Vertical Flow Immunoassay Based on Carbon Black Nanoparticles for the Detection of IgG against SARS-CoV-2 Spike Protein in Human Serum: Proof-of-Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Conjugation of CNPs with Anti-Human MAb and Bi-BSA
2.2.2. CNP Conjugates Characterization
2.2.3. Preparation of Vertical Flow Immunoassay Devices
2.2.4. Assay Procedure
2.2.5. Assay Parameters for Direct Detection of Streptavidin
2.2.6. Assay Parameters for Indirect Detection of IgG vs. Spike Protein
2.2.7. Clinical Serum Samples
3. Results and Discussion
3.1. Optimization of the Preparation of CNP Conjugates
3.1.1. Carbon Black Type Optimization
3.1.2. The Optimal Amount of MAb
3.1.3. Reproducibility of CNP@MAb Preparation
3.2. Optimization of the Vertical Flow Immunoassay
3.2.1. Membrane Type Optimization
3.2.2. Optimal Blocking Solution
3.2.3. Optimal Concentrations of Spike Protein and CNP@MAb
3.2.4. Optimization of an Assay Procedure
3.3. Assay Validation
4. Conclusions
Assay | Label | LOD | Assay Time | Reference |
---|---|---|---|---|
Two-step CLIA * | Magnetic nanoparticles | 12.16 BAU/mL | 30–50 min | [55] |
Rapid serological magnetic immunodetection | Magnetic nanoparticles | — | 21 min | [56] |
Immunochromatography (LFIA **) | Colloidal gold | 30 BAU/ml | 15 min | [57] |
Immunochromatography (LFIA) | Colloidal gold | 1:640 | 10 min | [58] |
Immunochromatography (LFIA) |
Colloidal gold | 14.2 BAU/mL | 10 min | [59] |
Vertical flow immunoassay | Horseradish peroxidase | 5 nM | 15 min | [13] |
Vertical flow immunoassay | Carbon nanoparticles | 7.81 BAU/mL | 5–7 min | This work |
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weekly Epidemiological Update on COVID-19. 22 June 2023. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-june-2023 (accessed on 27 June 2023).
- Harun-Ur-Rashid, M.; Foyez, T.; Jahan, I.; Pal, K.; Imran, A.B. Rapid diagnosis of COVID-19 via nano-biosensor-implemented biomedical utilization: A systematic review. RSC Adv. 2022, 12, 9445–9465. [Google Scholar] [CrossRef]
- Iravani, S. Nano- and biosensors for the detection of SARS-CoV-2: Challenges and opportunities. Mater. Adv. 2020, 1, 3092–3103. [Google Scholar] [CrossRef]
- Vandenberg, O.; Martiny, D.; Rochas, O.; van Belkum, A.; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2021, 19, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.J.; Moore, J.S.; Blighe, K.; Ng, K.Y.; Quinn, N.; Jennings, F.; Warnock, G.; Sharpe, P.; Clarke, M.; Maguire, K.; et al. Evaluation of the IgG antibody response to SARS CoV-2 infection and performance of a lateral flow immunoassay: Cross-sectional and longitudinal analysis over 11 months. BMJ Open 2021, 11, e048142. [Google Scholar] [CrossRef]
- Ernst, E.; Wolfe, P.; Stahura, C.; Edwards, K.A. Technical considerations to development of serological tests for SARS-CoV-2. Talanta 2021, 224, 121883. [Google Scholar] [CrossRef] [PubMed]
- Pérez-López, B.; Mir, M. Commercialized diagnostic technologies to combat SARS-CoV2: Advantages and disadvantages. Talanta 2021, 225, 121898. [Google Scholar] [CrossRef]
- Dong, T.; Wang, M.; Liu, J.; Ma, P.; Pang, S.; Liu, W.; Liu, A. Diagnostics and analysis of SARS-CoV-2: Current status, recent advances, challenges and perspectives. Chem. Sci. 2023, 14, 6149–6206. [Google Scholar] [CrossRef]
- Zhang, P.; Bao, Y.; Draz, M.S.; Lu, H.; Liu, C.; Han, H. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay. Int. J. Nanomed. 2015, 10, 6161–6173. [Google Scholar] [CrossRef]
