SARS-CoV-2 Surveillance in Indoor Air Using Electrochemical Sensor for Continuous Monitoring and Real-Time Alerts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation of Air Samples Containing SARS-CoV-2 Virus
2.1.1. TSI Atomizer
2.1.2. PRONEB Nebulizer
2.2. Air Sampling Methods to Capture SARS-CoV-2 Virions
2.2.1. Liquid Spot Sampler
2.2.2. Coriolis Sampler
2.3. Ultra-Fast COVID-19 (UFC-19) Sensor
3. Results and Discussion
3.1. Test Rig with TSI Atomizer and Liquid Spot Sampler
3.2. Test Rig with the Nebulizer and Coriolis Sampler
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdalhamid, B.; Bilder, C.R.; McCutchen, E.L.; Hinrichs, S.H.; Koepsell, S.A.; Iwen, P.C. Assessment of Specimen Pooling to Conserve SARS CoV-2 Testing Resources. Am. J. Clin. Pathol. 2020, 153, 715–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogarty, A.; Joseph, A.; Shaw, D. Pooled saliva samples for COVID-19 surveillance programme. Lancet Resp. Med. 2020, 8, 1078–1080. [Google Scholar] [CrossRef]
- Sunjaya, A.F.; Sunjaya, A.P. Pooled Testing for Expanding COVID-19 Mass Surveillance. Disaster Med. Public 2020, 14, E42–E43. [Google Scholar] [CrossRef] [PubMed]
- Garg, J.; Singh, V.; Pandey, P.; Verma, A.; Sen, M.; Das, A.; Agarwal, J. Evaluation of sample pooling for diagnosis of COVID-19 by real time-PCR: A resource-saving combat strategy. J. Med. Virol. 2021, 93, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.L.; Turnham, P.; Griffin, J.R.; Clarke, C.C. Consideration of the Aerosol Transmission for COVID-19 and Public Health. Risk Anal. 2020, 40, 902–907. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; Liu, X.; et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020, 582, 557–560. [Google Scholar] [CrossRef]
- Qian, H.; Miao, T.; Liu, L.; Zheng, X.H.; Luo, D.T.; Li, Y.G. Indoor transmission of SARS-CoV-2. Indoor Air 2021, 31, 639–645. [Google Scholar] [CrossRef]
- Chia, P.Y.; Coleman, K.K.; Tan, Y.K.; Ong, S.W.X.; Gum, M.; Lau, S.K.; Lim, X.F.; Lim, A.S.; Sutjipto, S.; Lee, P.H.; et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 2020, 11, 2800. [Google Scholar] [CrossRef]
- Li, Y.G.; Qian, H.; Hang, J.; Chen, X.G.; Cheng, P.; Ling, H.; Wang, S.Q.; Liang, P.; Li, J.S.; Xiao, S.L.; et al. Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Build Environ. 2021, 196, 107788. [Google Scholar] [CrossRef]
- Hwang, S.E.; Chang, J.H.; Oh, B.; Heo, J. Possible aerosol transmission of COVID-19 associated with an outbreak in an apartment in Seoul, South Korea, 2020. Int. J. Infect. Dis. 2021, 104, 73–76. [Google Scholar] [CrossRef]
- Jiang, G.Y.; Wang, C.; Song, L.; Wang, X.; Zhou, Y.Y.; Fei, C.N.; Liu, H. Aerosol transmission, an indispensable route of COVID-19 spread: Case study of a department-store cluster. Front. Env. Sci. Eng. 2021, 15, 46. [Google Scholar] [CrossRef]
- Renninger, N.; Nastasi, N.; Bope, A.; Cochran, S.J.; Haines, S.R.; Balasubrahmaniam, N.; Stuart, K.; Bivins, A.; Bibby, K.; Hull, N.M.; et al. Indoor Dust as a Matrix for Surveillance of COVID-19. Msystems 2021, 6, e01350-20. [Google Scholar] [CrossRef] [PubMed]
