Pulse Feature-Enhanced Classification of Microalgae and Cyanobacteria Using Polarized Light Scattering and Fluorescence Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Particulate Detection Prototype
2.3. Data Analysis
2.4. Algorithm Theory
2.4.1. Backpropagation Neural Network
2.4.2. Quantitative Metrics
2.5. Microscopy
2.6. Determination of Chlorophyll a
3. Results
3.1. Extraction of Pulse Features
3.2. Classification Model for Microalgae, Cyanobacteria, and Other SPM
3.3. Comparison of Classification Results between PFEC and Microscopy
4. Discussion
4.1. Comparison of Classification Results between the PAC and PFEC Methods
4.2. Origin of Pulse Feature-Enhanced Classification of Microalgae and Cyanobacteria
4.3. Classification of the Dominant and Common Species Using PFEC
4.4. Correlation Analysis of Cyanobacterial Proportion and Chl-a
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Salmaso, N.; Naselli-Flores, L.; Padisák, J. Functional Classifications and Their Application in Phytoplankton Ecology. Freshw. Biol. 2015, 60, 603–619. [Google Scholar] [CrossRef]
- Prata, J.C.; Da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Effects of Microplastics on Microalgae Populations: A Critical Review. Sci. Total Environ. 2019, 665, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef]
- Zong, J.-M.; Wang, X.-X.; Zhong, Q.-Y.; Xiao, X.-M.; Ma, J.; Zhao, B. Increasing Outbreak of Cyanobacterial Blooms in Large Lakes and Reservoirs under Pressures from Climate Change and Anthropogenic Interferences in the Middle-Lower Yangtze River Basin. Remote Sens. 2019, 11, 1754. [Google Scholar] [CrossRef]
- Huo, D.; Gan, N.; Geng, R.; Cao, Q.; Song, L.; Yu, G.; Li, R. Cyanobacterial Blooms in China: Diversity, Distribution, and Cyanotoxins. Harmful Algae 2021, 109, 102106. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Yang, S.; Zhao, D.; Hu, C.; Xu, W.; Anderson, D.M.; Li, Y.; Song, X.-P.; Boyce, D.G.; Gibson, L.; et al. Coastal Phytoplankton Blooms Expand and Intensify in the 21st Century. Nature 2023, 615, 280–284. [Google Scholar] [CrossRef]
- He, X.; Liu, Y.-L.; Conklin, A.; Westrick, J.; Weavers, L.K.; Dionysiou, D.D.; Lenhart, J.J.; Mouser, P.J.; Szlag, D.; Walker, H.W. Toxic Cyanobacteria and Drinking Water: Impacts, Detection, and Treatment. Harmful Algae 2016, 54, 174–193. [Google Scholar] [CrossRef] [PubMed]
- Plaas, H.E.; Paerl, H.W. Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. Environ. Sci. Technol. 2021, 55, 44–64. [Google Scholar] [CrossRef] [PubMed]
- Bullerjahn, G.S.; McKay, R.M.; Davis, T.W.; Baker, D.B.; Boyer, G.L.; D’Anglada, L.V.; Doucette, G.J.; Ho, J.C.; Irwin, E.G.; Kling, C.L.; et al. Global Solutions to Regional Problems: Collecting Global Expertise to Address the Problem of Harmful Cyanobacterial Blooms. a Lake Erie Case Study. Harmful Algae 2016, 54, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial Blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Humbert, J.-F.; Quiblier, C. The Suitability of Chemical Products and Other Short-Term Remedial Methods for the Control of Cyanobacterial Blooms in Freshwater Ecosystems. Front. Environ. Sci. 2019, 7, 176. [Google Scholar] [CrossRef]
- Srivastava, A.; Singh, S.; Ahn, C.-Y.; Oh, H.-M.; Asthana, R.K. Monitoring Approaches for a Toxic Cyanobacterial Bloom. Environ. Sci. Technol. 2013, 47, 8999–9013. [Google Scholar] [CrossRef]
- Zieger, S.E.; Seoane, S.; Laza-Martínez, A.; Knaus, A.; Mistlberger, G.; Klimant, I. Spectral Characterization of Eight Marine Phytoplankton Phyla and Assessing a Pigment-Based Taxonomic Discriminant Analysis for the In Situ Classification of Phytoplankton Blooms. Environ. Sci. Technol. 2018, 52, 14266–14274. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jiang, J.; Liu, K.; Wang, S.; Niu, P.; Liu, Y.; Liu, T. Flexible Minimally Invasive Coherent Anti-Stokes Raman Spectroscopy (CARS) Measurement Method with Tapered Optical Fiber Probe for Single-Cell Application. PHOTONIX 2022, 3, 11. [Google Scholar] [CrossRef]
