Respiratory Rate Estimation during Walking and Running Using Breathing Sounds Recorded with a Microphone
Abstract
:1. Introduction
2. Background and Working Principle
3. Experimental Tests during Walking and Running
3.1. Experimental Setup
3.2. Experimental Protocol
- -
- A resting phase: participants were asked to stand and breathe spontaneously for 90 s.
- -
- A walking phase at 3 km/h followed by a 6 km/h walking phase. Each of the two stages lasted 90 s.
- -
- A running phase at 9 km/h followed by a 12 km/h running phase. Each of the two stages lasted 90 s.
- -
- A recovery phase in a standing position while breathing spontaneously for 90 s.
4. Data Analysis
4.1. Flowmeter Signal Processing
4.2. Audio Signal Processing for Respiratory Rate Estimation
4.3. Respiratory Frequency Estimation
- Two consecutive peaks are selected as separate events if their distance exceeds a minimum value set at 0.7 s [42].
- Peaks are selected only if their amplitude exceeds 2% of the maximum signal amplitude.
4.4. Ambient Noise Estimation
5. Results
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. Sensors 2020, 20, 6396. [Google Scholar] [CrossRef] [PubMed]
- Nicolò, A.; Massaroni, C.; Passfield, L. Respiratory Frequency during Exercise: The Neglected Physiological Measure. Front. Physiol. 2017, 8, 922. [Google Scholar] [CrossRef] [PubMed]
- Nicolò, A.; Sacchetti, M. Differential Control of Respiratory Frequency and Tidal Volume during Exercise. Eur. J. Appl. Physiol. 2023, 123, 215–242. [Google Scholar] [CrossRef]
- Nicolò, A.; Montini, M.; Girardi, M.; Felici, F.; Bazzucchi, I.; Sacchetti, M. Respiratory Frequency as a Marker of Physical Effort during High-Intensity Interval Training in Soccer Players. Int. J. Sports Physiol. Perform. 2020, 15, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Nicolò, A.; Bazzucchi, I.; Haxhi, J.; Felici, F.; Sacchetti, M. Comparing Continuous and Intermittent Exercise: An “Isoeffort” and “Isotime” Approach. PLoS ONE 2014, 9, e94990. [Google Scholar] [CrossRef] [Green Version]
- Villar, R.; Beltrame, T.; Hughson, R.L. Validation of the Hexoskin Wearable Vest during Lying, Sitting, Standing, and Walking Activities. Appl. Physiol. Nutr. Metab. 2015, 40, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Harbour, E.; Lasshofer, M.; Genitrini, M.; Schwameder, H. Enhanced Breathing Pattern Detection during Running Using Wearable Sensors. Sensors 2021, 21, 5606. [Google Scholar] [CrossRef] [PubMed]
- Hayward, N.; Shaban, M.; Badger, J.; Jones, I.; Wei, Y.; Spencer, D.; Isichei, S.; Knight, M.; Otto, J.; Rayat, G. A Capaciflector Provides Continuous and Accurate Respiratory Rate Monitoring for Patients at Rest and during Exercise. J. Clin. Monit. Comput. 2022, 36, 1535–1546. [Google Scholar] [CrossRef]
- Kim, J.H.; Roberge, R.; Powell, J.B.; Shafer, A.B.; Jon Williams, W. Measurement Accuracy of Heart Rate and Respiratory Rate during Graded Exercise and Sustained Exercise in the Heat Using the Zephyr BioHarness TM. Int. J. Sports Med. 2013, 34, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Nazari, G.; MacDermid, J.C. Reliability of Zephyr BioHarness Respiratory Rate at Rest, during the Modified Canadian Aerobic Fitness Test and Recovery. J. Strength Cond. Res. 2020, 34, 264–269. [Google Scholar] [CrossRef]
