Review of Microdevices for Hemozoin-Based Malaria Detection
Abstract
:1. Introduction
2. Malaria Biomarkers
Hemozoin: A Malaria Biomarker
3. Biosensors for Hemozoin-Based Malaria Diagnosis
3.1. Electrochemical Biosensors
3.2. Optical Biosensors
4. Lab-on-a-Chip and Other Microdevices for Hemozoin-Based Malaria Diagnosis
Authors | Biosensor Type | Detection | Bio-Recognition Element | Analyte | Tested Sample | Limit of Detection | Detection Time | Ref. |
---|---|---|---|---|---|---|---|---|
Obisesan et al. | Electrochemical | 3 electrode system, measured by cyclic voltammetry | Metal oxide nanoparticles of copper, iron and aluminum deposited on a gold electrode | β-hematin | Human non-malaria-infected urine samples, human malaria-infected serum, mice non-infected and infected serum, all mixed with β-hematin | P. berghei in infected mice’s serum samples: 3.60–4.8 mM (around 1.14 × 1010 parasites/μL of blood) P. falciparum in human blood serum samples: 0.65–1.35 mM (around 2.725 × 109 parasites/μL of blood) | No information | [57] |
Briand et al. | Optical | SPR-based sensor | Hemoglobin-polyacrylic acid | Heme | Heme solutions | 2 µM * | Less than 10 min | [61] |
Abshire et al. | Optical | FRET-based sensor | PfHRP-II | Heme | P. falciparum-infected RBCs | 1.6 µM * | No information | [69] |
Garret et al. | Optical | SERS | Gold-coated Graphium weiskei butterfly rings | Hemozoin | Lysed early-ring P. falciparum-infected RBCs | 0.005% (equivalent to 50-500 parasites/µL of blood) | No information | [70] |
Yuen and Liu | Optical | Magnetic enrichment followed by SERRS | Fe3O4@Ag nanoparticles | β-hematin | β-hematin resuspended in NaOH | 5 nM (equivalent to 30 parasites/µL) | 15 s exposure time | [72] |
Chen et al. | Optical | SERS | Silver nanoparticles | Hemozoin | Silver nanoparticles mixed with P. falciparum and silver nanoparticles produced inside the parasites | 0.01% and 0.00005% (equivalent to 100 and 5 parasites/µL of blood) | 10 s exposure time | [73] |
Yadav et al. | Optical | SERS and an externally applied magnetic field | Silver nanorods (AgNRs) on 0.3 T neodymium magnetic substrates | Hemozoin and Human deoxy-hemoglobin | Hemozoin and hemoglobin in PBS and deionized water; Fetal bovine seerum | equivalent to less than 10 parasites/µL | 20–30 s integration time | [74] |
Cai et al. | Optical | SERS biosensor | Gold nanoparticles embedded in PDMS | β-hematin | β-hematin and hemolyzed erythrocytes deposited on a gold film | 18.5 ± 4.5 and 51.5 ± 6.2 µM in healthy and sickle RBCs | 5 s for spectrum acquisiton time | [75] |
McBirney et al. | Magneto-optic | 635 nm laser diode that emits in the sample to a photodetector and a magnet | None | β-hematin | β-hematin in 500 µL of whole rabbit blood | 8.1 ng/mL of equivalent to less than 26 parasites/µL of blood | No information | [76] |
Taylor et al. | Lab-on-a-chip for DNA/RNA amplification | Master mix for amplification of the targeted DNA/RNA | 18S rRNA gene | Frozen clinical samples of P. falciparum, P. vivax and P. knowlesi | 2 parasites/µL of blood | Less than 2 h | [79] | |