- Dietz, L.; Constant, D.A.; Fretz, M.; Patrick, F.H.; Olsen-Martinez, A.; Stenson, J.; Wilkes, A.; Martindale, R.G.; Messer, W.B.; Wymelenberg, K.G.V.D. Exploring Integrated Environmental Viral Surveillance of Indoor Environments: A comparison of surface and bioaerosol environmental sampling in hospital rooms with COVID-19 patients. medRxiv 2021. [Google Scholar] [CrossRef]
- Lelieveld, J.; Helleis, F.; Borrmann, S.; Cheng, Y.F.; Drewnick, F.; Haug, G.; Klimach, T.; Sciare, J.; Su, H.; Poschl, U. Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments. Int. J. Environ. Res. Public Health 2020, 17, 8114. [Google Scholar] [CrossRef] [PubMed]
- Ramanujam, A.; Almodovar, S.; Botte, G.G. Ultra-Fast Electrochemical Sensor for Point-of-Care COVID-19 Diagnosis Using Non-Invasive Saliva Sampling. Processes 2021, 9, 1236. [Google Scholar] [CrossRef]
- Botte, G.G.; Ramanujam, A. Rapid Viral Diagnostic Sensor. Patent US11060995B1, 20 July 2020. [Google Scholar]
- Tseng, C.C.; Li, C.S. Collection efficiencies of aerosol samplers for virus-containing aerosols. J. Aerosol Sci. 2005, 36, 593–607. [Google Scholar] [CrossRef]
- Robotto, A.; Quaglino, P.; Lembo, D.; Morello, M.; Brizio, E.; Bardi, L.; Civra, A. SARS-CoV-2 and indoor/outdoor air samples: A methodological approach to have consistent and comparable results. Environ. Res. 2021, 195, 110847. [Google Scholar] [CrossRef]
- Yu, K.P.; Chen, Y.P.; Gong, J.Y.; Chen, Y.C.; Cheng, C.C. Improving the collection efficiency of the liquid impinger for ultrafine particles and viral aerosols by applying granular bed filtration. J. Aerosol Sci. 2016, 101, 133–143. [Google Scholar] [CrossRef]
- Lednickya, J.A.; Lauzardo, M.; Fan, Z.H.; Jutla, A.; Tilly, T.B.; Gangwar, M.; Usmani, M.; Shankar, S.N.; Mohamed, K.; Eiguren-Fernandez, A.; et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 2020, 100, 476–482. [Google Scholar] [CrossRef]
- Zhou, J.; Otter, J.A.; Price, J.R.; Cimpeanu, C.; Garcia, D.M.; Kinross, J.; Boshier, P.R.; Mason, S.; Bolt, F.; Holmes, A.H.; et al. Investigating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Surface and Air Contamination in an Acute Healthcare Setting During the Peak of the Coronavirus Disease 2019 (COVID-19) Pandemic in London. Clin. Infect. Dis. 2021, 73, e1870–e1877. [Google Scholar] [CrossRef]
- Chien, C.-H.; Cheng, M.-D.; Im, P.; Nawaz, K.; Fricke, B.; Armstrong, A. Characterization of the indoor near-field aerosol transmission in a model commercial office building. Int. Commun. Heat Mass Transf. 2021, 130, 105745. [Google Scholar] [CrossRef]
- Aerosol Devices Inc. Series 110A Spot Sampler™ Aerosol Particle Collector. Available online: https://aerosoldevices.com/wp-content/uploads/2019/05/Series-110A-Spot-Sampler-Brochure.pdf (accessed on 7 December 2021).
- Bertin Instruments Coriolis® COMPACT Micro Air Sampler. Available online: https://www.bertin-instruments.com/wp-content/uploads/2019/10/Brochure_CoriolisCompact_WEB.pdf (accessed on 5 December 2021).
- US-FDA. Emergency Use Authorization (EUA) Summary COVID-19 RT-PCR Test (Laboratory Corporation of America Report). 2021. Available online: https://www.fda.gov/media/136151/download (accessed on 1 December 2021).