- Hailstone, J.; Kilding, A.E. Reliability and Validity of the ZephyrTM BioHarnessTM to Measure Respiratory Responses to Exercise. Meas. Phys. Educ. Exerc. Sci. 2011, 15, 293–300. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, S.H.; Wang, G.H.; Ye, F.; Li, P.Z. Validity and Reliability of Multiparameter Physiological Measurements Recorded by the Equivital LifeMonitor during Activities of Various Intensities. J. Occup. Environ. Hyg. 2013, 10, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Montes, J.; Young, J.C.; Tandy, R.; Navalta, J.W. Reliability and Validation of the Hexoskin Wearable Bio-Collection Device during Walking Conditions. Int. J. Exerc. Sci. 2018, 11, 806. [Google Scholar]
- Gouw, A.H.; Van Guilder, G.P.; Cullen, G.G.; Dalleck, L.C. Is the Tyme Wear Smart Shirt Reliable and Valid at Detecting Personalized Ventilatory Thresholds in Recreationally Active Individuals? Int. J. Environ. Res. Public Health 2022, 19, 1147. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.; Schaffarczyk, M.; Gronwald, T. Estimation of Respiratory Frequency in Women and Men by Kubios HRV Software Using the Polar H10 or Movesense Medical ECG Sensor during an Exercise Ramp. Sensors 2022, 22, 7156. [Google Scholar] [CrossRef]
- Prigent, G.; Aminian, K.; Rodrigues, T.; Vesin, J.-M.; Millet, G.P.; Falbriard, M.; Meyer, F.; Paraschiv-Ionescu, A. Indirect Estimation of Breathing Rate from Heart Rate Monitoring System during Running. Sensors 2021, 21, 5651. [Google Scholar] [CrossRef]
- Romano, C.; Nicolò, A.; Innocenti, L.; Sacchetti, M.; Schena, E.; Massaroni, C. Design and Testing of a Smart Facemask for Respiratory Monitoring during Cycling Exercise. Biosensors 2023, 13, 369. [Google Scholar] [CrossRef]
- Doyle, D.J. Acoustical Respiratory Monitoring in the Time Domain. Open Anesth. J. 2019, 13, 144–151. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolò, A.; Presti, D.L.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-Based Methods for Measuring Respiratory Rate. Sensors 2019, 19, 908. [Google Scholar] [CrossRef] [Green Version]
- Khodaie, M.; Nafisi, V.R.; Moghadam, F.F. Design and Implementation of an Apparatus for Respiratory Parameters Estimation Based on Acoustic Methods. In Proceedings of the 2021 28th National and 6th International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 25–26 November 2021; pp. 15–21. [Google Scholar]
- Harvill, J.; Wani, Y.; Alam, M.; Ahuja, N.; Hasegawa-Johnsor, M.; Chestek, D.; Beiser, D.G. Estimation of Respiratory Rate from Breathing Audio. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 4599–4603. [Google Scholar]
- Priftis, K.N.; Hadjileontiadis, L.J.; Everard, M.L. Breath Sounds: From Basic Science to Clinical Practice; Springer: Cham, Switzerland, 2018; pp. 1–319. [Google Scholar] [CrossRef]
- Fang, Y.; Jiang, Z.; Wang, H. A Novel Sleep Respiratory Rate Detection Method for Obstructive Sleep Apnea Based on Characteristic Moment Waveform. J. Healthc. Eng. 2018, 2018, 1902176. [Google Scholar] [CrossRef]
- Ahmed, T.; Rahman, M.M.; Nemati, E.; Ahmed, M.Y.; Kuang, J.; Gao, J.A. Remote Breathing Rate Tracking in Stationary Position Using the Motion and Acoustic Sensors of Earables. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023. [Google Scholar]