- Rapak, A.; Szewczuk, A. Semiquantitative assay of human chorionic gonadotropin by a simple and fast immunofiltration technique. Eur. J. Clin. Chem. Clin. Biochem. 1993, 31, 153–157. [Google Scholar] [CrossRef]
- Castro, R.; Mody, H.C.; Parab, S.Y.; Patel, M.T.; Kikkert, S.E.; Park, M.M.; Ballard, R.C. An immunofiltration device for the simultaneous detection of non-treponemal and treponemal antibodies in patients with syphilis. Sex Transm. Infect. 2010, 86, 532–536. [Google Scholar] [CrossRef]
- Sil, B.K.; Jamiruddin, M.R.; Haq, M.A.; Khondoker, M.U.; Jahan, N.; Khandker, S.S.; Ali, T.; Oishee, M.J.; Kaitsuka, T.; Mie, M.; et al. AuNP Coupled Rapid Flow-Through Dot-Blot Immuno-Assay for Enhanced Detection of SARS-CoV-2 Specific Nucleocapsid and Receptor Binding Domain IgG. Int. J. Nanomed. 2021, 16, 4739–4753. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Hao, Y.; Miller, E.A.; Tay, D.M.Y.; Yee, E.; Kongsuphol, P.; Jia, H.; McBee, M.; Preiser, P.R.; Sikes, H.D. Vertical Flow Cellulose-Based Assays for SARS-CoV-2 Antibody Detection in Human Serum. ACS Sens. 2021, 6, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Adil, B.; Shankar, K.M.; Kumar, B.T.; Patil, R.; Ballyaya, A.; Ramesh, K.S.; Poojary, S.R.; Byadgi, O.V.; Siriyappagouder, P. Development and standardization of a monoclonal antibody-based rapid flow-through immunoassay for the detection of Aphanomyces invadans in the field. J. Vet. Sci. 2013, 14, 413–419. [Google Scholar] [CrossRef]
- Jia, M.; Liu, J.; Zhang, J.; Zhang, H. An immunofiltration strip method based on the photothermal effect of gold nanoparticles for the detection of Escherichia coli O157:H7. Analyst 2019, 144, 573. [Google Scholar] [CrossRef]
- Zhi, Z.; Meyer, U.J.; Van den Bedem, J.; Meusel, M. Evaluation of an automated and integrated flow-through immunoanalysis system for the rapid determination of cephalexin in raw milk. Anal. Chim. Acta 2001, 442, 207–219. [Google Scholar] [CrossRef]
- INSTI HIV-1/HIV-2 Antibody Test. Available online: https://www.insti.com/hiv-test/ (accessed on 1 June 2023).
- Oh, Y.K.; Joung, H.A.; Kim, S.; Kim, M.G. Vertical flow immunoassay (VFA) biosensor for a rapid one-step immunoassay. Lab. Chip. 2013, 13, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Ross, G.M.S.; Salentijn, G.I.; Nielen, M.W.F. A Critical Comparison between Flow-through and Lateral Flow Immunoassay Formats for Visual and Smartphone-Based Multiplex Allergen Detection. Biosensors 2019, 9, 143. [Google Scholar] [CrossRef]
- Shi, F.; Sun, Y.; Wu, Y.; Zhu, M.; Feng, D.; Zhang, R.; Peng, L.; Chen, C. A novel, rapid and simple method for detecting brucellosis based on rapid vertical flow technology. J. Appl. Microbiol. 2020, 128, 794–802. [Google Scholar] [CrossRef]
- Genç, O.; Büyüktanır, O.; Yurdusev, N. Rapid immunofiltration assay based on colloidal gold-protein G conjugate as an alternative screening test for bovine and ovine brucellosis. Trop Anim. Health Prod. 2012, 44, 213–215. [Google Scholar] [CrossRef]