Hole et al. | Inductive | Measurement of inductance/resonance frequency | None | Synthetic hemozoin | Synthetic hemozoin in PBS | 12.7–25.4 pg in 0.5 µL of PBS (equivalent to 25–50 parasites/μL of blood) | No information | [28] |
Peng et al. | Magnetic resonance | Magnetic resonance relaxometry detection | None | Hemozoin | early-stage P. falciparum-infected RBCs | Less than 10 parasites/µL in mouse studies culture | MRR detection: 5–10 min | [80,88] |
Kong et al. | Magnetic | Lab-on-a-chip with MRR detection | None | Hemozoin | early-stage P. falciparum-infected RBCs | 0.0005% of P. falciparum culture (equivalent to 50 parasites/µL of blood) | Separation process: 15 min MRR detection: 5–10 min | [44] |
Nam et al. | Magnetic | Lab-on-a-chip and optical microscopy detection | None | Hemozoin | P. falciparum-infected RBCs | No information | No information | [90] |
Milesi et al. | Magnetic/Electrical | Lab-on-a-chip with magnetophoretic capture and electrical impedance measurements | None | Hemozoin | Red blood cells treated and non-treated with NaNO2 | No information | No information | [91] |
Wang et al. | Photo-acoustic | Photo-acoust-excited surface acoust wave (SAW) sensor to be integrated with a microfluidic system | None | Not specified | P. falciparum-infected RBCs | 1% of P. falciparumculture (equivalent to 100,000 parasites/µL of blood) | Less than 2 min | [95] |
Graham et al. | Optical | Lab-on-a-chip with optical detection at 380 nm or 600 nm | N-isopropylacrylamide | Hemozoin | Hemozoin solutions in NaOH | 10 infected RBCs/μL | 37 ± 5 min | [97] |
Raccio et al. | Optical | Lab-on-a-chip with optical detection at 380 nm or 600 nm | N-isopropylacrylamide | Hemozoin | Hemozoin solutions in NaOH | 10 infected RBCs/μL | 3 ± 0.5 min | [98] |
Catarino et al. | Optical | Optical Absorbance | None | Synthetic hemozoin | Synthetic hemozoin diluted in whole blood | 1 µg/mL | Around 1 min | [99] |
Kumar et al. | Magneto-optic | Gazelle: LED-emitted light into the sample in the presence and absence of magnetic field | None | Hemozoin | P. falciparum and of P. vivax infected patient | 50 parasites/μL and 35 parasites/μL of P. falciparum and P. vivax infected patients | Around 1 min | [42,105,106] |
Lukianova-Hleb et al. | Photo-acoustic | Acoustic signal produced by laser induced vapor nanobubbles | None | Hemozoin | in vitro P. falciparum-infected RBCs and blood of P. yoelii-infected mice | 0.0001% (in vitro); 0.00034% (in vivo); (equivalent to 10 parasites/µL and 17 parasites/µL for the in vitro and in vivo cultures) | No information | [46] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. World Malaria Report 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Maxmen, A. Scientists Hail Historic Malaria Vaccine Approval—But Point to Challenges Ahead. Nature 2021. [Google Scholar] [CrossRef] [PubMed]
- Bartoloni, A.; Zammarchi, L. Clinical Aspects of Uncomplicated and Severe Malaria. Mediterr. J. Hematol. Infect. Dis. 2012, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. SDG 3: Ensure Healthy Lives And Promote Wellbeing for All at All Ages. Available online: https://www.who.int/sdg/targets/en/ (accessed on 1 December 2021).
