Recent Advances in Electrochemical Sensing Strategies for Food Allergen Detection
Abstract
:1. Introduction
2. Overview of the Conventional Methods for Food Allergen Detection
3. Electrochemical Biosensors
3.1. Electrochemical Biosensor Detection Techniques
3.2. Electrodes, Sensing Materials, and Devices
4. Electrochemical Biosensors for Food Allergen Detection
4.1. Immunosensors
4.2. Aptasensors
4.3. Genosensors
4.4. Cell-Based Biosensors
4.5. Bacteriophage-Based Biosensors
4.6. Molecularly Imprinted Polymer (MIP)-Based Sensors
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruijnzeel-Koomen, C.; Ortolani, C.; Bindslev-Jensen, K.A.C.; Bjorksten, B.; Moneret-Vautrin, D.; Wüthrich, B. Adverse reactions to food. Eur. Acad. Allergol. Clin. Immunol. Subcomm. Allergy 1995, 50, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Montalto, M.; Santoro, L.; Onofrio, F.D.; Curigliano, V. Adverse reactions to Food: Allergies and intolerances. Dig. Dis. 2008, 26, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Ortolani, C.; Pastorello, E.A. Food allergies and food intolerances. Best Pract. Res. Clin. Gastroenterol. 2006, 20, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, J.L.; Adams, H.N.; Gorard, D.A. Review article: The diagnosis and management of food allergy and food intolerances. Aliment. Phamacol. Therpeut. 2015, 41, 413–425. [Google Scholar] [CrossRef]
- Akdis, M.; Blaser, K.; Akdis, C.A. T regulatory cells in allergy: Novel concepts in the pathogenesis, prevention, and treatment of allergic diseases. J. Allergy Clin. Immunol. 2005, 116, 961–968. [Google Scholar] [CrossRef]
- Patriarca, G.; Schiavino, D.; Pecora, V.; Lombardo, C.; Pollastrini, E.; Aruanno, A.; Sabato, V.; Colagiovanni, A.; Rizzi, A.; De Pasquale, T.; et al. Food allergy and food intolerance: Diagnosis and treatment. Intern. Emerg. Med. 2009, 4, 11–24. [Google Scholar] [CrossRef]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. Available online: https://eur-lex.europa.eu/eli/reg/2011/1169/oj/eng (accessed on 1 April 2022).
- Food Allergen Labeling and Consumer Protection Act of 2004 (FALCPA) Public Law 108–282, Title II. Available online: https://www.fda.gov/food/food-allergensgluten-free-guidance-documents-regulatory-information/food-allergen-labeling-and-consumer-protection-act-2004-falcpa (accessed on 1 April 2022).
- Shoji, M.; Adachi, R.; Akiyama, H. Japanese Food Allergen Labeling Regulation: An Update. J. AOAC Int. 2018, 101, 8–13. [Google Scholar] [CrossRef]
- Sena-Torralba, A.; Pallas-Tamarit, Y.; Morais, S.; Maquieira, A. Recent advances and challenges in food-borne allergen detection. Trends Anal. Chem. 2020, 132, 116050. [Google Scholar] [CrossRef]
- Bucchini, L.; Guzzon, A.; Poms, R.; Senyuva, H. Analysis and critical comparison of food allergen recalls from the European Union, USA, Canada, Hong Kong, Australia and New Zealand. Food Addit. Contam. Part A 2016, 33, 760–771. [Google Scholar] [CrossRef]
- Alves, R.C.; Barroso, M.F.; González-García, M.B.; Oliveira MB, P.P.; Delerue-Matos, C. New Trends in Food Allergens Detection: Toward Biosensing Strategies. Crit. Rev. Food Sci. Nutr. 2016, 56, 2304–2319. [Google Scholar] [CrossRef]
- Ross GM, S.; Bremer MG, E.G.; Nielen MW, F. Consumer-friendly food allergen detection: Moving towards smartphone-based immunoassays. Anal. Bioanal. Chem. 2018, 410, 5353–5371. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Ye, Y.; Ji, J.; Sun, J.; Sun, X. Advances on the rapid and multiplex detection methods of food allergens. Crit. Rev. Food Sci. Nutr. 2021, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Villalonga, A.; Alfredo Sanchez, A.; Mayol, B.; Reviejo, J.; Villalonga, R. Electrochemical biosensors for food bioprocess monitoring. Curr. Opin. Food Sci. 2022, 43, 1–9. [Google Scholar] [CrossRef]
- Das, J.; Mishra, H.N. Recent advances in sensors for detecting food pathogens, contaminants, and toxins: A review. Eur. Food Res. Technol. 2022, 248, 1125–1148. [Google Scholar] [CrossRef]
- Garcia-Miranda Ferrari, A.; Crapnell, R.D.; Banks, C.E. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. Biosensors 2021, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Curulli, A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021, 26, 2940. [Google Scholar] [CrossRef]
- Vasilescu, A.; Nunes, G.; Hayat, A.; Latif, U.; Marty, J.-L. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens. Sensors 2016, 16, 1863. [Google Scholar] [CrossRef] [Green Version]
- Campuzano, S.; Ruiz-Valdepeñas Montiel, V.; Serafín, V.; Yáñez-Sedeño, P.; Pingarrón, J.M. Cutting-Edge Advances in Electrochemical Affinity Biosensing at Different Molecular Level of Emerging Food Allergens and Adulterants. Biosensors 2020, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Sheng, K.; Hui, J.; Fang, Y.; Wang, L.; Jiang, D. Emerging electrochemical biosensing approaches for detection of allergen in food samples: A review. Trends Food Sci. Technol. 2022, 121, 93–104. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Pingarron, J.M.; Labuda, J.; Barek, J.; Brett, C.M.A.; Camoes, M.F.; Fojta, M.; Hibbert, D.B. Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019. Pure Appl. Chem. 2020, 92, 641–694. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Ünlü, C.; Trabzon, L. Affinity biosensors developed with quantum dots in microfluidic systems. Emergent Mater. 2021, 4, 187–209. [Google Scholar] [CrossRef]
- Leech, D. Affinity Biosensors. Chem. Soc. Rev. 1994, 23, 205–213. [Google Scholar] [CrossRef]
- Curulli, A. Nanomaterials in Electrochemical Sensing Area: Applications and Challenges in Food Analysis. Molecules 2020, 25, 5759. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry, 2nd ed.; Wiley/VCH: New York, NY, USA, 2000. [Google Scholar]
- Bockris, J.O.M.; Reddy, A.K.N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer 4Academic/Plenum Publishers: New York, NY, USA, 2000; Volume 2. [Google Scholar]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Munoz, J.; Montes, R.; Baeza, M. Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: Characterization, architecture surface and bio-sensing. Trends Anal. Chem. 2017, 97, 201–215. [Google Scholar] [CrossRef]
