Heterogeneous-Nucleation Biosensor for Long-Term Collection and Mask-Based Self-Detection of SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Equipment
2.3. Theory of the Biosensor
2.4. Numerical Modeling of the Au Nanoclusters and Mask Biosensor
2.5. Fabrication of the Biosensor
2.6. Characterization of the Morphology of Nanoclusters Using AFM, SEM and XPS
2.7. Functionalization of the Biosensor
2.8. Fitting the Resonance Rayleigh Scattering Spectra via Gaussian Function
2.9. Analyzing Resonance Rayleigh Scattering Spectra via Support Vector Machine Classifier
2.10. Statistics
3. Results
3.1. SARS-CoV-2 Detection in a Mask
3.2. Investigation of the Mask Based Biosensor via ANSYS Simulation
3.3. Characterization of the Biosensor
3.4. Pre-Clinical Validation of Mask Based Biosensor Using the Artificial Spiked SARS-CoV-2 Pseudovirus Saliva Samples
3.5. Investigation of the Resonance Rayleigh Scattering Spectra via Support Vector Machine Classifier
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, W.Y.; Lan, B.L.; Ramakrishnan, N. Emerging Biosensors to Detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review. Biosensors 2021, 11, 434. [Google Scholar] [CrossRef] [PubMed]
- Falk, M.; Psotta, C.; Cirovic, S.; Ohlsson, L.; Shleev, S. Electronic Tongue for Direct Assessment of SARS-CoV-2-Free and Infected Human Saliva-A Feasibility Study. Biosensors 2023, 13, 717. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.S.; Lin, C.L.; Long, L.; Masaki, T.; Tang, M.; Yang, L.L.; Liu, J.J.; Huang, Z.R.; Li, Z.Y.; Luo, X.Y.; et al. Charge-Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes with Excellent SERS Sensitivity for SARS-CoV-2 S Protein Detection. Nano-Micro Lett. 2021, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Shetti, N.P.; Jagannath, S.; Aminabhavi, T.M. Electrochemical sensors for the detection of SARS-CoV-2 virus. Chem. Eng. J. 2022, 430, 132966. [Google Scholar] [CrossRef]
- Shahrestani, S.; Chou, T.C.; Shang, K.M.; Zada, G.; Borok, Z.; Rao, A.P.; Tai, Y.C. A wearable eddy current based pulmonary function sensor for continuous non-contact point-of-care monitoring during the COVID-19 pandemic. Sci. Rep. 2021, 11, 20144. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Golab Behbahan, N.G.; Bahrani, S.; Mousavi, S.M.; Gholami, A.; Ramakrishna, S.; Firoozsani, M.; Moghadami, M.; Lankarani, K.B.; Omidifar, N. Ultra-sensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosens. Bioelectron. 2021, 171, 112731. [Google Scholar] [CrossRef]
- Smolinska, A.; Jessop, D.S.; Pappan, K.L.; De Saedeleer, A.; Kang, A.; Martin, A.L.; Allsworth, M.; Tyson, C.; Bos, M.P.; Clancy, M.; et al. The SARS-CoV-2 viral load in COVID-19 patients is lower on face mask filters than on nasopharyngeal swabs. Sci. Rep. 2021, 11, 13476. [Google Scholar] [CrossRef]
- Ma, J.; Qi, X.; Chen, H.; Li, X.; Zhang, Z.; Wang, H.; Sun, L.; Zhang, L.; Guo, J.; Morawska, L.; et al. Exhaled breath is a significant source of SARS-CoV-2 emission. medRxiv 2020. [Google Scholar] [CrossRef]
- Sharma, S.; Pinto, R.; Saha, A.; Chaudhuri, S.; Basu, S. On secondary atomization and blockage of surrogate cough droplets in single- and multilayer face masks. Sci. Adv. 2021, 7, eabf0452. [Google Scholar] [CrossRef]
