H.; Mohar, B.; Sun, Y.; Narayan, S.; Gordus, A.; Hasseman, J.P.; Tsegaye, G.; Holt, G.T.; Hu, A.; Walpita, D.; et al. Sensitive red protein calcium indicators for imaging neural activity. Elife 2016, 5, e12727. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Wang, W.; Li, Y.Q.; Yang, D.; Li, X.K.; Shen, C.; Liu, Y.; Ke, X.Z.; Guo, S.; Guo, Z. HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma. J. Exp. Clin. Cancer Res. 2018, 37, 201. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.X.; Yang, X.S.; Zhao, H.; Liu, Y.; Feng, Y.; An, R.; Lv, X.H.; Li, J.; Chen, B.L. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Theranostics 2018, 8, 5200–5212. [Google Scholar] [CrossRef]
- Wu, X.Q.; Poulsen, K.L.; Sanz-Garcia, C.; Huang, E.; McMullen, M.R.; Roychowdhury, S.; Dasarathy, S.; Nagy, L.E. MLKL-dependent signaling regulates autophagic flux in a murine model of non-alcohol-associated fatty liver and steatohepatitis. J. Hepatol. 2020, 73, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Shi, H.Y.; Ding, Z.; Wang, Z.; Yao, H.L.; Lin, R. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation in Helicobacter pylori-associated gastritis by regulating ROS and autophagy. Cell Commun. Signal. 2023, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.H.; Jeon, J.Y.; Li, Y.; Huang, Y.; Xiong, J.; Wang, Q.C.; Xu, T.L.; Li, Y.; Ji, F.H.; Du, G.W.; et al. CAMK2/CaMKII activates MLKL in short-term starvation to facilitate autophagic flux. Autophagy 2022, 18, 726–744. [Google Scholar] [CrossRef] [PubMed]
- Trejo, J.A.O.; Tanida, I.; Suzuki, C.; Kakuta, S.; Tada, N.; Uchiyama, Y. Characterization of starvation-induced autophagy in cerebellar Purkinje cells of pHluorin-mKate2-human LC3B transgenic mice. Sci. Rep. 2020, 10, 9643. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Stocker, H. tpHusion: An efficient tool for clonal pH determination in Drosophila. PLoS ONE 2020, 15, e0228995. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Malide, D.; Liu, J.; Rovira, I.I.; Combs, C.A.; Finkel, T. A fluorescence-based imaging method to measure in vitro and in vivo mitophagy using mt-Keima. Nat. Protoc. 2017, 12, 1576–1587. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Sliter, D.A.; Shammas, M.K.; Huang, X.P.; Wang, C.X.; Calvelli, H.; Maric, D.S.; Narendra, D.P. Mt-Keima detects PINK1-PRKN mitophagy in vivo with greater sensitivity than mito-QC. Autophagy 2021, 17, 3753–3762. [Google Scholar] [CrossRef] [PubMed]
- Tong, M.; Mukai, R.; Mareedu, S.; Zhai, P.; Oka, S.I.; Huang, C.Y.; Hsu, C.P.; Yousufzai, F.A.K.; Fritzky, L.; Mizushima, W.; et al. Distinct roles of DRP1 in conventional and alternative mitophagy in obesity cardiomyopathy. Circ. Res. 2023, 133, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.Y.; Wang, J.B.; Xu, Y.; Guo, Q.L.; Sun, Y.I.; Liu, J.; Li, S.C.; Guo, Y.J.; Wei, L.B. CDK9 inhibition blocks the initiation of PINK1-PRKN-mediated mitophagy by regulating the SIRT1-FOXO3-BNIP3 axis and enhances the therapeutic effects involving mitochondrial dysfunction in hepatocellular carcinoma. Autophagy 2022, 18, 1879–1897. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Sonn, S.K.; Seo, S.; Kim, J.; Hur, K.Y.; Oh, G.T.; Lee, M.S. Impaired TFEB activation and mitophagy as a cause of PPP3/calcineurin inhibitor-induced pancreatic β-cell dysfunction. Autophagy 2023, 19, 1444–1458. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Ordureau, A.; Körner, M.; Paulo, J.A.; Harper, J.W. Systematic quantitative analysis of ribosome inventory during nutrient stress. Nature 2020, 583, 303–309. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Harper, J.W. Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat. Cell Biol. 2018, 20, 135–143. [Google Scholar] [CrossRef]