- Malvano, F.; Pilloton, R.; Albanese, D. Label-free impedimetric biosensors for the control of food safety—A review. Int. J. Environ. Anal. Chem. 2020, 100, 468–491. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Kemp, N.T. A Tutorial on Electrochemical Impedance Spectroscopy and Nanogap Electrodes for Biosensing Applications. IEEE Sens. J. 2021, 21, 22232–22245. [Google Scholar] [CrossRef]
- Upasham, S.; Banga, I.K.; Jagannath, B.; Paul, A.; Lin, K.-C.; Muthukumar, S.; Prasad, S. Electrochemical impedimetric biosensors, featuring the use of Room Temperature Ionic Liquids (RTILs): Special focus on non-faradaic sensing. Biosens. Bioelectron. 2021, 177, 112940. [Google Scholar] [CrossRef]
- Brett, C.M.A. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022, 27, 1497. [Google Scholar] [CrossRef] [PubMed]
- Sacci, R.L.; Harrington, D. Dynamic Electrochemical Impedance Spectroscopy. ECS Trans. 2009, 19, 31–42. [Google Scholar] [CrossRef]
- Bandarenka, A.S. Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy. Analyst 2013, 138, 5540–5554. [Google Scholar] [CrossRef] [PubMed]
- Sacci, R.L.; Seland, F.; Harrington, D. Dynamic electrochemical impedance spectroscopy for electrocatalytic reactions. Electrochim. Acta 2014, 131, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Ragoisha, G.A. Potentiodynamic Electrochemical Impedance Spectroscopy for Underpotential Deposition Processes. Electroanalysis 2015, 27, 855–863. [Google Scholar] [CrossRef]
- Pajkossy, T.; Jurczakowski, R. Electrochemical Impedance Spectroscopy in interfacial studies. Curr. Opin. Electrochem. 2017, 1, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Pajkossy, T.; Meszaros, G. Connection of CVs and impedance spectra of reversible redox systems, as used for the validation of a dynamic electrochemical impedance spectrum measurement system. J. Solid State Electrochem. 2020, 24, 2883–2889. [Google Scholar] [CrossRef]
- Darowicki, K.; Zielinski, A.; Mielniczek, M.; Janicka, E.; Gawel, L. Polynomial description of dynamic impedance spectrogram-Introduction to a new impedance analysis method. Electrochem. Commun. 2021, 129, 107078. [Google Scholar] [CrossRef]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119, 120–194. [Google Scholar] [CrossRef]
- Petrucci, R.; Bortolami, M.; Di Matteo, P.; Curulli, A. Gold Nanomaterials-Based Electrochemical Sensors and Biosensors for Phenolic Antioxidants Detection: Recent Advances. Nanomaterials 2022, 12, 959. [Google Scholar] [CrossRef]
- Shin, J.H.; Reddy, Y.V.M.; Park, T.J.; Park, J.P. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem. 2022, 371, 131120. [Google Scholar] [CrossRef] [PubMed]
- Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157. [Google Scholar] [CrossRef] [PubMed]
- Taleat, Z.; Khoshroo, A.; Mazloum-Ardakani, M. Screen-printed electrodes for biosensing: A review (2008–2013). Microchim. Acta 2014, 181, 865–891. [Google Scholar] [CrossRef]
- García-Miranda Ferrari, A.; Rowley-Neale, S.J.; Banks, C.E. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open 2021, 3, 100032. [Google Scholar] [CrossRef]
- Raghavender Suresh, R.; Lakshmanakumar, M.; Arockia Jayalatha, J.B.B.; Rajan, K.S.; Sethuraman, S.; Maheswari Krishnan, U.; Balaguru Rayappan, J.B. Fabrication of screen-printed electrodes: Opportunities and challenges. J. Mater. Sci. 2021, 56, 8951–9006. [Google Scholar] [CrossRef]
- Beitollahi, H.; Mohammadi, S.Z.; Safaeia, M.; Tajik, S. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: A review. Anal. Methods 2020, 12, 1547–1560. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Rauf, S.; Beduk, T.; Durmus, C.; Aljedaibi, A.; Timur, S.; Alshareef, H.N.; Amine, A.; Wolfbeis, O.S.; Salama, K.N. Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review. Biosens. Bioelectron. 2020, 168, 112565. [Google Scholar] [CrossRef]
- de Oliveira RA, G.; Materon, E.M.; Melendez, M.E.; Carvalho, A.L.; Faria, R.C. Disposable Microfluidic Immunoarray Device for Sensitive Breast Cancer Biomarker Detection. ACS Appl. Mater. Interfaces 2017, 9, 27433–27440. [Google Scholar] [CrossRef]
- Noviana, E.; McCord, C.P.; Clark, K.M.; Jang, I.; Henry, C.S. Electrochemical paper-based devices: Sensing approaches and progress toward practical applications. Lab Chip 2020, 20, 9–34. [Google Scholar] [CrossRef]
- Noviana, E.; Ozer, T.; Carrell, C.S.; Link, J.S.; McMahon, C.; Jang, I.; Henry, C.S. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem. Rev. 2021, 121, 11835–11885. [Google Scholar] [CrossRef]
- Shen, L.-L.; Zhang, G.-R.; Etzold, B.J.M. Paper-Based Microfluidics for Electrochemical Applications. ChemElectroChem 2020, 7, 10–30. [Google Scholar] [CrossRef] [PubMed]
- Fava, E.L.; Almeida Silva, T.; Martimiano do Prado, T.; Cruz de Moraes, F.; Censi Faria, R.; Fatibello-Filho, O. Electrochemical paper-based microfluidic device for high throughput multiplexed analysis. Talanta 2019, 203, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Fernández-la-Villa, A.; Pozo-Ayuso, D.F.; Castaño-Álvarez, M. Microfluidics and electrochemistry: An emerging tandem for next-generation analytical microsystems. Curr. Opin. Electrochem. 2019, 15, 175–185. [Google Scholar] [CrossRef]
- Costa-Rama, E.; Fernández-Abedul, M.T. Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. Biosensors 2021, 11, 51. [Google Scholar] [CrossRef]
- Liu, H.; Crooks, R.M. Three-Dimensional Paper Microfluidic Devices Assembled Using the Principles of Origami. J. Am. Chem. Soc. 2011, 133, 17564–17566. [Google Scholar] [CrossRef]
- Liu, H.; Xiang, Y.; Lu, Y.; Crooks, R.M. Aptamer-Based Origami Paper Analytical Device for Electrochemical Detection of Adenosine. Angew. Chem. 2012, 124, 7031–7034. [Google Scholar] [CrossRef] [Green Version]
- Colozza, N.; Caratelli, V.; Moscone, D.; Arduini, F. Origami Paper-Based Electrochemical (Bio)Sensors: State of the Art and Perspective. Biosensors 2021, 11, 328. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Yin, Y.; YPan, Y.; Wang, Y.; Song, Y. Nanomaterial-assisted microfluidics for multiplex assays. Microchim. Acta 2022, 189, 139. [Google Scholar] [CrossRef]
- Nehra, M.; Lettieri, M.; Dilbaghi, N.; Kumar, S.; Marrazza, G. Nano-Biosensing Platforms for Detection of Cow’s Milk Allergens: An Overview. Sensors 2020, 20, 32. [Google Scholar] [CrossRef] [Green Version]
- Melinte, G.; Selvolini, G.; Cristea, C.; Marrazza, G. Aptasensors for lysozyme detection: Recent advances. Talanta 2021, 226, 122169. [Google Scholar] [CrossRef]