- Kalita, P.; Chaturvedula, L.M.; Sritharan, V.; Gupta, S. In vitro flow-through assay for rapid detection of endotoxin in human sera: A proof-of-concept. Nanomedicine 2017, 13, 1483–1490. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, X.; Li, D.; Hu, J.; Wan, D.; Zhang, Z.; Hammock, B.D. Development of nanobody-based flow-through dot ELISA and lateral-flow immunoassay for rapid detection of 3-phenoxybenzoic acid. Anal. Methods 2021, 13, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Samsonova, J.V.; Safronova, V.A.; Osipov, A.P. Rapid flow-through enzyme immunoassay of progesterone in whole cows’ milk. Anal. Biochem. 2018, 545, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Tianping, W.; Zhigang, T. Development of a rapid, sensitive, dye immunoassay for schistosomiasis diagnosis: A colloidal dye immunofiltration assay. J. Immunol. Meth. 2003, 280, 49–57. [Google Scholar] [CrossRef]
- Porras, J.C.; Bernuz, M.; Marfa, J.; Pallares-Rusiñol, A.; Martí, M.; Pividori, M.I. Comparative Study of Gold and Carbon Nanoparticles in Nucleic Acid Lateral Flow Assay. Nanomaterials 2021, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Van Amerongen, A.; Wichers, J.H.; Berendsen, L.B.; Timmermans, A.J.; Keizer, G.D.; van Doorn, A.W.; Bantjes, A.; van Gelder, W.M. Colloidal carbon particles as a new label for rapid immunochemical test methods: Quantitative computer image analysis of results. J. Biotechnol. 1993, 30, 185–195. [Google Scholar] [CrossRef]
- Linares, E.M.; Kubota, L.T.; Michaelis, J.; Thalhammer, S. Enhancement of the detection limit for lateral flow immunoassays: Evaluation and comparison of bioconjugates. J. Immunol. Meth. 2012, 375, 264–270. [Google Scholar] [CrossRef]
- Ouyang, X.; Liu, J.; Li, J.; Yang, R. A carbon nanoparticle-based low-background biosensing platform for sensitive and label-free fluorescent assay of DNA methylation. Chem. Commun. 2012, 48, 88–90. [Google Scholar] [CrossRef]
- Liu, B.; Wang, L.; Tong, B.; Zhang, Y.; Sheng, W.; Pan, M.; Wang, S. Development and comparison of immunochromatographic strips with three nanomaterial labels: Colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol. Biosens. Bioelectron. 2016, 85, 337–342. [Google Scholar] [CrossRef]
- Mujawar, L.; Moers, A.; Norde, W.; van Amerongen, A. Rapid mastitis detection assay on porous nitrocellulose membrane slides. Anal. Bioanal. Chem. 2013, 405, 7469–7476. [Google Scholar] [CrossRef]
- Noguera, P.; Posthuma-Trumpie, G.A.; van Tuil, M.; van der Wal, F.J.; de Boer, A.; Moers, A.P.; van Amerongen, A. Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli. Anal. Bioanal. Chem. 2011, 399, 831–838. [Google Scholar] [CrossRef]
- Suárez-Pantaleón, C.; Wichers, J.; Abad-Somovilla, A.; van Amerongen, A.; Abad-Fuentes, A. Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron. Biosens. Bioelectron. 2013, 42, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, F.; Sun, Y.; Mi, T.; Wang, L.; Li, Q.; Li, J.; Ma, W.; Liu, W.; Zuo, J.; et al. Development of a highly sensitive lateral flow immunoassay based on receptor-antibody-amorphous carbon nanoparticles to detect 22 β-lactams in milk. Sens. Actuators B Chem. 2020, 321, 128458. [Google Scholar] [CrossRef]
- Harlow, E.; Lane, D. Using Antibodies: A Laboratory Manual; CSHL Press: New York, NY, USA, 1999; pp. 345–380. [Google Scholar]
- Khramtsov, P.; Bochkova, M.; Timganova, V.; Zamorina, S.; Rayev, M. Dot immunoassay for the simultaneous determination of postvaccination immunity against pertussis, diphtheria, and tetanus. Anal. Bioanal. Chem. 2017, 409, 3831–3842. [Google Scholar] [CrossRef] [PubMed]
- Carbon Black, Titanium Dioxide, and Talc. Available online: https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono93.pdf (accessed on 27 September 2022).
- Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013, 113, 1904–2074. [Google Scholar] [CrossRef]
- Zare, I.; Chevrier, D.M.; Cifuentes-Rius, A.; Moradi, N.; Xianyu, Y.; Ghosh, S.; Trapiella-Alfonso, L.; Tian, Y.; Shourangiz-Haghighi, A.; Mukherjee, S.; et al. Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications. Mater. Today 2021, 66, 159–193. [Google Scholar] [CrossRef]
- Schubert, J.; Chanana, M. Coating matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms. Curr. Med. Chem. 2018, 25, 4553–4586. [Google Scholar] [CrossRef]
- Guerrini, L.; Alvarez-Puebla, R.A.; Pazos-Perez, N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials 2018, 11, 1154. [Google Scholar] [CrossRef]
- Ghosh, G.; Panicker, L. Protein-nanoparticle interactions and a new insight. Soft Matter. 2021, 17, 3855–3875. [Google Scholar] [CrossRef]
- Chen, P.; Gates-Hollingsworth, M.; Pandit, S.; Park, A.; Montgomery, D.; AuCoin, D.; Gu, J.; Zenhausern, F. Paper-based Vertical Flow Immunoassay (VFI) for detection of bio-threat pathogens. Talanta 2019, 191, 81–88. [Google Scholar] [CrossRef]
- Rapid Lateral Flow Test Strips. Considerations for Product Development. Available online: https://www.merckmillipore.com/INTERSHOP/web/WFS/Merck-RU-Site/ru_RU/-/USD/ShowDocument-Pronet?id=201306.1567 (accessed on 27 January 2023).
- Wong, R.C.; Tse, H.Y. Lateral Flow Immunoassay, 1st ed.; Humana Press: New York, NY, USA, 2009; pp. 95–115. [Google Scholar]
- Frutiger, A.; Tanno, A.; Hwu, S.; Tiefenauer, R.F.; Vörös, J.; Nakatsuka, N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem. Rev. 2021, 121, 8095–8160. [Google Scholar] [CrossRef]
- Trullols, E.; Ruisánchez, I.; Rius, F. Validation of qualitative analytical methods. Trends Anal. Chem. 2004, 23, 137–145. [Google Scholar] [CrossRef]
- Bioanalytical Method Validation, Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidanceindustry (accessed on 27 May 2023).
- Considerations for the Use of Antibody Tests for SARSCoV-2–First Update. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Considerations-for-the-use-of-antibody-tests-for-SARS-CoV2-first-update.pdf (accessed on 27 May 2023).
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO International Standard First WHO International Standard for Anti-SARS-CoV-2 Immunoglobulin (Human) 2.0 (2020). Available online: https://www.who.int/publications/m/item/WHO-BS-2020.2403 (accessed on 25 July 2023).
- Kristiansen, P.A.; Page, M.; Bernasconi, V.; Mattiuzzo, G.; Dull, P.; Makar, K.; Plotkin, S.; Knezevic, I. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet 2021, 397, 1347–1348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, X.; Wen, K.; Li, C.; Mujtaba Mari, G.; Jiang, H.; Shi, W.; Shen, J.; Wang, Z. Multiplex Lateral Flow Immunoassays Based on Amorphous Carbon Nanoparticles for Detecting Three Fusarium Mycotoxins in Maize. J. Agric. Food Chem. 2017, 36, 8063–8071. [Google Scholar] [CrossRef]
- Razo, S.C.; Elovenkova, A.I.; Safenkova, I.V.; Drenova, N.V.; Varitsev, Y.A.; Zherdev, A.V.; Dzantiev, B.B. Coloured Nanoparticle Labels in Lateral Flow Immunoassay. Nanomaterials 2021, 11, 3277. [Google Scholar] [CrossRef]
- SARS-CoV-2 Neutralizing Antibodies Immunoassay Detection Episode 1: S-RBD IgG. Available online: https://www.mindray.com/en/media-center/blogs/sars-cov-2-neutralizing-antibodies-immunoassay-detection-episode-1-s-rbd-igg (accessed on 22 August 2023).