- Eapen, V.V.; Swarup, S.; Hoyer, M.J.; Paulo, J.A.; Harper, J.W. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. Elife 2021, 10, e72328. [Google Scholar] [CrossRef] [PubMed]
- Sanchón, A.C.; Kumar, H.S.; Mantovani, M.; Osinnii, I.; Mateos, J.M.; Kaech, A.; Shcherbakov, D.; Akbergenov, R.; Böttger, E.C. ER-misfolded proteins become sequestered with mitochondria and impair mitochondrial function. Commun. Biol. 2021, 4, 1350. [Google Scholar]
- Hristova, K.; Martinez-Gonzalez, C.; Watson, T.C.; Codadu, N.K.; Hashemi, K.; Kind, P.C.; Nolan, M.F.; Gonzalez-Sulser, A. Medial septal GABAergic neurons reduce seizure duration upon optogenetic closed-loop stimulation. Brain 2021, 144, 1576–1589. [Google Scholar] [CrossRef] [PubMed]
- Nasri, D.; Manwar, R.; Kaushik, A.; Er, E.E.; Avanaki, K. Photoacoustic imaging for investigating tumor hypoxia: A strategic assessment. Theranostics 2023, 13, 3346–3367. [Google Scholar] [CrossRef] [PubMed]
- Ogunlade, O.; Stowe, C.; Jathoul, A.; Kalber, T.; Lythgoe, M.F.; Beard, P.; Pule, M. In vivo photoacoustic imaging of a nonfluorescent E2 crimson genetic reporter in mammalian tissues. J. Biomed. Opt. 2020, 25, 046004. [Google Scholar] [CrossRef]
- Liu, M.Y.; Schmitner, N.; Sandrian, M.G.; Zabihian, B.; Hermann, B.; Salvenmoser, W.; Meyer, D.; Drexler, W. In vivo three dimensional dual wavelength photoacoustic tomography imaging of the far red fluorescent protein E2-Crimson expressed in adult zebrafish. Biomed. Opt. Express 2013, 4, 1846–1855. [Google Scholar] [CrossRef] [PubMed]
- Pennacchietti, F.; Serebrovskaya, E.O.; Faro, A.R.; Shemyakina, I.I.; Bozhanova, N.G.; Kotlobay, A.A.; Gurskaya, N.G.; Bodén, A.; Dreier, J.; Chudakov, D.M.; et al. Fast reversibly photoswitching red fluorescent proteins for live-cell RESOLFT nanoscopy. Nat. Methods 2018, 15, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Sahl, S.J.; Hell, S.W.; Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 2017, 18, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Hegde, R.S. The function, structure, and origins of the ER membrane protein complex. Annu. Rev. Biochem. 2022, 91, 651–678. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, A.; Shao, S.; Zhao, L.; Liu, B. Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging. Biosensors 2024, 14, 359. https://doi.org/10.3390/bios14080359
Shang A, Shao S, Zhao L, Liu B. Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging. Biosensors. 2024; 14(8):359. https://doi.org/10.3390/bios14080359
Chicago/Turabian StyleShang, Angyang, Shuai Shao, Luming Zhao, and Bo Liu. 2024. "Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging" Biosensors 14, no. 8: 359. https://doi.org/10.3390/bios14080359
APA StyleShang, A., Shao, S., Zhao, L., & Liu, B. (2024). Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging. Biosensors, 14(8), 359. https://doi.org/10.3390/bios14080359