- Surucu, O.; Abaci, S. Electrochemical determination of β-lactoglobulin in whey proteins. J. Food Meas. Charact. 2020, 14, 11–19. [Google Scholar] [CrossRef]
- Veledo, M.T.; Fuentes, M.J.; Diez-Masa, C. Analysis of trace amounts of bovine β-lactoglobulin in infant formulas by capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection. J. Sep. Sci. 2005, 28, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Motshakeri, M.; Sharma, M.; Phillips AR, J.; Kilmartin, P.A. Electrochemical Methods for the Analysis of Milk. J. Agric. Food Chem. 2022, 70, 2427–2449. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Rusling, J.F.; KDixit, C.K. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 2017, 116, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Mollarasouli, F.; Kurbanoglu, S.; Ozkan, S.A. The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Kilic, T.; Philipp, P.J.; Giavedoni, P.; Carrara, S. Milk Allergen Detection: Sensitive Label-Free Voltammetric Immunosensor Based on Electropolymerization. BioNanoScience 2020, 10, 512–522. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Y.; Zhu, L.; Jian, L. An Electrochemical Sensor Based on Gold-Nanocluster-Modified Graphene Screen-Printed Electrodes for the Detection of β-Lactoglobulin in Milk. Sensors 2020, 20, 3956. [Google Scholar] [CrossRef]
- Molinari, J.; Florez, L.; Medrano, A.; Monsalve, L.; Ybarra, G. Electrochemical Determination of β-Lactoglobulin Employing a Polystyrene Bead-Modified Carbon Nanotube Ink. Biosensors 2018, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Bottari, F.; Moretto, M.L.; Ugo, P. Impedimetric sensing of the immuno-enzymatic reaction of gliadin with a collagen-modified electrode. Electrochem. Commun. 2018, 97, 51–55. [Google Scholar] [CrossRef]
- Porta, R.; Gentile, V.; Esposito, C.; Mariniello, L.; Aurlcchiot, S. Cereal dietary proteins with sites for cross-linking by transglutaminase. Phytochemistry 1990, 29, 2801–2804. [Google Scholar] [CrossRef]
- Marin-Barroso, E.; Messina, G.A.; Bertolino, F.A.; Raba, J.; Pereira, S.V. Electrochemical immunosensor modified with carbon nanofibers coupled to a paper platform for the determination of gliadins in food samples. Anal. Methods 2019, 11, 2170–2178. [Google Scholar] [CrossRef]
- Xia, Y.; Si, J.; Li, Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens. Bioelectron. 2016, 77, 774–789. [Google Scholar] [CrossRef] [PubMed]
- Dumitriu, C.; Constantinescu, A.; Pirvu, C. Functionalized TiO2 Nanotube Platform for Gliadin Electroanalysis. Crystals 2021, 11, 22. [Google Scholar] [CrossRef]
- Safavipour, M.; Kharaziha, M.; Amjadi, E.; Karimzadeh, F.; Allafchian, A. TiO2 nanotubes/reduced GO nanoparticles for sensitive detection of breast cancer cells and photothermal performance. Talanta 2020, 208, 120369. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Shaheen, T.I.; Zaghloul, S.; El-Rafie, M.H.; Hebeish, A. Antibacterial Activities and UV Protection of the in Situ Synthesized Titanium Oxide Nanoparticles on Cotton Fabrics. Ind. Eng. Chem. Res. 2016, 55, 2661–2668. [Google Scholar] [CrossRef]
- Benedé, S.; Ruiz-Valdepenas Montiel, V.; Povedano, E.; Villalba, M.; Mata, L.; Galán-Malo, P.; Torrente-Rodríguez, R.M.; Vargas, E.; Reviejo, A.J.; Campuzano, S.; et al. Fast amperometric immunoplatform for ovomucoid traces determination in fresh and baked food. Sens. Actuators B 2018, 265, 421–428. [Google Scholar] [CrossRef]
- Ruiz-Valdepenas Montiel, V.; Campuzano, S.; Pellicanò, A.; Torrente-Rodríguez, R.M.; Reviejo, A.J.; Cosio, M.S.; Pingarrón, J.M. Sensitive and selective magneto immunosensing platform for determination of the food allergen Ara h 1. Anal. Chim. Acta 2015, 80, 52–59. [Google Scholar] [CrossRef]
- Ruiz-Valdepenas Montiel, V.; Campuzano, S.; Conzuelo, F.; Torrente-Rodríguez, R.M.; Gamella, M.; Reviejo, A.J.; Pingarrón, J.M. Electrochemical magneto immunosensing platform for determination of the milk allergen β-lactoglobulin. Talanta 2015, 131, 156–162. [Google Scholar] [CrossRef]
- Kovacs-Nolan, J.K.N.; Phillips, M.; Mine, Y. Advances in the value of eggs and egg components for human health. J. Agric. Food Chem. 2005, 53, 8421–8431. [Google Scholar] [CrossRef]
- de Luis, R.; Mata, L.; Estopanán, G.; Lavilla, M.; Sánchez, L.; Pérez, M.D. Evaluation of indirect competitive and double antibody sandwich ELISA tests to determine β-lactoglobulin and OMin model processed foods. Food Agric. Immunol. 2008, 19, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, A.; Rizwan, M.; Keasberry, N.A.; Ahmed, M.U. Fabrication of label-free electrochemical food biosensor for the sensitive detection of ovalbumin on nanocomposite-modified graphene electrode. Biointerface Res. Appl. Chem. 2019, 9, 4655–4662. [Google Scholar]
- Rolland, J.M.; Apostolou, E.; de Leon, M.P.; Stockley, C.S.; O’Hehir, R.E. Specific and sensitive enzyme-linked immunosorbent assays for analysis of residual allergenic food proteins in commercial bottled wine fined with egg white, milk, and nongrape-derived tannins. J. Agric. Food Chem. 2008, 56, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Aparecida Baldo, T.; dos Anjos Proença, C.; da Silva Felix, F.; Aguiar Freitas, T.; Kazumi Sakata, S.; Angnes, L.; Censi Faria, R. Disposable electrochemical microfluidic device for ultrasensitive detection of egg allergen in wine samples. Talanta 2021, 232, 122447. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.; Bavaro, S.L.; Benedé, S.; Diaz-Perales, A.; Bueno-Diaz, C.; Gelencser, E.; Klueber, J.; Larré, C.; Lozano-Ojalvo, D.; Lupi, R.; et al. Are Physicochemical Properties Shaping the Allergenic Potency of Plant Allergens? Clin. Rev. Allergy Immunol. 2022, 62, 37–63. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.J.; Clemente, A. 2S Albumin Storage Proteins: What Makes them Food Allergens? Open Biochem. J. 2008, 2, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Costa, J.; Sagastizabal, I.; Brandao AT, S.C.; Moreira, P.; Mafra, I.; Silva, A.F.; Pereira, C.M. Electrochemical and optical biosensing platforms for the immunorecognition of hazelnut Cor a 14 allergen. Food Chem. 2021, 361, 130122. [Google Scholar] [CrossRef]
- Remington, B.C.; Westerhout, J.; Meima, M.Y.; Marty Blom, W.; Kruizinga, A.G.; Wheeler, M.W.; Taylor, S.L.; Geert FHouben, G.F.; Baumert, J.L. Updated population minimal eliciting dose distributions for use in risk assessment of 14 priority food allergens. Food Chem. Toxicol. 2020, 139, 111259. [Google Scholar] [CrossRef]