- Pietschmann, J.; Voepel, N.; Voß, L.; Rasche, S.; Schubert, M.; Kleines, M.; Krause, H.-J.; Shaw, T.M.; Spiegel, H.; Schroeper, F. Development of Fast and Portable Frequency Magnetic Mixing-Based Serological SARS-CoV-2-Specific Antibody Detection Assay. Front. Microbiol. 2021, 12, 643275. [Google Scholar] [CrossRef]
- Rapid COVID-19 Neutralizing Antibody (NAb) “Quantitative” Test. Available online: https://bioactiva.com/pub/media/sebwite/productdownloads//s/c/schnelltest.pdf (accessed on 22 August 2023).
- Rapid-VIDITEST Anti-SARS-CoV-2 (RBD) IgG. Available online: https://www.mobitec.com/media/datasheets/vidia/ODZ-496.pdf (accessed on 22 August 2023).
- COVID-19 In Vitro Diagnostic Devices and Test Methods Database. Available online: https://covid-19-diagnostics.jrc.ec.europa.eu/devices/detail/2638 (accessed on 22 August 2023).
Serum Sample Number | ELISA, BAU/mL | Color Intensity, a.u. n = 6, Mean ± Standard Deviation | CV, % |
---|---|---|---|
3 | 5473.09 | 49 ± 3 | 6.1 |
63 | 2321.8 | 56.6 ± 3.7 | 6.5 |
36 | 1465.6 | 31.9 ± 2.6 | 8.1 |
83 | 564.9 | 21.6 ± 4.9 | 22.7 |
61 | 359.3 | 10.3 ± 1.6 | 15.1 |
58 | 108.0 | 11.7 ± 2.4 | 20.2 |
33 | 54.4 | 1.6 ± 2.3 | 145.8 |
48 | 20.4 | 0.4 ± 0.9 | 223.6 |
71 | 0 | 0.9 ± 1.9 | 223.6 |
75 | 0 | 2 ± 1.7 | 79.2 |
Serum Sample Number | Detection Status for Visually Assessment | Sensitivity Rate, % | Specificity Rate, % |
---|---|---|---|
3 | 111111 | 100 | 0 |
63 | 111111 | 100 | 0 |
36 | 111111 | 100 | 0 |
83 | 111111 | 100 | 0 |
61 | 111111 | 100 | 0 |
58 | 011111 | 83 | 0 |
33 | 000000 | 0 | 100 |
48 | 000000 | 0 | 100 |
71 | 000000 | 0 | 100 |
75 | 000000 | 0 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kropaneva, M.; Khramtsov, P.; Bochkova, M.; Lazarev, S.; Kiselkov, D.; Rayev, M. Vertical Flow Immunoassay Based on Carbon Black Nanoparticles for the Detection of IgG against SARS-CoV-2 Spike Protein in Human Serum: Proof-of-Concept. Biosensors 2023, 13, 857. https://doi.org/10.3390/bios13090857
Kropaneva M, Khramtsov P, Bochkova M, Lazarev S, Kiselkov D, Rayev M. Vertical Flow Immunoassay Based on Carbon Black Nanoparticles for the Detection of IgG against SARS-CoV-2 Spike Protein in Human Serum: Proof-of-Concept. Biosensors. 2023; 13(9):857. https://doi.org/10.3390/bios13090857
Chicago/Turabian StyleKropaneva, Maria, Pavel Khramtsov, Maria Bochkova, Sergey Lazarev, Dmitriy Kiselkov, and Mikhail Rayev. 2023. "Vertical Flow Immunoassay Based on Carbon Black Nanoparticles for the Detection of IgG against SARS-CoV-2 Spike Protein in Human Serum: Proof-of-Concept" Biosensors 13, no. 9: 857. https://doi.org/10.3390/bios13090857
APA StyleKropaneva, M., Khramtsov, P., Bochkova, M., Lazarev, S., Kiselkov, D., & Rayev, M. (2023). Vertical Flow Immunoassay Based on Carbon Black Nanoparticles for the Detection of IgG against SARS-CoV-2 Spike Protein in Human Serum: Proof-of-Concept. Biosensors, 13(9), 857. https://doi.org/10.3390/bios13090857