- Arnaout, R.; Lee, R.A.; Lee, G.R.; Callahan, C.; Yen, C.F.; Smith, K.P.; Arora, R.; Kirby, J.E. SARS-CoV2 Testing: The Limit of Detection Matters. BioRxiv 2020. [Google Scholar] [CrossRef]
- Polvere, I.; Voccola, S.; D’Andrea, S.; Zerillo, L.; Varricchio, R.; Madera, J.R.; Stilo, R.; Vito, P.; Zotti, T. Evaluation of FAST COVID-19 SARS-CoV-2 Antigen Rapid Test Kit for Detection of SARS-CoV-2 in Respiratory Samples from Mildly Symptomatic or Asymptomatic Patients. Diagnostics 2022, 12, 650. [Google Scholar] [CrossRef] [PubMed]
- Mardian, Y.; Kosasih, H.; Karyana, M.; Neal, A.; Lau, C.Y. Review of Current COVID-19 Diagnostics and Opportunities for Further Development. Front. Med. 2021, 8, 615099. [Google Scholar] [CrossRef] [PubMed]
Liquid Spot Sampler as the Virus Collector | Experiment #1 | Experiment #2 | ||
---|---|---|---|---|
Air Flow | Time | min | 60 | 60 |
Flow rate | L/min | 1.75 | 1.75 | |
Air flowed | L | 105 | 105 | |
Aerosol Generation (Input) | Aerosolization rate | mL/min | 0.0555 | 0.0555 |
Aerosolized solution | mL | 3.33 | 3.33 | |
SARS-CoV-2 virions concentration | cp/mL | 10 | 10 | |
Virions left the atomizer | copies | 33 | 33 | |
Simulated SARS-CoV-2 in Air | cp/L | 0.31 | 0.31 | |
Liquid Spot Sampler (Output) | Vial solution | mL | 0.9 | 0.9 |
Expected concentration (Diluted 10 times in testing solution) | cp/mL | 3.67 | 3.67 | |
Test Results | Positive or Negative? | True Positive | True Positive |
Coriolis Sampler as the Virus Collector | Experiment #1 | Experiment #2 | ||
---|---|---|---|---|
Air Flow | Time | min | 5 | 5 |
Flow rate | L/min | 50 | 50 | |
Air flowed | L | 250 | 250 | |
Aerosol Generation (Input) | Aerosolization rate | mL/min | 0.2 | 0.2 |
Aerosolized solution | mL | 1.0 | 1.0 | |
SARS-CoV-2 virions concentration | cp/mL | 1.0 | 1.0 | |
Virions left the nebulizer | copies | 1 | 1 | |
Simulated SARS-CoV-2 in Air | cp/L | 0.004 | 0.004 | |
Coriolis Sampler (Output) | Vial solution | mL | 0.2 | 0.2 |
Expected concentration (Diluted 10 times in testing solution) | cp/mL | 0.5 | 0.5 | |
Test Results | Positive or Negative | True Positive | True Positive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, F.; Gecgel, O.; Ramanujam, A.; Botte, G.G. SARS-CoV-2 Surveillance in Indoor Air Using Electrochemical Sensor for Continuous Monitoring and Real-Time Alerts. Biosensors 2022, 12, 523. https://doi.org/10.3390/bios12070523
Lu F, Gecgel O, Ramanujam A, Botte GG. SARS-CoV-2 Surveillance in Indoor Air Using Electrochemical Sensor for Continuous Monitoring and Real-Time Alerts. Biosensors. 2022; 12(7):523. https://doi.org/10.3390/bios12070523
Chicago/Turabian StyleLu, Fei, Ozhan Gecgel, Ashwin Ramanujam, and Gerardine G. Botte. 2022. "SARS-CoV-2 Surveillance in Indoor Air Using Electrochemical Sensor for Continuous Monitoring and Real-Time Alerts" Biosensors 12, no. 7: 523. https://doi.org/10.3390/bios12070523
APA StyleLu, F., Gecgel, O., Ramanujam, A., & Botte, G. G. (2022). SARS-CoV-2 Surveillance in Indoor Air Using Electrochemical Sensor for Continuous Monitoring and Real-Time Alerts. Biosensors, 12(7), 523. https://doi.org/10.3390/bios12070523