- Chruszcz, M.; Maleki, S.J.; Majorek, K.A.; Demas, M.; Bublin, M.; Solberg, R.; Hurlburt, B.K.; Ruan, S.; Mattisohn, C.P.; Breiteneder, H.; et al. Structural and Immunologic Characterization of Ara h 1, a Major Peanut Allergen. J. Biol. Ical Chem. 2011, 286, 39318–39327. [Google Scholar] [CrossRef] [Green Version]
- Freitas, M.; Carvalho, A.; Nouws, H.P.A.; Delerue-Matos, C. Tracking Arachis hypogaea Allergen in Pre-Packaged Foodstuff: A Nanodiamond-Based Electrochemical Biosensing Approach. Biosensors 2022, 12, 429. [Google Scholar] [CrossRef]
- Frontera, W.R.; Ochala, J. Skeletal Muscle: A Brief Review of Structure and Function. Calcif Tissue Int. 2015, 96, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Angulo-Ibanez, A.; Eletxigerra, U.; Lasheras, X.; Campuzano, S.; Merino, S. Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Anal. Chim. Acta 2019, 1079, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, A.; Rizwan, M.; Keasberry, N.A.; Nguyen, A.S.; Lam, T.D.; Ahmed, M.U. Gold-microrods/Pd-nanoparticles/polyaniline-nanocomposite-interface as a peroxidase-mimic for sensitive detection of tropomyosin. Biosens. Bioelectron. 2020, 155, 112108. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Simpson, B.K.; Sun, H.; Ngadi, M.O.; Ma, Y.; Huang, T. Phaseolus vulgaris lectins: A systematic review of characteristics and health implications. Crit. Rev. Food Sci. Nutr. 2018, 58, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Ye, Y.; He, S.; Wu, Z.; Yue, J.; Sun, H.; Cao, X. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. Biosens. Bioelectron. 2019, 143, 111607. [Google Scholar] [CrossRef]
- Malvano, F.; Albanese, D.; Pilloton, R.; Di Matteo, M. A highly sensitive impedimetric label free immunosensor for Ochratoxin measurement in cocoa beans. Food Chem. 2016, 212, 688–694. [Google Scholar] [CrossRef]
- Fu, J.; Li, J.; Wang, W.; Wu, H.; Zhou, P.; Li, Y.; He, Q.; Tu, Z. One-step orientated immobilization of nanobodies and its application for immunoglobulin purification. J. Chromatogr. A 2019, 1603, 15–22. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.J.; Deng, T.T. Detection and control of mustard and sesame as food allergens. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Handbook of Food Allergen Detection and Control; Flanagan, S., Ed.; Woodhead Publishing: Sawston, UK, 2015; Chapter 21; pp. 391–408. [Google Scholar]
- Gamella, M.; Bueno-Diaz, C.; Ruiz-Valdepenas Montiel, V.; Povedano, E.; Reviejo, A.J.; MVillalba, M.; SCampuzano, S.; Pingarron, J.M. First electrochemical immunosensor for the rapid detection of mustard seeds in plant food extracts. Talanta 2020, 219, 121247. [Google Scholar] [CrossRef]
- Wang, T.; Qin, G.X.; Sun, Z.W.; Zhao, Y. Advances of research on glycinin and β-conglycinin: A review of two major soybean allergenic proteins. Crit. Rev. Food Sci. Nutr. 2014, 54, 850–862. [Google Scholar] [CrossRef]
- Blazquez-García, M.; Arevalo, B.; Serafín, V.; Benede, S.; Mata, L.; Galan-Malo PSegura-Gil, I.; Perez, M.D.; Pingarron, J.M.; Campuzano, S. Ultrasensitive detection of soy traces by immunosensing of glycinin and β-conglycinin at disposable electrochemical platforms. Talanta 2022, 241, 123226. [Google Scholar] [CrossRef]
- Jafari, S.; Guercetti, J.; Geballa-Koukoula, A.; Tsagkaris, A.S.; Nelis, J.L.D.; Marco, M.-P.; Salvador, J.-P.; Gerssen, A.; Hajslova, J.; Elliott, C.; et al. ASSURED Point-of-Need Food Safety Screening: A Critical Assessment of Portable Food Analyzers. Foods 2021, 10, 1399. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Huang, C.-H.; Park, J.; Pathania, D.; Castro, C.M.; Fasano, A.; Weissleder, R.; Lee, H. Integrated Magneto-Chemical Sensor For On-Site Food Allergen Detection. ACS Nano 2017, 11, 10062–10069. [Google Scholar] [CrossRef]
- Xu, J.; Yao, L.; Cheng, L.; Yan, C.; Chen, W. Development of Aptamer-Based Electrochemical Methods In Aptamers for Analytical Applications; Dong, Y., Ed.; Publisher Wiley-VCH: Weinheim, Germany, 2018; Chapter 9; pp. 247–271. [Google Scholar]
- Ștefan, G.; Hosu, O.; De Wael, K.; Lobo-Castañón, M.J.; Cristea, C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochim. Acta 2021, 376, 137994. [Google Scholar] [CrossRef]
- Eissa, S.; Zourob, M. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosens. Bioelectron. 2017, 91, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Han, Z.; Chu, X.; Zhang, J.; Cai, Z.; Wu, Y. Simultaneous determination of bovine α-lactalbumin and β-lactoglobulin in infant formulae by ultra-high-performance liquid chromatography–mass spectrometry. Anal. Chim. Acta 2010, 667, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, M.; Hosu, O.; Adumitrachioaie, A.; Cristea, C.; Marrazza, G. Beta-lactoglobulin Electrochemical Detection Based with an Innovative Platform Based on Composite Polymer. Electroanalysis 2020, 32, 217–225. [Google Scholar] [CrossRef]
- Amor-Gutiérrez, O.; Selvolini, G.; Fernández-Abedul, M.T.; de la Escosura-Muñiz, A.; Marrazza, G. Folding-Based Electrochemical Aptasensor for the Determination of β-Lactoglobulin on Poly-L-Lysine Modified Graphite Electrodes. Sensors 2020, 20, 2349. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Zhu, P.; Pi, F.; Sun, C.; Sun, J.; Jia, M.; Ying, C.; Zhang, Y.; Sun, X. Development of a liquid chromatography-tandem mass spectrometry method for simultaneous detection of the main milk allergens. Food Control 2017, 74, 79–88. [Google Scholar] [CrossRef]
- He, S.; Li, X.; Wu, Y.; Wu, S.; Wu, Z.; Yang, A.; Tong, P.; Yuan, J.; Gao, J.; Chen, H. Highly sensitive detection of bovine β-Lactoglobulin with wide linear dynamic range based on platinum nanoparticles probe. J. Agric. Food Chem. 2018, 66, 11830–11838. [Google Scholar] [CrossRef]
- Xu, S.; Dai, B.; Zhao, W.; Jiang, L.; Huang, H. Electrochemical detection of β-lactoglobulin based on a highly selective DNA aptamer and flower-like Au@BiVO4 microspheres. Anal. Chim. Acta 2020, 1120, 1–10. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, N.; Zhang, J.; Yan, R.; Li, J.; Wang, L.; Wang, N.; Lv, M.; Zhang, M. Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosens. Bioelectron. 2020, 150, 111881. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Ni, X.; Liu, T.; Li, Z.; An, X.; Chen, X. An electrochemical aptasensor for the milk allergen β-lactoglobulin detection based on a target-induced nicking site reconstruction strategy. Analyst 2021, 146, 6808–6814. [Google Scholar] [CrossRef] [PubMed]
