Rational Fabrication of Ionic Covalent Organic Frameworks for Chemical Analysis Applications
Abstract
:1. Introduction
2. Structural Design of iCOFs for Analytical Application
2.1. Cationic COFs
2.2. Anionic COFs
2.3. Zwitterionic COFs
3. Applications of iCOFs in Chemical Analysis
3.1. Enrichment and Extraction
3.2. Sensing Applications
3.2.1. Biosensing
3.2.2. Molecule Sensing
3.2.3. Ion Sensing
3.2.4. Others
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Fan, D.; Shen, Z.; Zhang, H.; Xu, H.; Yang, X. Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy 2022, 95, 107016. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Li, F.; Hua, T.; Zhou, Q.; Ho, S.H. Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review. J. Hazard. Mater. 2021, 411, 125148. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Senthil Kumar, P.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P.R.; Reshma, B. Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere 2021, 280, 130595. [Google Scholar] [CrossRef] [PubMed]
- Baptista, F.R.; Belhout, S.A.; Giordani, S.; Quinn, S.J. Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev. 2015, 44, 4433–4453. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Fattahi, P.; Yang, G.; Kim, G.; Abidian, M.R. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 2014, 26, 1846–1885. [Google Scholar] [CrossRef]
- Thomas, A. Much ado about nothing—A decade of porous materials research. Nat. Commun. 2020, 11, 4985. [Google Scholar] [CrossRef]
- Dou, H.; Xu, M.; Wang, B.; Zhang, Z.; Wen, G.; Zheng, Y.; Luo, D.; Zhao, L.; Yu, A.; Zhang, L.; et al. Microporous framework membranes for precise molecule/ion separations. Chem. Soc. Rev. 2021, 50, 986–1029. [Google Scholar] [CrossRef]
- Jiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res. 2018, 144, 145–161. [Google Scholar] [CrossRef]
- Shi, W.; Fu, Y.; Jiang, W.; Ye, Y.; Kang, J.; Liu, D.; Ren, Y.; Li, D.; Luo, C.; Xu, Z. Enhanced phosphate removal by zeolite loaded with Mg–Al–La ternary (hydr)oxides from aqueous solutions: Performance and mechanism. Chem. Eng. J. 2019, 357, 33–44. [Google Scholar] [CrossRef]
- Xin, X.; Wei, Q.; Yang, J.; Yan, L.; Feng, R.; Chen, G.; Du, B.; Li, H. Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem. Eng. J. 2012, 184, 132–140. [Google Scholar] [CrossRef]
- Rosen, J.; Hutchings, G.S.; Jiao, F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2013, 135, 4516–4521. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhang, H.; Duan, X.; Sun, H.; Shao, G.; Wang, S. Porous Carbons: Structure-Oriented Design and Versatile Applications. Adv. Funct. Mater. 2020, 30, 1909265. [Google Scholar] [CrossRef]
- Hwang, J.; Ejsmont, A.; Freund, R.; Goscianska, J.; Schmidt, B.; Wuttke, S. Controlling the morphology of metal-organic frameworks and porous carbon materials: Metal oxides as primary architecture-directing agents. Chem. Soc. Rev. 2020, 49, 3348–3422. [Google Scholar] [CrossRef]
- Jung, B.K.; Hasan, Z.; Jhung, S.H. Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal–organic framework. Chem. Eng. J. 2013, 234, 99–105. [Google Scholar] [CrossRef]