- Nam, Y.; Reyes, B.A.; Chon, K.H. Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset. IEEE J. Biomed. Health Inform. 2015, 20, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Abbasi-Kesbi, R.; Valipour, A.; Imani, K. Cardiorespiratory System Monitoring Using a Developed Acoustic Sensor. Healthc. Technol. Lett. 2018, 5, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Kroutil, J.; Laposa, A.; Husak, M. Respiration Monitoring during Sleeping. In Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, Barcelona, Spain, 26–29 October 2011; pp. 1–5. [Google Scholar]
- Skalicky, D.; Koucky, V.; Hadraba, D.; Viteznik, M.; Dub, M.; Lopot, F. Detection of Respiratory Phases in a Breath Sound and Their Subsequent Utilization in a Diagnosis. Appl. Sci. 2021, 11, 6535. [Google Scholar] [CrossRef]
- Kumar, A.; Mitra, V.; Oliver, C.; Ullal, A.; Biddulph, M.; Mance, I. Estimating Respiratory Rate from Breath Audio Obtained through Wearable Microphones. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; pp. 7310–7315. [Google Scholar]
- Royer, M.; Holmen, J.O.; Wurm, M.A.; Aadland, O.S.; Glenn, M. ZnO on Si Integrated Acoustic Sensor. Sens. Actuators 1983, 4, 357–362. [Google Scholar] [CrossRef]
- Schellin, R.; Hess, G. A Silicon Subminiature Microphone Based on Piezoresistive Polysilicon Strain Gauges. Sens. Actuators A Phys. 1992, 32, 555–559. [Google Scholar] [CrossRef]
- Lee, C.-I.; Chien, H.-T.; Liu, P.-T.; Chen, J.M. High Sensitivity Silicon-Based Condenser Microphone Design. In Proceedings of the 2007 International Microsystems, Packaging, Assembly and Circuits Technology, Taipei, Taiwan, 1–3 October 2007; pp. 38–41. [Google Scholar]
- Eargle, J. The Microphone Book: From Mono to Stereo to Surround—A Guide to Microphone Design and Application; CRC Press: Boca Raton, FL, USA, 2012; ISBN 1136118063. [Google Scholar]
- Eargle, J.M. Handbook of Recording Engineering; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 146849919X. [Google Scholar]
- Moussavi, Z. Fundamentals of Respiratory Sounds and Analysis. Synth. Lect. Biomed. Eng. 2006, 1, 1–68. [Google Scholar]
- Mikami, T.; Kojima, Y.; Yonezawa, K.; Yamamoto, M.; Furukawa, M. Classification of Oral/Nasal Simulated Snores Based on the Acoustic Properties. J. Biomech. Sci. Eng. 2012, 7, 433–448. [Google Scholar] [CrossRef]
- Massaroni, C.; Di Tocco, J.; Bravi, M.; Carnevale, A.; Presti, D.L.; Sabbadini, R.; Miccinilli, S.; Sterzi, S.; Formica, D.; Schena, E. Respiratory Monitoring during Physical Activities with a Multi-Sensor Smart Garment and Related Algorithms. IEEE Sens. J. 2019, 20, 2173–2180. [Google Scholar] [CrossRef]
- Tardi, G.; Massaroni, C.; Saccomandi, P.; Schena, E. Experimental Assessment of a Variable Orifice Flowmeter for Respiratory Monitoring. J. Sens. 2015, 2015, 752540. [Google Scholar] [CrossRef] [Green Version]
- Innocenti, L.; Nicolò, A.; Massaroni, C.; Minganti, C.; Schena, E.; Sacchetti, M. How to Investigate the Effect of Music on Breathing during Exercise: Methodology and Tools. Sensors 2022, 22, 2351. [Google Scholar] [CrossRef]