- Farahani, N.; Behmanesh, M.; Ranjbar, B. Evaluation of Rationally Designed Label-free Stem-loop DNA Probe Opening in the Presence of miR-21 by Circular Dichroism and Fluorescence Techniques. Sci. Rep. 2020, 10, 4018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandi Subramani, I.; Perumal, V.; Gopinath SC, B.; Muti Mohamed, N.; Ovinis, M.; Li Sze, L. 1,1’-Carbonyldiimidazole-copper nanoflower enhanced collapsible laser scribed graphene engraved microgap capacitive aptasensor for the detection of milk allergen. Sci. Rep. 2021, 11, 20825. [Google Scholar] [CrossRef]
- Smith, S.; Goodge, K.; Delaney, M.; Struzyk, A.; Tansey, N.; Frey, M. A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers. Nanomaterials 2020, 10, 2142. [Google Scholar] [CrossRef] [PubMed]
- Jing, M.; Fei, X.; Ren, W.; Tian, J.; Zhi, H.; Xu, L.; Wang, X.; Wang, Y. Self-assembled hybrid nanomaterials with alkaline protease and a variety of metal ions. RSC Adv. 2017, 7, 48360–48367. [Google Scholar] [CrossRef] [Green Version]
- López-López, L.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castanón, M.J. Disposable electrochemical aptasensor for gluten determination in food. Sens. Actuators B 2017, 241, 522–527. [Google Scholar] [CrossRef]
- Shan, L.; Molberg, O.; Parrot, I.; Hausch, F.; Filiz, F.; Gray, G.M.; Sollid, L.M.; Khosla, C. Structural Basis for Gluten Intolerance in Celiac Sprue. Science 2002, 29, 2275–2279. [Google Scholar] [CrossRef] [Green Version]
- Malvano, F.; Albanese, D.; Pilloton, R.; Di Matteo, M. A new label-free impedimetric aptasensor for gluten detection. Food Control 2017, 79, 200–206. [Google Scholar] [CrossRef]
- Amaya-González, S.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castanón, M.J. Aptamer Binding to Celiac Disease-Triggering Hydrophobic Proteins: A Sensitive Gluten Detection Approach. Anal. Chem. 2014, 86, 2733–2739. [Google Scholar] [CrossRef]
- Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castanón, M.J. Harnessing Aptamers to Overcome Challenges in Gluten Detection. Biosensors 2016, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Amaya-González, S.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A.J.; Lobo-Castanón, M.J. Sensitive gluten determination in gluten-free foods by an electrochemical aptamer-based assay. Anal. Bioanal. Chem. 2015, 407, 6021–6029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svigelj, R.; Zuliani, I.; Grazioli, C.; Dossi, N.; Toniolo, R. An Effective Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles for Gluten Detection. Nanomaterials 2022, 12, 987. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Belmonte, I.; Sykes, K.S.; Xiao, Y.; White, R.J. Perspective on the Future Role of Aptamers in Analytical Chemistry. Anal. Chem. 2019, 91, 15335–15344. [Google Scholar] [CrossRef]
- Svigelj, R.; Dossi, N.; Toniolo, R.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Lobo-Castanón, M.J. Selection of Anti-gluten DNA Aptamers in a Deep Eutectic Solvent. Angew. Chem. 2018, 130, 13032–13036. [Google Scholar] [CrossRef]
- Brett, C.M.A. Deep eutectic solvents and applications in electrochemical sensing. Curr. Opin. Electrochem. 2018, 10, 143–148. [Google Scholar] [CrossRef]
- Shahamirifard, S.A.; Ghaedi, M.; Razmi, Z.; Hajati, S. A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode. Biosens. Bioelectron. 2018, 114, 30–36. [Google Scholar] [CrossRef]
- Svigelj, R.; Bortolomeazzi, R.; Dossi, N.; Giacomino, A.; Bontempelli, G.; Toniolo, R. An Effective Gluten Extraction Method Exploiting Pure Choline Chloride-Based Deep Eutectic Solvents (ChCl-DESs). Food Anal. Methods 2017, 10, 4079–4085. [Google Scholar] [CrossRef]
- Svigelj, R.; Dossi, N.; Pizzolato, S.; Toniolo, R.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Lobo-Castanón, M.J. Truncated aptamers as selective receptors in a gluten sensor supporting direct measurement in a deep eutectic solvent. Biosens. Bioelectron. 2020, 165, 112339. [Google Scholar] [CrossRef]
- Svigelj, R.; Dossi, N.; Grazioli, C.; Toniolo, R. Paper-based aptamer-antibody biosensor for gluten detection in a deep eutectic solvent (DES). Anal. Bioanal. Chem. 2022, 414, 3341–3348. [Google Scholar] [CrossRef]
- Seo, H.B.; Gu, M.B. Aptamer-based sandwich-type biosensors. J. Biol. Eng. 2017, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Liu, B.; Leng, J.; Ma, X.; Peng, H. Electrochemical mixed aptamer-antibody sandwich assay for mucin protein 16 detection through hybridization chain reaction amplification. Anal. Bioanal. Chem. 2020, 412, 7169–7717. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.I.; Alec GMaddaus, A.G.; Song, E. A Low-Cost Inkjet-Printed Aptamer-Based Electrochemical Biosensor for the Selective Detection of Lysozyme. Biosensors 2018, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, B.; Jamei, H.R.; Ensafi, A.A. An ultrasensitive and selective electrochemical aptasensor based on rGO/MWCNTs/ Chitosan/carbon quantum dot for the detection of lysozyme. Biosens. Bioelectron. 2018, 115, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Jamei, H.R.; Rezaei, B.; Ensafi, A.A. An ultrasensitive electrochemical anti-lysozyme aptasensor with biorecognition surface based on aptamer/amino-rGO/ionic liquid/aminomesosilica nanoparticles. Colloids Surf. B Biointerfaces 2019, 181, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Titoiu, A.M.; Porumb, R.; Fanjul-Bolado, P.; Epure, P.; Zamfir, M.; Vasilescu, A. Detection of Allergenic Lysozyme during Winemaking with an Electrochemical Aptasensor. Electroanalysis 2019, 31, 2262–2273. [Google Scholar] [CrossRef]
- Melinte, G.; Hosu, O.; Ștefan, G.; Bogdan, D.; Cristea, C.; Marrazza, G. Poly-L-Lysine@gold nanostructured hybrid platform for Lysozyme aptamer sandwich-based detection. Electrochim. Acta 2022, 403, 139718. [Google Scholar] [CrossRef]
- Jiang, H.; Guo, Q.; Zhang, C.; Sun, Z.; Weng, X. Microfluidic origami nano-aptasensor for peanut allergen Ara h1 detection. Food Chem. 2021, 365, 130511. [Google Scholar] [CrossRef]