- Katsoulidis, A.P.; Antypov, D.; Whitehead, G.F.S.; Carrington, E.J.; Adams, D.J.; Berry, N.G.; Darling, G.R.; Dyer, M.S.; Rosseinsky, M.J. Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature 2019, 565, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Chai, Y.; Li, P.; Wang, B. Metal-Organic Framework Films and Their Potential Applications in Environmental Pollution Control. Accounts Chem. Res. 2019, 52, 1461–1470. [Google Scholar] [CrossRef]
- Rojas, S.; Horcajada, P. Metal-Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem. Rev. 2020, 120, 8378–8415. [Google Scholar] [CrossRef]
- Bisbey, R.P.; Dichtel, W.R. Covalent Organic Frameworks as a Platform for Multidimensional Polymerization. ACS Cent. Sci. 2017, 3, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Sheng, J.; Zhao, Y. Chiral covalent organic frameworks for asymmetric catalysis and chiral separation. Sci. China Chem. 2017, 60, 1015–1022. [Google Scholar] [CrossRef]
- Diercks, C.S.; Yaghi, O.M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, aal1585. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ding, X.; Jiang, D. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, Z.; Cheng, P.; Chen, Y.; Zhang, Z. Design and application of ionic covalent organic frameworks. Coord. Chem. Rev. 2021, 438, 213873. [Google Scholar] [CrossRef]
- Wang, X.; Shi, B.; Yang, H.; Guan, J.; Liang, X.; Fan, C.; You, X.; Wang, Y.; Zhang, Z.; Wu, H.; et al. Assembling covalent organic framework membranes with superior ion exchange capacity. Nat. Commun. 2022, 13, 1020. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, H.; Guan, X.; Tang, J.; Yusran, Y.; Li, Z.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; et al. Three-Dimensional Ionic Covalent Organic Frameworks for Rapid, Reversible, and Selective Ion Exchange. J. Am. Chem. Soc. 2017, 139, 17771–17774. [Google Scholar] [CrossRef]
- Chen, H.; Tu, H.; Hu, C.; Liu, Y.; Dong, D.; Sun, Y.; Dai, Y.; Wang, S.; Qian, H.; Lin, Z.; et al. Cationic Covalent Organic Framework Nanosheets for Fast Li-Ion Conduction. J. Am. Chem. Soc. 2018, 140, 896–899. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, J.; Moon, J.; Kim, M.; Amarasinghe, K.V.L.; Yoon Chung, K.; Lim, H.-D.; Whang, D. Anionic three-dimensional porous aromatic framework for fast Li-ion conduction. Chem. Eng. J. 2021, 424, 130527. [Google Scholar] [CrossRef]
- Rogge, S.M.J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A.I.; Sepulveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.; et al. Metal-organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Yan, Q.; Wang, M.; Yu, L.; Pan, W.; Wang, B.; Gao, Y. Ionic covalent organic frameworks for highly effective catalysis. Chin. J. Catal. 2018, 39, 1437–1444. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Guan, Y.; Zhou, B.; Zhang, J. Theoretical Investigation of the Topology of Spiroborate-Linked Ionic Covalent Organic Frameworks (ICOFs). Chem. Eur. J. 2019, 25, 6569–6574. [Google Scholar] [CrossRef]
- Xu, Q.; Tao, S.; Jiang, Q.; Jiang, D. Designing Covalent Organic Frameworks with a Tailored Ionic Interface for Ion Transport across One-Dimensional Channels. Angew. Chem. Int. Ed. 2020, 59, 4557–4563. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zhang, Z.; Yu, L.; Wang, P.; Wang, Q.; Chen, Y. An ionic covalent organic polymer toward highly selective removal of anionic organic dyes in aqueous solution. New J. Chem. 2020, 44, 8572–8577. [Google Scholar] [CrossRef]