- Gavriely, N.; Palti, Y.; Alroy, G. Spectral Characteristics of Normal Breath Sounds. J. Appl. Physiol. 1981, 50, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Romano, C.; Schena, E.; Silvestri, S.; Massaroni, C. Non-Contact Respiratory Monitoring Using an RGB Camera for Real-World Applications. Sensors 2021, 21, 5126. [Google Scholar] [CrossRef] [PubMed]
- Nicolò, A.; Bazzucchi, I.; Felici, F.; Patrizio, F.; Sacchetti, M. Mechanical and Electromyographic Responses during the 3-Min All-out Test in Competitive Cyclists. J. Electromyogr. Kinesiol. 2015, 25, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Lim, C.; Kim, J.; Kim, J.; Kang, B.-G.; Nam, Y. Estimation of Respiratory Rate in Various Environments Using Microphones Embedded in Face Masks. J. Supercomput. 2022, 78, 19228–19245. [Google Scholar] [CrossRef]
- Shih, C.-H.; Tomita, N.; Lukic, Y.X.; Reguera, Á.H.; Fleisch, E.; Kowatsch, T. Breeze: Smartphone-Based Acoustic Real-Time Detection of Breathing Phases for a Gamified Biofeedback Breathing Training. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Reichert, S.; Gass, R.; Brandt, C.; Andrès, E. Analysis of Respiratory Sounds: State of the Art. Clin. Med. Circ. Respirat. Pulm. Med. 2008, 2, CCRPM-S530. [Google Scholar] [CrossRef]
- Mimoz, O.; Benard, T.; Gaucher, A.; Frasca, D.; Debaene, B. Accuracy of Respiratory Rate Monitoring Using a Non-Invasive Acoustic Method after General Anaesthesia. Br. J. Anaesth. 2012, 108, 872–875. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Wang, C.; Yang, J.; Chen, Y. Fine-Grained Sleep Monitoring: Hearing Your Breathing with Smartphones. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April 2015–1 May 2015; pp. 1194–1202. [Google Scholar]
- Wang, T.; Zhang, D.; Wang, L.; Zheng, Y.; Gu, T.; Dorizzi, B.; Zhou, X. Contactless Respiration Monitoring Using Ultrasound Signal with Off-the-Shelf Audio Devices. IEEE Internet Things J. 2018, 6, 2959–2973. [Google Scholar] [CrossRef]
- Pál, T.; Molnár, B.; Tarcsi, Á.; Martin, C.L. Evaluation of Neural Network Compression Methods on the Respiratory Sound Dataset. 2021, 118–128. Available online: https://www.ict-conf.org/wp-content/uploads/2021/07/03_202106L015_Pál.pdf (accessed on 4 April 2023).
- Al-Fohoum, A.S.; Reza, A.M. Combined Edge Crispiness and Statistical Differencing for Deblocking JPEG Compressed Images. IEEE Trans. Image Process. 2001, 10, 1288–1298. [Google Scholar] [CrossRef]
- Défossez, A.; Copet, J.; Synnaeve, G.; Adi, Y. High Fidelity Neural Audio Compression. arXiv 2022, arXiv:2210.13438. [Google Scholar]
- Lester, R.A.; Hoit, J.D. Nasal and Oral Inspiration during Natural Speech Breathing. J. Speech, Lang. Hear. Res. 2014, 57, 734–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, S.; Reichel, U.D.; Rochet-Capellan, A. Changes in Speech and Breathing Rate While Speaking and Biking. In Proceedings of the ICPhS 2015: 18th International Congress of Phonetic Sciences, Glasgow, UK, 10–14 August 2015. [Google Scholar]
- Corbishley, P.; Rodriguez-Villegas, E. Breathing Detection: Towards a Miniaturized, Wearable, Battery-Operated Monitoring System. IEEE Trans. Biomed. Eng. 2007, 55, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Subbe, C.P.; Kinsella, S. Continuous Monitoring of Respiratory Rate in Emergency Admissions: Evaluation of the RespiraSenseTM Sensor in Acute Care Compared to the Industry Standard and Gold Standard. Sensors 2018, 18, 2700. [Google Scholar] [CrossRef] [Green Version]