- Catherine, A.; Escoffier, N.; Belhocine, A.; Nasri, A.B.; Hamlaoui, S.; Yéprémian, C.; Bernard, C.; Troussellier, M. On the Use of the FluoroProbe®, a Phytoplankton Quantification Method Based on Fluorescence Excitation Spectra for Large-Scale Surveys of Lakes and Reservoirs. Water Res. 2012, 46, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Ke, J.; Sun, Y.; Dong, C.; Zhang, X.; Wang, Z.; Lyu, L.; Zhu, W.; Ansmann, A.; Su, L.; Bu, L.; et al. Development of China’s First Space-Borne Aerosol-Cloud High-Spectral-Resolution Lidar: Retrieval Algorithm and Airborne Demonstration. PHOTONIX 2022, 3, 17. [Google Scholar] [CrossRef]
- Adan, A.; Alizada, G.; Kiraz, Y.; Baran, Y.; Nalbant, A. Flow Cytometry: Basic Principles and Applications. Crit. Rev. Biotechnol. 2017, 37, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Carena, L.; Peitsaro, N.; Sordello, F.; Vione, D.; Passananti, M. Rapid Detection of Nanoplastics and Small Microplastics by Nile-Red Staining and Flow Cytometry. Environ. Chem. Lett. 2023, 21, 647–653. [Google Scholar] [CrossRef]
- Ni, Y.X.; Gao, L.; Miroshnichenko, A.E.; Qiu, C.W. Controlling Light Scattering and Polarization by Spherical Particles with Radial Anisotropy. Opt. Express 2013, 21, 8091. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, M.; Foster, R.; Gilerson, A.; Ibrahim, A.; Carrizo, C.; El-Habashi, A.; Cairns, B.; Chowdhary, J.; Hostetler, C.; Hair, J.; et al. Airborne and Shipborne Polarimetric Measurements over Open Ocean and Coastal Waters: Intercomparisons and Implications for Spaceborne Observations. Remote Sens. Environ. 2018, 206, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Chue-Sang, J.; Gonzalez, M.; Pierre, A.; Laughrey, M.; Saytashev, I.; Novikova, T.; Ramella-Roman, J.C. Optical Phantoms for Biomedical Polarimetry: A Review. J. Biomed. Opt. 2019, 24, 030901. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.; Liao, R.; Tao, Y.; Peng, L.; Li, H.; Deng, H.; Ma, H. Early Warning of Cyanobacterial Blooms Based on Polarized Light Scattering Powered by Machine Learning. Measurement 2021, 184, 109902. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Xiong, Z.; Cui, W.; Bi, R.; Liao, R.; Ma, H. Real-Time Monitoring of Chlorination Treatment in Microcystis Cells by Simultaneously Measuring the Polarized Light Scattering and Fluorescence. Environ. Technol. Innov. 2023, 32, 103433. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, H.; Li, J.; Liao, R.; Mai, H.; Guan, C.; Guo, Z.; Yang, S.; Chen, Y.; Liu, B.; et al. Probing Individual Particles in Aquatic Suspensions by Simultaneously Measuring Polarized Light Scattering and Fluorescence. Biosensors 2021, 11, 416. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liao, R.; Dai, J.; Liu, Z.; Xiong, Z.; Zhang, T.; Chen, H.; Ma, H. Differentiation of Suspended Particles by Polarized Light Scattering at 120°. Opt. Express 2018, 26, 22419–22431. [Google Scholar] [CrossRef] [PubMed]
- Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning. Arch. Comput. Methods Eng. 2020, 27, 1071–1092. [Google Scholar] [CrossRef]
- Parker, J.R. Rank and Response Combination from Confusion Matrix Data. Inf. Fusion 2001, 2, 113–120. [Google Scholar] [CrossRef]
- Nguyen, V.L.A.; Tanabe, Y.; Matsuura, H.; Kaya, K.; Watanabe, M.M. Morphological, Biochemical and Phylogenetic Assessments of Water-Bloom-Forming Tropical Morphospecies of Microcystis (Chroococcales, Cyanobacteria). Phycol. Res. 2012, 60, 208–222. [Google Scholar] [CrossRef]