- Tan, X.; Gou, Q.; Yu, Z.; Pu, Y.; Huang, J.; Huang, H.; Dai, S.; Zhao, G. Nanocomposite Based on Organic Framework-Loading Transition-Metal Co Ion and Cationic Pillar[6]arene and Its Application for Electrochemical Sensing of l-Ascorbic Acid. Langmuir 2020, 36, 14676–14685. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liu, B.; Li, B.; Zhang, L.; Li, Y.-G.; Tan, H.-Q.; Zang, H.-Y.; Zhu, G. Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. J. Am. Chem. Soc. 2016, 138, 5897–5903. [Google Scholar] [CrossRef]
- Yu, S.-B.; Lyu, H.; Tian, J.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. A polycationic covalent organic framework: A robust adsorbent for anionic dye pollutants. Polym. Chem. 2016, 7, 3392–3397. [Google Scholar] [CrossRef]
- Jeong, K.; Park, S.; Jung, G.Y.; Kim, S.H.; Lee, Y.H.; Kwak, S.K.; Lee, S.Y. Solvent-Free, Single Lithium-Ion Conducting Covalent Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 5880–5885. [Google Scholar] [CrossRef]
- Huang, N.; Wang, P.; Addicoat, M.A.; Heine, T.; Jiang, D. Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angew. Chem. Int. Ed. 2017, 56, 4982–4986. [Google Scholar] [CrossRef]
- Mu, Z.-J.; Ding, X.; Chen, Z.-Y.; Han, B.-H. Zwitterionic Covalent Organic Frameworks as Catalysts for Hierarchical Reduction of CO2 with Amine and Hydrosilane. ACS Appl. Mater. Interfaces 2018, 10, 41350–41358. [Google Scholar] [CrossRef]
- Buyukcakir, O.; Je, S.H.; Talapaneni, S.N.; Kim, D.; Coskun, A. Charged Covalent Triazine Frameworks for CO2 Capture and Conversion. ACS Appl. Mater. Interfaces 2017, 9, 7209–7216. [Google Scholar] [CrossRef]
- Mitra, S.; Kandambeth, S.; Biswal, B.P.; Khayum, M.A.; Choudhury, C.K.; Mehta, M.; Kaur, G.; Banerjee, S.; Prabhune, A.; Verma, S.; et al. Self-Exfoliated Guanidinium-Based Ionic Covalent Organic Nanosheets (iCONs). J. Am. Chem. Soc. 2016, 138, 2823–2828. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.-X.; Liu, F.; Xu, G.-J.; Lin, J.-M.; Wang, M.-L.; Wu, Y.-N.; Zhao, R.-S.; Wang, X. Cationic covalent organic nanosheets for rapid and effective detection of phenoxy carboxylic acid herbicides residue emitted from water and rice samples. Food Chem. 2022, 383, 132396. [Google Scholar] [CrossRef] [PubMed]
- Jansone-Popova, S.; Moinel, A.; Schott, J.A.; Mahurin, S.M.; Popovs, I.; Veith, G.M.; Moyer, B.A. Guanidinium-Based Ionic Covalent Organic Framework for Rapid and Selective Removal of Toxic Cr(VI) Oxoanions from Water. Environ. Sci. Technol. 2019, 53, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Garai, B.; Prakasam, T.; Benyettou, F.; Varghese, S.; Sharma, S.K.; Gandara, F.; Pasricha, R.; Baias, M.; Jagannathan, R.; et al. Fluorescence turn on amine detection in a cationic covalent organic framework. Nat. Commun. 2022, 13, 3904. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Devi, M.; Jena, N.; Iqbal, M.M.; Nailwal, Y.; De Sarkar, A.; Pal, S.K. Proton-Triggered Fluorescence Switching in Self-Exfoliated Ionic Covalent Organic Nanosheets for Applications in Selective Detection of Anions. ACS Appl. Mater. Interfaces 2020, 12, 13248–13255. [Google Scholar] [CrossRef]