- Canniatti Brazaca, L.; Layene dos Santos, P.; de Oliveira, P.R.; Pessoa Rocha, D.; Santos Stefano, J.; Kalinke, C.; Abarza Munoz, R.A.; Alves Bonacin, J.; Campos Janegitz, B.; Carrilho, E. Biosensing strategies for the electrochemical detection of viruses and viral diseases. A review. Anal. Chim. Acta 2021, 1159, 338384. [Google Scholar] [CrossRef]
- Rashid JI, A.; Yusof, N.A. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sens. Bio-Sens. Res. 2017, 16, 19–31. [Google Scholar] [CrossRef]
- Wei, F.; Lillehoj, P.B.; Ho, C.-M. DNA Diagnostics: Nanotechnology-Enhanced Electrochemical Detection of Nucleic Acids. Pediatric Res. 2010, 67, 458–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trotter, M.; Borst, N.; Thewes, R.; von Stetten, F. Review: Electrochemical DNA sensing–Principles, commercial systems, and applications. Biosens. Bioelectron. 2020, 154, 112069. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Valdepenas Montiel, V.; Torrente-Rodríguez, R.M.; González de Rivera, G.; Reviejo, A.J.; Cuadrado, C.; Linacero, R.; Gallego, F.J.; Campuzano, S.; Pingarrón, J.M. Amperometric determination of hazelnut traces by means of Express PCR coupled to magnetic beads assembled on disposable DNA sensing scaffolds. Sens. Actuators B 2017, 245, 895–902. [Google Scholar] [CrossRef]
- Beyer, K.; Grishina, G.; Bardina, L.; Grishin, A.; Sampson, H.A. Identification of an 11S globulin as a major hazelnut food allergen in hazelnut induced systemic reactions. J. Allergy Clin. Immunol. 2002, 110, 517–523. [Google Scholar] [CrossRef]
- Pereira-Barros, M.A.; Barroso, M.F.; Martín-Pedraza, L.; Vargas, E.; Benedé, S.; Villalba, M.; Rocha, J.M.; Campuzano, S.; Pingarrón, J.M. Direct PCR-free electrochemical biosensing of plant-food derived nucleic acids in genomic DNA extracts. Application to the determination of the key allergen Sola l 7 in tomato seeds. Biosens. Bioelectron. 2019, 137, 171–177. [Google Scholar] [CrossRef]
- D’Agostino, N.; Buonanno, M.; Ayoub, J.; Barone, A.; Monti, S.M.; Rigano, M.M. Identification of non-specific Lipid Transfer Protein gene family members in Solanum lycopersicum and insights into the features of Sola l 3 protein. Sci. Rep. 2019, 9, 1607. [Google Scholar] [CrossRef]
- Martın-Pedraza, L.; Gonzalez, M.; Gomez, F.; Blanca-Lopez, N.; Garrido-Arandia, M.; Rodrıguez, R.; Torres, M.J.; Blanca, M.; Villalba, M.; Mayorga, C. Two nonspecific lipid transfer proteins (nsLTPs) from tomato seeds are associated to severe symptoms of tomato-allergic patients. Mol. Nutr. Food Res. 2016, 60, 1172–1182. [Google Scholar] [CrossRef]
- Włodarczyk, K.; Smolinska, B.; Majak, I. Tomato Allergy: The Characterization of the Selected Allergens and Antioxidants of Tomato (Solanum lycopersicum)—A Review. Antioxidants 2022, 11, 644. [Google Scholar] [CrossRef]
- Ye, Y.; Guo, H.; Sun, X. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens. Bioelectron. 2019, 126, 389–404. [Google Scholar] [CrossRef]
- Gupta, N.; Renugopalakrishnan, V.; Liepmann, D.; Paulmurugan, R.; Malhotra, B.D. Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens. Bioelectron. 2019, 141, 111435. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, L.; Zhang, Z.; Zang, L. Electrochemical Cell-Based Sensor for Detection of Food Hazards. Micromachines 2021, 12, 837. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Ge, P.; Wang, L.; Jiang, H.; Yang, M.; Yuan, L.; Ge, Q.; Fang, W.; Ju, X. A novel electrochemical mast cell-based paper biosensor for the rapid detection of milk allergen casein. Biosens. Bioelectron. 2019, 130, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Docena, G.H.; Fernandez, R.; Chirdo, F.G.; Fossati, C.A. Identification of casein as the major allergenic and antigenic protein of cow’s milk. Allergy 1996, 51, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Costa, J.; Oliveira, M.; Mafra, I. Bovine Milk Allergens: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 137–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.; Jiang, H.; Wang, L. A Novel Paper-Based Capacitance Mast Cell Sensor for Evaluating Peanut Allergen Protein Ara h 2. Food Anal. Methods 2020, 13, 1993–2001. [Google Scholar] [CrossRef]
- Jiang, D.; Sheng, K.; Jiang, H.; Wang, L. A biomimetic “intestinal microvillus” cell sensor based on 3D bioprinting for the detection of wheat allergen gliadin. Bioelectrochemistry 2021, 142, 107919. [Google Scholar] [CrossRef]
- Soo Huh, J.; Byun, H.-G.; Chong Lau, H.; Lim, G.J. Biosensor and Bioprinting. In Essentials of 3D Biofabrication and Translation; Atala, A., Yoo, J.J., Eds.; Academic Press: Cambridge, MA, USA, 2015; Chapter 12; pp. 215–227. [Google Scholar]
- Remaggi, G.; Zaccarelli, A.; Elviri, L. 3D Printing Technologies in Biosensors Production: Recent Developments. Chemosensors 2022, 10, 65. [Google Scholar] [CrossRef]
- Gonçalves, I.M.; Rodrigues, R.O.; Moita, A.S.; Hori, T.; Kaji, H.; Lima, R.A.; Minas, G. Recent trends of biomaterials and biosensors for organ-on-chip platforms. Bioprinting 2022, 26, 00202. [Google Scholar] [CrossRef]
- Janczuk, M.; Niedziółka-Jönsson, J.; Szot-Karpińska, K. Bacteriophages in electrochemistry: A review. J. Electroanal. Chem. 2016, 779, 207–219. [Google Scholar] [CrossRef]
- Janczuk-Richter, M.; Marinović, I.; Niedziółka-Jönsson, J.; Szot-Karpińska, K. Recent applications of bacteriophage-based electrodes: A mini-review. Electrochem. Commun. 2019, 99, 11–15. [Google Scholar] [CrossRef]
- Xu, J.; Chau, Y.; Lee, Y.-K. Phage-based Electrochemical Sensors: A Review. Micromachines 2019, 10, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, P.; Ghosh, S.; Rana Gul, A.; Bhamore, J.R.; Park, J.P.; Park, T.J. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Anal. Chem. 2021, 137, 116229. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, T.J.; Hyun, M.S.; Park, J.P. A phage virus-based electrochemical biosensor for highly sensitive detection of ovomucoid. Food Chem. 2022, 378, 132061. [Google Scholar] [CrossRef] [PubMed]
- Cooke, S.K.; Sampson, H.A. Allergenic Properties of Ovomucoid in Man. J. Immunol. 1997, 159, 2026–2032. [Google Scholar] [PubMed]
- Mazzotta, E.; Di Giulio, T.; Malitesta, C. Electrochemical sensing of macromolecules based on molecularly imprinted polymers: Challenges, successful strategies, and opportunities. Anal. Bioanal. Chem. 2022, 414, 5165–5200. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, C.; Zeng, Q.; Wang, L.-S. An Impedance Molecularly Imprinted Sensor for the Detection of Bovine Serum Albumin (BSA) Using the Dynamic Electrochemical Impedance Spectroscopy. Electroanalysis 2020, 32, 923–930. [Google Scholar] [CrossRef]