Activity | [bpm] | [bpm] | MAE [bpm] |
---|---|---|---|
Rest pre-exercise | 14.7 ± 3.6 | 14.8 ± 4.0 | 0.5 ± 0.4 |
Walking at 3 km/h | 17.9 ± 4.9 | 17.4 ± 5.3 | 0.8 ± 0.6 |
Walking at 6 km/h | 20.4 ± 5.5 | 20.1 ± 4.7 | 1.5 ± 1.2 |
Running at 9 km/h | 27.1 ± 5.5 | 27.0 ± 5.3 | 2.5 ± 1.3 |
Running at 12 km/h | 34.3 ± 8.6 | 36.3 ± 7.1 | 3.8 ± 2.5 |
Recovery | 20.8 ± 3.5 | 21.0 ± 4.0 | 1.1 ± 0.7 |
Overall | 22.6 ± 8.4 | 22.8 ± 8.8 | 1.7 ± 1.2 |
Work | Device (Type) | Algorithm | Study Description | Main Results |
---|---|---|---|---|
Nam et al. 2015 [25] | Smartphone microphone (MEMS—Micro-Electrical-Mechanical System—microphone) | Autoregression | Tracheal and nasal breathing in an office | ME: 1% |
Kumar et al. 2021 [29] | Headphones microphone (MEMS microphone) | LSTM | Workout in both indoor and outdoor environments | DA: 66% |
Ahmed et al. 2023 [24] | Earbuds microphone (MEMS microphone) | random forest, MLP | Sitting, standing, and lying in both lab and at home tests | MAE: 1.36 bpm |
Abbasi et al. 2018 [26] | Dedicated body-mounted microphone (Capacitor microphone) | N.D. | Mouth and nasal sounds when lying down | RMSE: 1.26 bpm |
Fang et al. 2018 [23] | Wireless headset microphone (N.D.) | Peak detection | Mouth and nasal sounds during sleep | SR: 98.4% |
Skalicky et al. 2021 [28] | Phonendoscope Littmann 3200 (N.D.) | Transition between inspiratory and expiratory phases detection | Lung sounds while standing | Acc: 0.2 s |
Shih et al. 2019 [45] | Smartphone microphone (MEMS—MicroElectrical-Mechanical System—microphone) | LSTM, CNN | detection of breathing phases during normal chest breathing and deep abdominal breathing | MAE: 4 bpm |
Our study | Facemask-mounted microphone (Capacitor microphone) | Peak detection in the time domain | Mouth and nasal sound during walking and running | MAE: 1.7 bpm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, C.; Nicolò, A.; Innocenti, L.; Bravi, M.; Miccinilli, S.; Sterzi, S.; Sacchetti, M.; Schena, E.; Massaroni, C. Respiratory Rate Estimation during Walking and Running Using Breathing Sounds Recorded with a Microphone. Biosensors 2023, 13, 637. https://doi.org/10.3390/bios13060637
Romano C, Nicolò A, Innocenti L, Bravi M, Miccinilli S, Sterzi S, Sacchetti M, Schena E, Massaroni C. Respiratory Rate Estimation during Walking and Running Using Breathing Sounds Recorded with a Microphone. Biosensors. 2023; 13(6):637. https://doi.org/10.3390/bios13060637
Chicago/Turabian StyleRomano, Chiara, Andrea Nicolò, Lorenzo Innocenti, Marco Bravi, Sandra Miccinilli, Silvia Sterzi, Massimo Sacchetti, Emiliano Schena, and Carlo Massaroni. 2023. "Respiratory Rate Estimation during Walking and Running Using Breathing Sounds Recorded with a Microphone" Biosensors 13, no. 6: 637. https://doi.org/10.3390/bios13060637
APA StyleRomano, C., Nicolò, A., Innocenti, L., Bravi, M., Miccinilli, S., Sterzi, S., Sacchetti, M., Schena, E., & Massaroni, C. (2023). Respiratory Rate Estimation during Walking and Running Using Breathing Sounds Recorded with a Microphone. Biosensors, 13(6), 637. https://doi.org/10.3390/bios13060637