- Liu, X.-P.; Sun, W.-Q.; Zhao, M.-G.; Zhang, X.-J.; Liu, L.-H.; Chen, C.-P. Fluoro-functionalized ionic covalent organic frameworks (F-iCOFs) for highly selective enrichment and sensitive determination of perfluorinated sulfonates by MALDI-MS. Mikrochim. Acta 2022, 189, 442. [Google Scholar] [CrossRef]
- Mal, A.; Vijayakumar, S.; Mishra, R.K.; Jacob, J.; Pillai, R.S.; Dileep Kumar, B.S.; Ajayaghosh, A. Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angew. Chem. Int. Ed. 2020, 59, 8713–8719. [Google Scholar] [CrossRef]
- Sun, X.; Wang, R.; Li, L.; Wang, X.; Ji, W. Online extraction based on ionic covalent organic framework for sensitive determination of trace per- and polyfluorinated alkyl substances in seafoods by UHPLC-MS/MS. Food Chem. 2021, 362, 130214. [Google Scholar] [CrossRef]
- Aiyappa, H.B.; Thote, J.; Shinde, D.B.; Banerjee, R.; Kurungot, S. Cobalt-Modified Covalent Organic Framework as a Robust Water Oxidation Electrocatalyst. Chem. Mater. 2016, 28, 4375–4379. [Google Scholar] [CrossRef]
- Mi, Z.; Yang, P.; Wang, R.; Unruangsri, J.; Yang, W.; Wang, C.; Guo, J. Stable Radical Cation-Containing Covalent Organic Frameworks Exhibiting Remarkable Structure-Enhanced Photothermal Conversion. J. Am. Chem. Soc. 2019, 141, 14433–14442. [Google Scholar] [CrossRef]
- Tan, W.; Zhu, L.; Tian, L.; Zhang, H.; Peng, R.; Chen, K.; Zhao, S.; Ye, F. Preparation of cationic hierarchical porous covalent organic frameworks for rapid and effective enrichment of perfluorinated substances in dairy products. J. Chromatogr. A 2022, 1675, 463188. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, J.; Liu, C.; Li, L.; Xu, C.; Li, Y.; Li, Y.; Tian, H. Antibacterial activity of guanidinium-based ionic covalent organic framework anchoring Ag nanoparticles. J. Hazard. Mater. 2022, 435, 128965. [Google Scholar] [CrossRef]
- Zuo, H.; Li, Y.; Liao, Y. Europium Ionic Liquid Grafted Covalent Organic Framework with Dual Luminescence Emissions as Sensitive and Selective Acetone Sensor. ACS Appl. Mater. Interfaces 2019, 11, 39201–39208. [Google Scholar] [CrossRef]
- Yi, S.-M.; Zhang, C.-R.; Jiang, W.; Liu, X.; Niu, C.-P.; Qi, J.-X.; Chen, X.-J.; Liang, R.-P.; Qiu, J.-D. Ionic liquid modified covalent organic frameworks for efficient detection and adsorption of ReO4−/TcO4−. J. Environ. Chem. Eng. 2022, 10, 107666. [Google Scholar] [CrossRef]
- Chen, T.; Li, B.; Huang, W.; Lin, C.; Li, G.; Ren, H.; Wu, Y.; Chen, S.; Zhang, W.; Ma, H. Highly crystalline ionic covalent organic framework membrane for nanofiltration and charge-controlled organic pollutants removal. Sep. Purif. Technol. 2021, 256, 117787. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Li, Q.; Chen, C.; Zhang, Z. Design and fabrication of a novel humidity sensor based on ionic covalent organic framework. Sens. Actuators B Chem. 2020, 324, 128733. [Google Scholar] [CrossRef]
- Xian, W.; Zhang, P.; Zhu, C.; Zuo, X.; Ma, S.; Sun, Q. Bionic Thermosensation Inspired Temperature Gradient Sensor Based on Covalent Organic Framework Nanofluidic Membrane with Ultrahigh Sensitivity. CCS Chem. 2021, 3, 2464–2472. [Google Scholar] [CrossRef]