- WHO. Global Technical Strategy for Malaria 2016–2030; WHO: Geneva, Switzerland, 2015; pp. 1–35. [Google Scholar]
- World Health Organization. A Framework for Malaria Elimination; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. World Malaria Report 2019; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Cunningham, J.; Jones, S.; Gatton, M.L.; Barnwell, J.W.; Cheng, Q.; Chiodini, P.L.; Glenn, J.; Incardona, S.; Kosack, C.; Luchavez, J.; et al. A Review of the WHO Malaria Rapid Diagnostic Test Product Testing Programme (2008-2018): Performance, Procurement and Policy. Malar. J. 2019, 18, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britton, S.; Cheng, Q.; McCarthy, J.S. Novel Molecular Diagnostic Tools for Malaria Elimination: A Review of Options from the Point of View of High-Throughput and Applicability in Resource Limited Settings. Malar. J. 2016, 15, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragavan, K.V.; Kumar, S.; Swaraj, S.; Neethirajan, S. Advances in Biosensors and Optical Assays for Diagnosis and Detection of Malaria. Biosens. Bioelectron. 2018, 105, 188–210. [Google Scholar] [CrossRef] [PubMed]
- Baptista, V.; Costa, M.S.; Calçada, C.; Silva, M.; Gil, J.P.; Veiga, M.I.; Catarino, S.O. The Future in Sensing Technologies for Malaria Surveillance: A Review of Hemozoin-Based Diagnosis. ACS Sens. 2021, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Tangpukdee, N.; Duangdee, C.; Wilairatana, P.; Krudsood, S. Malaria Diagnosis: A Brief Review. Korean J. Parasitol. 2009, 47, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.M.; Karlen, W.; Beck, H.P.; Delamarche, E. Malaria and the “last” Parasite: How Can Technology Help? Malar. J. 2018, 17, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Ye, X.; Cui, T. Recent Progress of Biomarker Detection Sensors. Yosetsu Gakkai Ronbunshu/Q. J. Japan Weld. Soc. 2020, 38, 3. [Google Scholar] [CrossRef]
- Krampa, F.D.; Aniweh, Y.; Kanyong, P.; Awandare, G.A. Recent Advances in the Development of Biosensors for Malaria Diagnosis. Sensors 2020, 20, 799. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Chakma, B.; Patra, S.; Goswami, P. Potential Biomarkers and Their Applications for Rapid and Reliable Detection of Malaria. Biomed Res. Int. 2014, 2014, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.M.; Shi, L.; Sullivan, D.J. Haemoproteus and Schistosoma Synthesize Heme Polymers Similar to Plasmodium Hemozoin and β-Hematin. Mol. Biochem. Parasitol. 2001, 113, 1–8. [Google Scholar] [CrossRef]
- Pisciotta, J.M.; Ponder, E.L.; Fried, B.; Sullivan, D. Hemozoin Formation in Echinostoma Trivolvis Rediae. Int. J. Parasitol. 2005, 35, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.F.; D’Avila, J.C.P.; Torres, C.R.; Oliveira, P.L.; Tempone, A.J.; Rumjanek, F.D.; Braga, C.M.S.; Silva, J.R.; Dansa-Petretski, M.; Oliveira, M.A.; et al. Haemozoin in Schistosoma Mansoni. Mol. Biochem. Parasitol. 2000, 111, 217–221. [Google Scholar] [CrossRef]
- Coronado, L.M.; Nadovich, C.T.; Spadafora, C. Malarial Hemozoin: From Target to Tool. Biochim. Biophys. Acta Gen. Subj. 2014, 1840, 2032–2041. [Google Scholar] [CrossRef] [Green Version]
- Josling, G.; Llinás, M. Sexual Development in Plasmodium Parasites: Knowing When It’s Time to Commit. Nat. Rev. Microbiol. 2015, 13, 573–587. [Google Scholar] [CrossRef]
- Venugopal, K.; Hentzschel, F.; Valkiūnas, G.; Marti, M. Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host. Nat. Rev. Microbiol. 2020, 18, 177–189. [Google Scholar] [CrossRef]
- Francis, S.E.; Sullivan, D.J.; Goldberg, D.E. Hemoglobin Metabolism in the Malaria Parasite Plasmodium Falciparium. Annu. Rev. Microbiol. 1997, 51, 97–123. [Google Scholar] [CrossRef]
- Egwu, C.O.; Augereau, J.M.; Reybier, K.; Benoit-Vical, F. Reactive Oxygen Species as the Brainbox in Malaria Treatment. Antioxidants 2021, 10, 1872. [Google Scholar] [CrossRef]