- Ali, M.A.; Hu, C.; Jahan, S.; Yuan, B.; Saleh, M.S.; Ju, E.; Gao, S.J.; Panat, R. Sensing of COVID-19 Antibodies in Seconds via Aerosol Jet Nanoprinted Reduced-Graphene-Oxide-Coated 3D Electrodes. Adv. Mater. 2021, 33, e2006647. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wu, Y.; Guo, M.; Gu, C.; Dai, C.; Kong, D.; Wang, Y.; Zhang, C.; Qu, D.; et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 2022, 6, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.N.; Kan, X.Y.; Pan, Z.H.; Li, Z.Y.; Pan, W.W.; Zhou, F.; Duan, X.X. An intelligent face mask integrated with high density conductive nanowire array for directly exhaled coronavirus aerosols screening. Biosens. Bioelectron. 2021, 186, 113286. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Soenksen, L.R.; Donghia, N.M.; Angenent-Mari, N.M.; de Puig, H.; Huang, A.; Lee, R.; Slomovic, S.; Galbersanini, T.; Lansberry, G.; et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 2021, 39, 1366–1374. [Google Scholar] [CrossRef]
- Soto, F.; Ozen, M.O.; Guimaraes, C.F.; Wang, J.; Hokanson, K.; Ahmed, R.; Reis, R.L.; Paulmurugan, R.; Demirci, U. Wearable Collector for Noninvasive Sampling of SARS-CoV-2 from Exhaled Breath for Rapid Detection. ACS Appl. Mater. Interfaces 2021, 13, 41445–41453. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Y.; Chung, M.T.; McHugh, W.; Nidetz, R.; Li, Y.W.; Fu, J.P.; Cornell, T.T.; Shanley, T.P.; Kurabayashi, K. Multiplex Serum Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays. ACS Nano 2015, 9, 4173–4181. [Google Scholar] [CrossRef] [PubMed]
- Acimovic, S.S.; Sipova-Jungova, H.; Emilsson, G.; Shao, L.; Dahlin, A.B.; Kall, M.; Antosiewicz, T.J. Antibody-Antigen Interaction Dynamics Revealed by Analysis of Single-Molecule Equilibrium Fluctuations on Individual Plasmonic Nanoparticle Biosensors. ACS Nano 2018, 12, 9958–9965. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Bian, S.; Sun, J.; Wen, L.; Rong, G.; Sawan, M. Label-Free LSPR-Vertical Microcavity Biosensor for On-Site SARS-CoV-2 Detection. Biosensors 2022, 12, 151. [Google Scholar] [CrossRef]
- Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano 2020, 14, 5268–5277. [Google Scholar] [CrossRef]
- Huang, B.; Miao, L.; Li, J.; Xie, Z.; Wang, Y.; Chai, J.; Zhai, Y. Identification of plasmon-driven nanoparticle-coalescence-dominated growth of gold nanoplates through nanopore sensing. Nat. Commun. 2022, 13, 1402. [Google Scholar] [CrossRef]
- Nordlander, P.; Prodan, E. Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett. 2004, 4, 2209–2213. [Google Scholar] [CrossRef]
- Tang, H.; Su, Y.; Zhang, B.; Lee, A.F.; Isaacs, M.A.; Wilson, K.; Li, L.; Ren, Y.; Huang, J.; Haruta, M.; et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xu, W.; Niu, Y.; Zhang, B.; Zheng, L.; Liu, W.; Li, L.; Wang, J. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790. [Google Scholar] [CrossRef] [PubMed]