- Hu, Y.; Dunlap, N.; Wan, S.; Lu, S.; Huang, S.; Sellinger, I.; Ortiz, M.; Jin, Y.; Lee, S.H.; Zhang, W. Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity. J. Am. Chem. Soc. 2019, 141, 7518–7525. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, J.; Ma, D.; Li, P.; Li, S.; Li, H.; Zhou, J.; Ma, X.; Feng, X.; Wang, B. Three-Dimensional Anionic Cyclodextrin-Based Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2017, 56, 16313–16317. [Google Scholar] [CrossRef]
- Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. A squaraine-linked mesoporous covalent organic framework. Angew. Chem. Int. Ed. 2013, 52, 3770–3774. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, Y.; Chen, S.; Zhang, W.; Zhang, Y.; Yan, T.; Yang, B.; Ma, H. Zwitterionic Covalent Organic Frameworks: Attractive Porous Host for Gas Separation and Anhydrous Proton Conduction. ACS Nano 2021, 15, 19743–19755. [Google Scholar] [CrossRef]
- Das, G.; Skorjanc, T.; Sharma, S.K.; Gándara, F.; Lusi, M.; Shankar Rao, D.S.; Vimala, S.; Krishna Prasad, S.; Raya, J.; Suk Han, D.; et al. Viologen-Based Conjugated Covalent Organic Networks via Zincke Reaction. J. Am. Chem. Soc. 2017, 139, 9558–9565. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Xue, F.; Sun, J.; Lin, J.-M.; Zhang, C.; Wang, X.; Zhao, R.-S. Ionic covalent organic frameworks for the magnetic solid-phase extraction of perfluorinated compounds in environmental water samples. Microchim. Acta 2021, 188, 47. [Google Scholar] [CrossRef]
- Peng, Y.; Hu, Z.; Gao, Y.; Yuan, D.; Kang, Z.; Qian, Y.; Yan, N.; Zhao, D. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion. ChemSusChem 2015, 8, 3208–3212. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, S.; Yan, Y.; Tang, X.; Cai, S.; Zheng, S.; Zanf, W.; Gu, F. Sulfonic Acid-functionalized Spherical Covalent Organic Framework with Ultrahigh Capacity for the Removal of Cationic Dyes. Chem. J. Chin. Univ. 2021, 42, 956–964. [Google Scholar] [CrossRef]
- Hou, S.; Ji, W.; Chen, J.; Teng, Y.; Wen, L.; Jiang, L. Free-Standing Covalent Organic Framework Membrane for High-Efficiency Salinity Gradient Energy Conversion. Angew. Chem. Int. Ed. 2021, 60, 9925–9930. [Google Scholar] [CrossRef]
- Xiong, F.; Jia, J.; Ma, J.; Jia, Q. Glutathione-functionalized magnetic thioether-COFs for the simultaneous capture of urinary exosomes and enrichment of exosomal glycosylated and phosphorylated peptides. Nanoscale 2022, 14, 853–864. [Google Scholar] [CrossRef]
- Ma, J.-B.; Wu, H.-W.; Liao, Y.-F.; Rui, Q.-H.; Zhu, Y.; Zhang, Y. Application of petal-shaped ionic liquids modified covalent organic frameworks for one step cleanup and extraction of general anesthetics in human plasma samples. Talanta 2020, 210, 120652. [Google Scholar] [CrossRef]
- Sun, J.; Xue, F.; Gao, C.-L.; Li, L.; Jiang, H.-L.; Zhao, R.-S.; Lin, J.-M. An ionic covalent organic framework for rapid extraction of polar organic acids from environmental waters. Anal. Methods 2021, 13, 2936–2942. [Google Scholar] [CrossRef]
- Xiong, F.; Jiang, L.; Jia, Q. Facile synthesis of guanidyl-based magnetic ionic covalent organic framework composites for selective enrichment of phosphopeptides. Anal. Chim. Acta 2020, 1099, 103–110. [Google Scholar] [CrossRef]
- Tang, S.; Qin, X.; Lv, Y.; Hu, K.; Zhao, S. Adsorption of three perfluoroalkyl sulfonate compounds from environmental water and human serum samples using cationic porous covalent organic framework as adsorbents and detection combination with MALDI-TOF MS. Appl. Surf. Sci. 2022, 601, 154224. [Google Scholar] [CrossRef]