- Akgul, F.; Kizilkaya, I.T.; Akgul, R.; Erdugan, H. Morphological and Molecular Characterization of Scenedesmus-Like Species from Ergene River Basin (Thrace, Turkey). Turk. J. Fish. Aquat. Sci. 2017, 17, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, D.; Lu, G. Generalized Feature Extraction for Wrist Pulse Analysis: From 1-D Time Series to 2-D Matrix. IEEE J. Biomed. Health Inform. 2017, 21, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Blanca, M.J.; Arnau, J.; López-Montiel, D.; Bono, R.; Bendayan, R. Skewness and Kurtosis in Real Data Samples. Methodology 2013, 9, 78–84. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, S.; Li, W. Bearing Performance Degradation Assessment Using Long Short-Term Memory Recurrent Network. Comput. Ind. 2019, 106, 14–29. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.; Guo, L. Robust Bearing Performance Degradation Assessment Method Based on Improved Wavelet Packet–Support Vector Data Description. Mech. Syst. Signal Process. 2009, 23, 669–681. [Google Scholar] [CrossRef]
- Hu, L.; Shan, K.; Huang, L.; Li, Y.; Zhao, L.; Zhou, Q.; Song, L. Environmental Factors Associated with Cyanobacterial Assemblages in a Mesotrophic Subtropical Plateau Lake: A Focus on Bloom Toxicity. Sci. Total Environ. 2021, 777, 146052. [Google Scholar] [CrossRef] [PubMed]
- Sosik, H.M.; Olson, R.J. Automated Taxonomic Classification of Phytoplankton Sampled with Imaging-in-Flow Cytometry. Limnol. Oceanogr. Methods 2007, 5, 204–216. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Zhang, W.; Yu, S.; Wang, X.; Gao, N. New Advances in Fluorescence Excitation-Emission Matrix Spectroscopy for the Characterization of Dissolved Organic Matter in Drinking Water Treatment: A Review. Chem. Eng. J. 2020, 381, 122676. [Google Scholar] [CrossRef]
- Lai, Q.T.K.; Lee, K.C.M.; Tang, A.H.L.; Wong, K.K.Y.; So, H.K.H.; Tsia, K.K. High-Throughput Time-Stretch Imaging Flow Cytometry for Multi-Class Classification of Phytoplankton. Opt. Express 2016, 24, 28170–28184. [Google Scholar] [CrossRef] [PubMed]
- Pompei, C.M.E.; Campos, L.C.; Vieira, E.M.; Tucci, A. The Impact of Micropollutants on Native Algae and Cyanobacteria Communities in Ecological Filters during Drinking Water Treatment. Sci. Total Environ. 2022, 822, 153401. [Google Scholar] [CrossRef] [PubMed]
- Izydorczyk, K.; Carpentier, C.; Mrówczyński, J.; Wagenvoort, A.; Jurczak, T.; Tarczyńska, M. Establishment of an Alert Level Framework for Cyanobacteria in Drinking Water Resources by Using the Algae Online Analyser for Monitoring Cyanobacterial Chlorophyll a. Water Res. 2009, 43, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Li, W.; Zhu, G.; Zhang, Y.; Wu, T.; Gao, G. Cyanobacterial Bloom Management through Integrated Monitoring and Forecasting in Large Shallow Eutrophic Lake Taihu (China). J. Hazard. Mater. 2015, 287, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Watzin, M.C.; Miller, E.B.; Shambaugh, A.D.; Kreider, M.A. Application of the WHO Alert Level Framework to Cyanobacterial Monitoring of Lake Champlain, Vermont. Environ. Toxicol. 2006, 21, 278–288. [Google Scholar] [CrossRef]
- Søndergaard, M.; Larsen, S.E.; Jørgensen, T.B.; Jeppesen, E. Using Chlorophyll a and Cyanobacteria in the Ecological Classification of Lakes. Ecol. Indic. 2011, 11, 1403–1412. [Google Scholar] [CrossRef]
- Chaffin, J.D.; Kane, D.D.; Stanislawczyk, K.; Parker, E.M. Accuracy of Data Buoys for Measurement of Cyanobacteria, Chlorophyll, and Turbidity in a Large Lake (Lake Erie, North America): Implications for Estimation of Cyanobacterial Bloom Parameters from Water Quality Sonde Measurements. Environ. Sci. Pollut. Res. 2018, 25, 25175–25189. [Google Scholar] [CrossRef] [PubMed]