- Kacherovsky, N.; Yang, L.F.; Dang, H.V.; Cheng, E.L.; Cardle, I.I.; Walls, A.C.; McCallum, M.; Sellers, D.L.; DiMaio, F.; Salipante, S.J.; et al. Discovery and Characterization of Spike N-Terminal Domain-Binding Aptamers for Rapid SARS-CoV-2 Detection. Angew. Chem. Int. Ed. Engl. 2021, 60, 21211–21215. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.F.; He, A.X.; Zhao, H.T.; Sun, Y.; Duan, Q.; Abbas, S.J.; Liu, J.J.; Xiao, Z.Y.; Tan, W.H. Molecular Engineering of Aptamer Self-Assemblies Increases in Vivo Stability and Targeted Recognition. ACS Nano 2022, 16, 169–179. [Google Scholar] [CrossRef]
- Thiviyanathan, V.; Gorenstein, D.G. Aptamers and the next generation of diagnostic reagents. Proteom. Clin. Appl. 2012, 6, 563–573. [Google Scholar] [CrossRef]
- Li, Z.H.; Meng, Y.; Nie, H.Y.; Gu, R.M.; Wang, X.K.; Xiao, D. The unique physical shading pattern of Rayleigh scattering for the generally improved detection of scattering particles. Analyst 2022, 147, 2361–2368. [Google Scholar] [CrossRef]
DNA Sequence | TCGCTCTTTCCGCTTCTTCGCGGTCATGTCATCCTGACTGACCCTAAGGTGCGAACATCGCCCGCGTAAGTCCGTGTGTGCGAA |
---|---|
OD | 5.0 |
Purification | HPLC |
Modification | 5′SH C6 |
Modification molecular weight | 196.20 |
Primer length | 86 |
Molecular weight | 26,361.03 |
Aggregate molecular weight | 26,557.23 |
Description | |
---|---|
n | Number of Gaussian functions |
y | Offset |
xi | Center |
si | Width (standard deviation) |
Ampi | Amplitude |
Wi | Width (FWHM) |
Ai | Area |
Description | |
---|---|
No. of sample points | 5758.00 |
Degrees of freedom | 5748.00 |
CoD (R2) | 0.98 |
Correlation | 0.99 |
Average error | 14.65 |
Sl. No. | Technologies | Drawbacks | Advantages | Signal Amplification | Limit of Detection | Reference |
---|---|---|---|---|---|---|
1 | Impedance changes | No collector to increase the signals | Easy operation | No | 7 pfu/mL (aerosols) | [12] |
2 | Anti-FITC conjugated Au NPs | Uncontrol reaction and instability | Easy operation | Yes | 500 copies | [13] |
3 | Wearable collector | No biosensor and external detection | Sensitivity | No | 10,000 copies | [14] |
4 | Resonance Rayleigh Scattering intensity | External detector | Easy fabrication Sensitivity Stabilization | Yes | 1000 copies | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Bian, S.; Pan, D.; Xu, Y.; Rong, G.; Zhang, H.; Sawan, M. Heterogeneous-Nucleation Biosensor for Long-Term Collection and Mask-Based Self-Detection of SARS-CoV-2. Biosensors 2023, 13, 858. https://doi.org/10.3390/bios13090858
Su Y, Bian S, Pan D, Xu Y, Rong G, Zhang H, Sawan M. Heterogeneous-Nucleation Biosensor for Long-Term Collection and Mask-Based Self-Detection of SARS-CoV-2. Biosensors. 2023; 13(9):858. https://doi.org/10.3390/bios13090858
Chicago/Turabian StyleSu, Yi, Sumin Bian, Dingyi Pan, Yankun Xu, Guoguang Rong, Hongyong Zhang, and Mohamad Sawan. 2023. "Heterogeneous-Nucleation Biosensor for Long-Term Collection and Mask-Based Self-Detection of SARS-CoV-2" Biosensors 13, no. 9: 858. https://doi.org/10.3390/bios13090858
APA StyleSu, Y., Bian, S., Pan, D., Xu, Y., Rong, G., Zhang, H., & Sawan, M. (2023). Heterogeneous-Nucleation Biosensor for Long-Term Collection and Mask-Based Self-Detection of SARS-CoV-2. Biosensors, 13(9), 858. https://doi.org/10.3390/bios13090858