- Minic, S.; Stanic-Vucinic, D.; Radomirovic, M.; Radibratovic, M.; Milcic, M.; Nikolic, M.; Cirkovic Velickovic, T. Characterization and effects of binding of food-derived bioactive phycocyanobilin to bovine serum albumin. Food Chem. 2018, 239, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Fuentes Aparicio, V.; Sánchez Marcén, I.; Pérez Montero, A.; Baeza, M.L.; de Barrio Fernández, M. Allergy to mammal’s meat in adult life: Immunologic and follow-up study. J. Invest. Allergol. Clin. Immunol. 2005, 5, 228–231. [Google Scholar]
- Ofori, J.A.; Hsieh, Y.-H.P. The use of blood and derived products as food additives. In Food Additive; El-Samragy, Y., Ed.; Publishing InTech: Rijeka, Croatia, 2012; pp. 229–256. [Google Scholar]
- Wang, B.; Hong, J.; Liu, C.; Zhu, L.; Jiang, L. An Electrochemical Molecularly Imprinted Polymer Sensor for Rapid β-Lactoglobulin Detection. Sensors 2021, 21, 8240. [Google Scholar] [CrossRef]
- Costa, R.; Costa, J.; Moreira, P.; Brandao, A.T.S.C.; Mafra, I.; Silva, A.F.; Pereira, C.M. Molecularly imprinted polymer as a synthetic antibody for the biorecognition of hazelnut Cor a 14-allergen. Anal. Chim. Acta 2022, 1191, 339310. [Google Scholar] [CrossRef]
- Sundhoro, M.; Agnihotra, S.R.; Amberger, B.; Augustus, K.; Khan, N.D.; Barnes, A.; Bel Bruno, J.; Mendecki, L. An electrochemical molecularly imprinted polymer sensor for rapid and selective food allergen detection. Food Chem. 2021, 344, 128648. [Google Scholar] [CrossRef] [PubMed]
- Limthin, D.; Leepheng, P.; Klamchuen, A.; Phromyothin, D. Enhancement of Electrochemical Detection of Gluten with Surface Modification Based on Molecularly Imprinted Polymers Combined with Superparamagnetic Iron Oxide Nanoparticles. Polymers 2022, 14, 91. [Google Scholar] [CrossRef] [PubMed]
- Arshavsky-Graham, S.; Heuer, C.; Jiang, X.; Segal1, E. Aptasensors versus immunosensors—Which will prevail? Eng. Life Sci. 2022, 22, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, A.; Ge, L.; Zhao, K.; Veksha, A.; Bobacka, J.; Lisak, G. Environmental footprint of voltammetric sensors based on screen printed electrodes: An assessment towards “green” sensor manufacturing. Chemosphere 2021, 278, 130462. [Google Scholar] [CrossRef] [PubMed]
- Sundhoro, M.; Agnihotra, S.R.; Khan, N.D.; Barnes, A.; Bel Bruno, J.; Mendecki, L. Rapid and accurate electrochemical sensor for food allergen detection in complex foods. Sci. Rep. 2021, 11, 20831. [Google Scholar] [CrossRef]
Electrode | Immunosensor Format | Electrochemical Technique | Analyte/Sample | Linearity Range | LOD | Recovery (%) | Reference Method | Ref. |
---|---|---|---|---|---|---|---|---|
AuSPE | Label-free format based on Ab entrapment in PPY film | DPV | α-LB/milk | 355–2840 pg mL−1 | 0.18 fg mL−1 | 93–97 | - | [71] |
SPCE | Label-free format based on Ab immobilization on PEI-rGO-AuNCs nanocomposite | DPV | β-LB/milk | 0.01–100 ng mL−1 | 0.08 ng mL−1 | - | ELISA | [72] |
SPCNTE | Sandwich format using an immobilized primary Ab on SPCNTE and an HRP-labeled secondary Ab | Amperometry | β-LB/- | Sub ppm–10 ppm | 0.173 ppm | - | - | [73] |
GCE | Label-free format based on Ab immobilization in collagen film | EIS | Gliadin/- | 5–20 mg L-1 | 5 mg L−1 | - | - | [74] |
SPCE | Sandwich format using a primary Ab immobilized on a paper platform located on CNFs/SPCE and an HRP-labeled secondary Ab | Amperometry | Gliadin/flours | 0–80 μg kg−1 | 0.005 μg kg−1 | 98.5–102.10 | ELISA | [76] |
Ti | Label-free format including Ab immobilization on TiO2NTs-GO nanocomposite | EIS | Gliadin/- | 0–20 ppm | 14 ppm | - | - | [78] |
SPCE | Sandwich format involving primary Ab immobilized on MBs and HRP-labeled secondary Ab | Amperometry | OM/egg white, wheat flour, bread | 0.3–25 ng mL−1 | 0.1 ng mL−1 | ELISA | [82] | |
SPGE | Label-free format including Ab immobilized on Fe3O4@PdNPs/CHI nanocomposite | DPV | OVA/food samples | 0.01 pg mL−1–1 μg mL−1 | 0.01 pg mL−1 | 101.6–107.0 | - | [87] |
SPCE | Sandwich format involving primary Ab immobilized on GO/PDDA-modified SPCEs and the HRP-labeled secondary AB immobilized on MBs | Amperometry | OVA/wine | 0.01–10 pg mL−1 | 0.2 fg mL−1 | - | ELISA | [89] |
AuSPE | Label-free format including Ab immobilized on SAM modified electrode surface | SWV | Cor a 14/wheat flour | 0.1 fg mL−1–0.01 ng mL−1 | 0.05 fg mL−1 | - | - | [92] |
SPCE | Sandwich format involving capture Ab immobilized on NDs-modified SPCEs and S-AP-labeled secondary Ab | ASV | Ara h 1/Biscuits, crackers, cookies, cereals, energetic protein bars | 25–500 ng mL−1 | 0.78 ng mL−1 | - | ELISA | [95] |
SPCE | Sandwich format involving primary Ab immobilized on MNPs and HRP-labeled secondary Ab | Amperometry | TPM/- | 0–218.7 ng mL−1 | 46.9 pg mL−1 | - | - | [97] |
SPCE | Label-free format using Ab immobilized on AuMRs/PdNPs/PANI nanocomposite | DPV | TPM/shrimp-free cream crackers | 0.01–100 pg mL−1 | 0.01 pg mL−1 | 84.1–117.6 | - | [98] |
GCE | Label-free format using Ab-oriented immobilization approach including SPA and AuNPs/PEI_MWCNTs nanocomposite | DPV | KBL/raw and cooked kidney bean milks | 0.05–100 μg mL−1 | 0.023 μg mL−1 | 90.96–97.18 | ELISA | [100] |
SPCE | Sandwich format involving primary Ab immobilized on MBs and HRP-labeled secondary Ab | Amperometry | Sin a 1/raw plant extracts | 2.7–50 ng mL−1 | 0.82 ng mL−1 | ELISA | [104] | |
SPCE/SPdCE | Sandwich format involving primary Ab immobilized on MBs and HRP-labeled secondary Ab | Amperometry | β-conglycinin and glycinin/raw cookie dough and baked cookies enriched with soy flour | β-conglycinin 0.1–125 ng mL−1 glycinin 0.1–100 ng mL−1 | β-conglycinin 0.03 ng mL−1 glycinin 0.02 ng mL−1 | β-conglycinin 93–99% glycinin 101% | ELISA | [106] |
AuSPE | Sandwich format involving primary Ab immobilized on MBs and HRPlabeled secondary Ab | Chronoamperometry | Gliadin, Ara h 1, Cor a 1; casein, OVA/bread, milk, cereal, cookies, ice cream, burgers, beers, dressed salads | - | Gliadin 0.075 mg kg−1 Ara h 1 0.007 mg kg−1 Cor a 1 0.089 mg kg−1 Casein 0.170 mg kg−1 OVA 0.003 mg kg−1 | - | ELISA | [108] |
Electrode | Immunosensor Format | Electrochemical Technique | Analyte/Sample | Linearity Range | LOD | Recovery (%) | Reference Method | Ref. |
---|---|---|---|---|---|---|---|---|