- Skorjanc, T.; Mavric, A.; Sorensen, M.N.; Mali, G.; Wu, C.; Valant, M. Cationic Covalent Organic Polymer Thin Film for Label-free Electrochemical Bacterial Cell Detection. ACS Sens. 2022, 7, 2743–2749. [Google Scholar] [CrossRef]
- Mal, A.; Mishra, R.K.; Praveen, V.K.; Khayum, M.A.; Banerjee, R.; Ajayaghosh, A. Supramolecular Reassembly of Self-Exfoliated Ionic Covalent Organic Nanosheets for Label-Free Detection of Double-Stranded DNA. Angew. Chem. Int. Ed. 2018, 57, 8443–8447. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.-L.; Chen, G.; Chen, Y.-Y.; Liu, D.; Liao, J.-T. A Red-Emitting COF Ionic Exchanged with Green-Emitting Tb(III) Complex Anion: Synthesis, Characterization, Ratiometric Emission Sensing, and Removal of Picric Acid. Front. Chem. 2022, 10, 865304. [Google Scholar] [CrossRef]
- Zhu, P.; Lin, L.; Chen, W.; Liu, L. Ionic modification on COF with rare earth ions for the selective optical sensing and removal of picronitric acid. Chemosphere 2022, 302, 134785. [Google Scholar] [CrossRef]
- Sun, M.; Shang, X.; Wang, X.; Wang, Y.; Wang, Y.; Liu, L. An ionic covalent organic framework loaded with terbium-based probe for the sensing and removal of chrysolepic acid: Characterization and ratiometric behavior. Microporous Mesoporous Mater. 2022, 339, 112002. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, T.; Wang, S.; Chen, H.; Suo, X.; Wang, T.; Thapaliya, B.P.; Jiang, D.-E.; Popovs, I.; Dai, S. Fabrication of Ionic Covalent Triazine Framework-Linked Membranes via a Facile Sol–Gel Approach. Chem. Mater. 2021, 33, 3386–3393. [Google Scholar] [CrossRef]
Entry | iCOF Name | Type | Monomer | Charged Methods | Pore Size (nm) | Surface Area (m2/g) | Ref. |
---|---|---|---|---|---|---|---|
1 | 3D-ionic-COF | Cationic COF | 21+26 | Initial charged | 0.86 | 966 | [25] |
2 | EB-COF:Br | Cationic COF | 13+26 | Initial charged | 1.66 | 774 | [34] |
3 | PC-COF | Cationic COF | 1+23 | Initial charged | 5.8 | n/a a | [35] |
4 | cCTFs-500 | Cationic COF | 25 | Initial charged | 1.64 | 1247 | [39] |
5 | TpTGX | Cationic COF | 13+32 | Initial charged | 1.2 | 267 | [40] |
6 | TpTGCl | Cationic COF | 13+32 | Initial charged | 3.48 | 167 | [41] |
7 | BT-DGCl | Cationic COF | 15+32 | Initial charged | n/a | 3 b | [42] |
8 | TGH+⸱PD | Cationic COF | 17+32 | Initial charged | n/a | 16 b | [43] |
9 | DATGCl-iCONs | Cationic COF | 18+32 | Initial charged | n/a | 155 | [44] |
10 | F-iCOF | Cationic COF | 20+32 | Initial charged | 2.5 | 148 | [45] |
11 | PI-TFP-iCONs | Cationic COF | 13+27 | Initial charged | 1.57 | 535 | [46] |
12 | TPB-BFBIm-iCOF | Cationic COF | 1+29 | Initial charged | 4.45 | 182.83~189.51 | [47] |
13 | Co-TpBpy | Cationic COF | 7+13 | Post-modification | 2.1 | 450 | [48] |
14 | Py-BPy2+-COF | Cationic COF | 2+16 | Post-modification | 2.1 | 461 | [49] |
15 | C-H-COF | Cationic COF | 7+13 | Post-modification | n/a | 711.6 | [50] |
16 | COFTGTp | Cationic COF | 11+13 | Post-modification | 3.4 | 81.69 | [51] |
17 | DhaTab-COF-EuIL | Cationic COF | 1+19 | Post-modification | 3.7 | 2061 | [52] |
18 | Tp-BDOH-AB | Cationic COF | 8+13 | Post-modification | 1.4 | 140 | [53] |