- Marcilhac, C.; Sialve, B.; Pourcher, A.-M.; Ziebal, C.; Bernet, N.; Béline, F. Digestate Color and Light Intensity Affect Nutrient Removal and Competition Phenomena in a Microalgal-Bacterial Ecosystem. Water Res. 2014, 64, 278–287. [Google Scholar] [CrossRef] [PubMed]
Category | Variety | Abbreviation |
---|---|---|
Chlorophyta | Pandorina sp. | N1 |
Eudorina sp. | N2 | |
Closterium sp. | N3 | |
Cosmarium sp. | N4 | |
Kirchneriella sp. | N5 | |
Crucigenia sp. | N6 | |
Tetraedron sp. | N7 | |
Scenedesmus sp. | N8 | |
Staursatrum sp. | N9 | |
Lagerheimia ciliata | N10 | |
Chlorella sp. | N11 | |
Selenastrum capricornutum | N12 | |
Bacillariophyta | Synedra ulna | N13 |
Asterionella Formosa | N14 | |
Fragilaria nanana | N15 | |
Melosira sp. | N16 | |
Navicula sp. | N17 | |
Nitzschia sp. | N18 | |
Cyclotella meneghiniana | N19 | |
Cyanophyta | Microcystis sp. | N20 |
Chroococcus sp. | N21 | |
Other SPM | Silica sand (18 μm) | N22 |
Silica sand (53 μm) | N23 | |
Quartz powder (38 μm) | N24 | |
Quartz powder (75 μm) | N25 | |
Monodisperse polystyrene microspheres (0.5 μm) | N26 | |
Monodisperse polystyrene microspheres (2 μm) | N27 | |
Monodisperse polystyrene microspheres (5 μm) | N28 | |
Monodisperse polystyrene microspheres (8 μm) | N29 | |
Monodisperse polystyrene microspheres (10 μm) | N30 |
Pulse Feature | Formula | Physical Property |
---|---|---|
Peak-to-peak value of the signal | ||
Variance (the second standardized moment) | ||
Standard deviation | ||
Root mean square (RMS) | ||
Skewness (the third standardized moment) | ||
Kurtosis (the fourth standardized moment) | ||
Waveform factor | ||
Clearance Factor |
Site | Cyanophyta | Bacillariophyta | Chlorophyta | Other SPM |
---|---|---|---|---|
CF-1 | 33.48% | 6.08% | 8.98% | 51.46% |
CF-2 | 27.05% | 5.55% | 10.39% | 57.01% |
CF-3 | 13.46% | 11.08% | 27.63% | 47.83% |
CF-4 | 4.65% | 6.69% | 34.18% | 54.48% |
GC-1 | 38.75% | 4.29% | 7.93% | 49.03% |
GC-2 | 26.96% | 8.18% | 14.37% | 50.49% |
GC-3 | 8.13% | 11.70% | 25.56% | 54.61% |
GC-4 | 5.15% | 14.39% | 43.10% | 37.36% |
Species | CF-1 | CF-2 | CF-3 | CF-4 | GC-1 | GC-2 | GC-3 | GC-4 |
---|---|---|---|---|---|---|---|---|
N8 | ++ | ++ | +++ | +++ | ++ | ++ | +++ | +++ |
N10 | ++ | ++ | ||||||
N12 | ++ | ++ | ++ | |||||
N19 | ++ | ++ | +++ | ++ | ++ | +++ | +++ | |
N20 | +++ | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
Species | CF-1 | CF-2 | CF-3 | CF-4 | GC-1 | GC-2 | GC-3 | GC-4 |
---|---|---|---|---|---|---|---|---|
N8 | +++ * | +++ * | +++ | +++ | ++ | +++ * | +++ | +++ |
N10 | ++ | ++ | ||||||
N12 | ++ | ++ | ++ | |||||
N19 | ++ | ++ | +++ | +++ * | +++ * | +++ | +++ | |
N20 | +++ | +++ | +++ | +++ | +++ | +++ | +++ | ++ * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, R.; Yang, J.; Huang, C.; Zhang, X.; Liao, R.; Ma, H. Pulse Feature-Enhanced Classification of Microalgae and Cyanobacteria Using Polarized Light Scattering and Fluorescence Signals. Biosensors 2024, 14, 160. https://doi.org/10.3390/bios14040160
Bi R, Yang J, Huang C, Zhang X, Liao R, Ma H. Pulse Feature-Enhanced Classification of Microalgae and Cyanobacteria Using Polarized Light Scattering and Fluorescence Signals. Biosensors. 2024; 14(4):160. https://doi.org/10.3390/bios14040160
Chicago/Turabian StyleBi, Ran, Jianxiong Yang, Chengqi Huang, Xiaoyu Zhang, Ran Liao, and Hui Ma. 2024. "Pulse Feature-Enhanced Classification of Microalgae and Cyanobacteria Using Polarized Light Scattering and Fluorescence Signals" Biosensors 14, no. 4: 160. https://doi.org/10.3390/bios14040160
APA StyleBi, R., Yang, J., Huang, C., Zhang, X., Liao, R., & Ma, H. (2024). Pulse Feature-Enhanced Classification of Microalgae and Cyanobacteria Using Polarized Light Scattering and Fluorescence Signals. Biosensors, 14(4), 160. https://doi.org/10.3390/bios14040160