SPGE | Label-free format using aptamer immobilized onto SPGE and [Fe(CN)6]4−/3− as the redox probe | SWV | β-LB/cake, cheese crackers, biscuits | 100 pg mL−1–100 ng mL−1 | 20 pg mL−1 | 90–95 | - | [111] |
SPGE | Competitive format based on aptamer immobilization in PANI/PAA copolymer | DPV | β-LB/soy and cow milk | 0.01–10 μg L−1 | 0.053 μg L−1 | 80–85 (soy) 95 (cow) | - | [113] |
SPGE | Label-free format using an immobilized aptamer on AuNPs/poly(lysine) nanocomposite and MB as the redox probe | DPV | β-LB/biscuits, yogurt | 0.1–10 ng mL−1 | 0.09 ng mL−1 | 103–117 (biscuits) 95–116 (yogurt) | - | [114] |
ITOE | Aptasensor based on a highly selective DNA aptamer and flower-like Au@BiVO4 microspheres | Amperometry | β-LB/infant food formula | 0.01–1000 ng mL−1 | 0.007 ng mL−1 | 92.0–103.5 | ELISA | [117] |
AuE | Aptasensor based on trifunctional HP, using AuNps and an HCR system | DPV | β-LB/hypoallergenic formula milk | 0.01–100 ng mL−1 | 5.7 ng mL−1 | 94.5–101.4 | ELISA | [124] |
LSGE | Label-free format aptamer immobilization on CDI-CuNFs nanocomposite | ECS | β-LB/Herbalife meal replacement shake Formula 1 | 1 ag mL−1–100 fg mL−1 | 1 ag mL−1 | 92.95–94.99 | - | [121] |
SPCE | Competitive format involving HRP as the label | Chronoamperometry | Gliadin/gluten-free snacks and foods, rolled oats | 1–100 μg mL−1 | 0.113 μg mL−1 | ELISA | [124] | |
AuE | Label-free format including PMAMG4 as the immobilization layer | EIS | Gliadin/beer, gluten-free beer, rice, gluten-free bread, corn flour | 5–50 mg mL−150–1000 mg mL−1 | 5 mg mL−1 | - | ELISA | [126] |
SPCE | Label-free format involving AuNPs and streptavidin layer for aptamer immobilization | EIS | Gliadin/gluten-free beers, gluten-free soy sauce | 0.1–1 mg L−1 | 0.05 mg L−1 | 93–101 | ELISA | [130] |
SPCE | Sandwich format involving two biotinylated aptamers and HRP as the enzymatic label | Chronoamperometry | Gliadin/dessert powders, panna cotta, vanilla cream | 1–100 μg mL−1 | 1 μg mL−1 | - | ELISA | [136] |
SPCE | Sandwich format involving aptamer/Ab sandwich and HRP as the enzymatic label | Chronoamperometry | Gliadin/gluten-free flour, corn flakes | 0.2–20 mg L−1 | 0.2 mg L−1 | - | ELISA | [137] |
SPCNTE | Label-free format using a printable ink including a CNT–aptamer complex and [Fe(CN)6]4−/3− as the redox probe | EIS | Lys/- | 0–1.0 μg mL−1 | 90 ng mL−1 | - | - | [140] |
GCE | Label-free format using an rGO/MWCNTs/CQDs/CHI nanocomposite | DPV/EIS | Lys/egg white, wine | 20 fmol L−1–10 nmol L−1 (DPV) 10 fmol L−1–100 nmol L−1 (EIS) | 3.7 fmol L−1 (DPV) 1.9 fmol L−1 (EIS) | 94.6–96.0 (wine) 96.0–104.0 (egg) | - | [141] |
SPCE | Label-free format using a NH2-rGO/IL/Nh2-MSNPs nanocomposite | DPV/EIS | Lys/egg white, wine | 10 fmol L−1–50 nmol L−1 (DPV) 10 fmol L−1–200 nmol L−1 (EIS) | 4.2 fmol L−1 (DPV) 2.1 fmol L−1 (EIS) | 94.0–96.2 (wine) 95.4–104.2 (egg) | - | [142] |
AuSPE | Label-free format involving AuNP-modified electrode and [Fe(CN)6]4−/3− as the redox probe | CV | Lys/red and white wines | 1–10 μg.mL−1 | 0.32 μg.mL−1 | - | HPLC | [143] |
SPCE | Sandwich format involving a thiolated aptamer and a secondary aptamer labeled with S-AP | DPV | Lys/red white and rose wines | 70–7 × 105 pM | 2 pM | 97.4–109.7 | Qubit® Fluorescence Protein Assay Kit | [144] |
SPCE | Label-free format including microfluidic origami nano-aptasensor and BPNSs | DPV | Ara h 1/cookie dough | 50–1000 ng mL−1 | 21.6 ng mL−1 | 98.3–107.9 | - | [145] |
Electrode | Biosensor Type and Format | Electrochemical Technique | Analyte/Sample | Linearity Range | LOD | Recovery (%) | Reference Method | Ref. |
---|---|---|---|---|---|---|---|---|
SPCE | Genosensor with sandwich format using MBs and HRP as enzymatic labels | Amperometry | Cor a 9/hazelnut, nuts, and fruit | 0.0024–0.75 nM | 0.72 pM | - | - | [150] |
SPCE | Genosensor with sandwich format using MBs | Amperometry | Sola l 7/tomato, corn | 0.8–50 pM | 0.2 pM | [152] | ||
SPCE | Cell-based biosensor using RBL-2H3 cells immobilized on CNFs/GelMA nanocomposite | DPV | Casein/- | 1 × 10−7–1 × 10−6 g mL−1 | 3.2 × 10−8 g mL−1 | - | - | [159] |
SPCE | Cell-based biosensor based on a 3D paper chip using RBL-2H3 cells immobilized on PGHAP composite hydrogel | Capacitance | Ara h 2/raw and fried peanuts | 0.1–1 ng mL−1 | 0.028 ng mL−1 | - | - | [162] |
SPCE | Cell-based biosensor based on RBL-2H3 cells immobilized on a biomimetic intestinal microvillus made with a bioink including FCONPs, MWCNTs-CDH, and GelMA | EIS | Gliadin/gluten-free flour and cookies | 0.1–0.8 ng mL−1 | 0.036 ng mL−1 | 95.4–105.0 | - | [163] |
AuE | Bacteriophage-based biosensor using M13 phage immobilized on the electrode surface | SWV | OM/ egg, white wine | 1.55–12.38 μg mL−1 | 0.12 μg mL | 97.5–108.0 (egg white) 97.2–103.8 (wine) | - | [171] |
GCE | MIP sensor including CHI and PPY as MIP | DEIS | BSA/human blood serum | 0.0001–1 ng mL−1 | 5 × 10−5 ng mL−1 | 98–102 | HPLC | [177] |
SPCE | MIP sensor including choline chloride as the functional monomer and PEI-rGO-AuNCs as the nanocomposite | DPV | β-LB/milk | 10−9–10−4 mg mL−1 | 10−9 mg mL−1 | - | ELISA | [178] |
AuSPE | MIP sensor including PPY as MIP | SWV | Cor a 14/hazelnut present in pasta | 100 fg mL−1–0.1 mg mL−1 | 24.5 fg mL−1 | - | - | [179] |
SPCE | MIP sensor including poly (o-PD) as MIP | DPV | Genistein/soymilk, cookies, soy sauce, hummus, salad dressings, gingerbread, and muffin | 100 ppb–10 ppm | 100 ppb | - | LF | [180] |
CPE | MIP sensor including SPIONs and PMMA as MIP | Amperometry | Gliadin/gluten-free and not gluten-free crackers | 50–1000 ppm | 1.50 ppm | - | - | [181] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curulli, A. Recent Advances in Electrochemical Sensing Strategies for Food Allergen Detection. Biosensors 2022, 12, 503. https://doi.org/10.3390/bios12070503
Curulli A. Recent Advances in Electrochemical Sensing Strategies for Food Allergen Detection. Biosensors. 2022; 12(7):503. https://doi.org/10.3390/bios12070503
Chicago/Turabian StyleCurulli, Antonella. 2022. "Recent Advances in Electrochemical Sensing Strategies for Food Allergen Detection" Biosensors 12, no. 7: 503. https://doi.org/10.3390/bios12070503
APA StyleCurulli, A. (2022). Recent Advances in Electrochemical Sensing Strategies for Food Allergen Detection. Biosensors, 12(7), 503. https://doi.org/10.3390/bios12070503