19 | TpPa-SO3Li | Anionic COF | 3+13 | Deprotonation | 1.18 | 348 | [36] |
20 | TpPa-SO3Na | Anionic COF | 4+13 | Deprotonation | 1.40 | 212.3 | [54,55] |
21 | COF-COOH | Anionic COF | 10+13 | Deprotonation | 1.2 | 399 | [56] |
22 | H-Li-ImCOF | Anionic COF | 9+15 | Post-modification | 2.9 | 350 | [57] |
23 | CD-COFs | Anionic COF | / | Initial charged | 0.64 | 760 | [58] |
24 | CuP-SQ COF | Zwitterionic COF | 31 | Initial charged | 2.1 | 539 | [59] |
25 | XJCOF | Zwitterionic COF | 13+4/26 | Initial charged | 1.5/1.7 | 467~503 | [60] |
26 | [BE]X%-TD-COFs | Zwitterionic COF | 1+19 | Post-modification | 3.24~2.95 | 2020~470 | [38] |
Entry | iCOF Name | Analytical Methods a | Analytes | Limit of Detection b | Ref. |
---|---|---|---|---|---|
1 | PS-IL-COFs | Enrichment/extraction + MS | propofol | 0.18 μg/L | [67] |
2 | Fe3O4@EB-TFB-iCOF | Enrichment/extraction + MS | organic acid | 0.1~0.49 ng/mL | [68] |
3 | Fe3O4@iCOFs | Enrichment/extraction + MS | phosphopeptides | 0.4 fmol | [69] |
4 | Fe3O4@EB-iCOFs | Enrichment/extraction + MS | perfluorinated compounds | 0.1~0.8 ng/L | [62] |
5 | TPB-BFBIm-iCOF | Enrichment/extraction + MS | PFASs | ≤0.0017 ng/g | [47] |
6 | C-H-COF | Enrichment/extraction + MS | PFASs | 0.01~0.29 ng/L | [50] |
7 | C-COF | Enrichment/extraction + MS | PFBS/PFHxS/PFOS | 0.001/0.01/0.3 ng/mL | [70] |
8 | F-iCOF | Enrichment/extraction + MS | PFBSK | 0.04 pg/mL | [45] |
9 | CATN | EIS | E. coli | 2 CFU/mL | [71] |
10 | Ag/COFTGTp | Staining experiment | E. coli & S. aureus | 100/50 μg/mL | [51] |
11 | EB-TFP-iCONs | Fluorescent sensing | dsDNA | n/a | [72] |
12 | DhaTab-COF-EuIL | Fluorescent sensing | acetone | 1% | [52] |
13 | TGH+⸱PD | Fluorescent sensing | ammonia | 1.2 × 10−7 M | [43] |
14 | Tb-COF | Fluorescent sensing | picric acid (PA) | n/a | [73] |
15 | TbCF3-COF | Fluorescent sensing | PA | 0.9 μM | [74] |
16 | Tb-COF | Fluorescent sensing | chrysolepic acid (CA) | 0~9 μM | [75] |
17 | DATGCl-iCONs | Fluorescent sensing | F− | 5 ppb | [44] |
18 | TpTGCl | Fluorescent sensing | phenoxy carboxylic acids (PCAs) | 0.016~0.036 ng/g | [41] |
19 | PP-CTF | Fluorescent sensing | H+ | n/a | [76] |
20 | Tp-BDOH-AB | Fluorescent sensing | ReO4− | 1.04 μM | [53] |
21 | TpPa-SO3Na | Electrical testing | Humidity | n/a | [55] |
22 | COF-COOH | Electrical testing | Temperature | n/a | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Luo, L.; Shang, H.; Sun, B. Rational Fabrication of Ionic Covalent Organic Frameworks for Chemical Analysis Applications. Biosensors 2023, 13, 636. https://doi.org/10.3390/bios13060636
Yu J, Luo L, Shang H, Sun B. Rational Fabrication of Ionic Covalent Organic Frameworks for Chemical Analysis Applications. Biosensors. 2023; 13(6):636. https://doi.org/10.3390/bios13060636
Chicago/Turabian StyleYu, Jing, Liuna Luo, Hong Shang, and Bing Sun. 2023. "Rational Fabrication of Ionic Covalent Organic Frameworks for Chemical Analysis Applications" Biosensors 13, no. 6: 636. https://doi.org/10.3390/bios13060636
APA StyleYu, J., Luo, L., Shang, H., & Sun, B. (2023). Rational Fabrication of Ionic Covalent Organic Frameworks for Chemical Analysis Applications. Biosensors, 13(6), 636. https://doi.org/10.3390/bios13060636