- Sigala, P.A.; Goldberg, D.E. The Peculiarities and Paradoxes of Plasmodium Heme Metabolism. Annu. Rev. Microbiol. 2014, 68, 259–278. [Google Scholar] [CrossRef] [Green Version]
- Sigala, P.A.; Crowley, J.R.; Hsieh, S.; Henderson, J.P.; Goldberg, D.E. Direct Tests of Enzymatic Heme Degradation by the Malaria Parasite Plasmodium Falciparum. J. Biol. Chem. 2012, 287, 37793–37807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hole, A.P.; Pulijala, V. An Inductive-Based Sensitive and Reusable Sensor for the Detection of Malaria. IEEE Sens. J. 2021, 21, 1609–1615. [Google Scholar] [CrossRef]
- Pisciotta, J.M.; Scholl, P.F.; Shuman, J.L.; Shualev, V.; Sullivan, D.J. Quantitative Characterization of Hemozoin in Plasmodium Berghei and Vivax. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Hänscheid, T.; Längin, M.; Lell, B.; Pötschke, M.; Oyakhirome, S.; Kremsner, P.G.; Grobusch, M.P. Full Blood Count and Haemozoin-Containing Leukocytes in Children with Malaria: Diagnostic Value and Association with Disease Severity. Malar. J. 2008, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marom, N.; Tkatchenko, A.; Kapishnikov, S.; Kronik, L.; Leiserowitz, L. Structure and Formation of Synthetic Hemozoin: Insights From First-Principles Calculations. Cryst. Growth Des. 2011, 11, 3332–3341. [Google Scholar] [CrossRef]
- Pagola, S.; Stephens, P.W.; Bohle, D.S.; Kosar, A.D.; Madsen, S.K. The Structure of Malaria Pigment β-Hematin. Nature 2000, 404, 307–310. [Google Scholar] [CrossRef]
- Solomonov, I.; Osipova, M.; Feldman, Y.; Baehtz, C.; Kjaer, K.; Robinson, I.K.; Webster, G.T.; McNaughton, D.; Wood, B.R.; Weissbuch, I.; et al. Erratum: Crystal Nucleation, Growth, and Morphology of the Synthetic Malaria Pigment β-Hematin and the Effect Thereon by Quinoline Additives: The Malaria Pigment as a Target of Various Antimalarial Drugs (Journal of the American Chemical Society. J. Am. Chem. Soc. 2007, 129, 5779. [Google Scholar] [CrossRef] [Green Version]
- Inyushin, M.; Kucheryavih, Y.; Kucheryavih, L.; Rojas, L.; Khmelinskii, I.; Makarov, V. Superparamagnetic Properties of Hemozoin. Sci. Rep. 2016, 6, 26212. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, C.; Olson, J.A. Birefringent Hemozoin Identifies Malaria. Am. J. Clin. Pathol. 1986, 86, 360–363. [Google Scholar] [CrossRef]
- Wilson, B.K.; Behrend, M.R.; Horning, M.P.; Hegg, M.C. Detection of Malarial Byproduct Hemozoin Utilizing Its Unique Scattering Properties. Opt. Express 2011, 19, 12190–12196. [Google Scholar] [CrossRef]
- Grimberg, B.T.; Grimberg, K.O. Hemozoin Detection May Provide an Inexpensive, Sensitive, 1-Minute Malaria Test That Could Revolutionize Malaria Screening. Exp. Rev. Anti. Infect. Ther. 2016, 14, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Ghosh, A.; Singh, R.; Singh, D.P.; Sharma, B.; Samantaray, J.C.; Deb, M.; Gaind, R. Hemozoin Pigment: An Important Tool for Low Parasitemic Malarial Diagnosis. Korean J. Parasitol. 2016, 54, 393–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebelo, M.; Shapiro, H.M.; Amaral, T.; Melo-Cristino, J.; Hänscheid, T. Haemozoin Detection in Infected Erythrocytes for Plasmodium Falciparum Malaria Diagnosis-Prospects and Limitations. Acta Trop. 2012, 123, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, M.; Sousa, C.; Shapiro, H.M.; Mota, M.M.; Grobusch, M.P.; Hänscheid, T. A Novel Flow Cytometric Hemozoin Detection Assay for Real-Time Sensitivity Testing of Plasmodium Falciparum. PLoS ONE 2013, 8, e61606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Perlaki, C.; Xiong, A.; Preiser, P.; Liu, Q. Review of Surface Enhanced Raman Spectroscopy for Malaria Diagnosis and a New Approach for the Detection of Single Parasites in the Ring Stage. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 179–187. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.K.; Shrivas, S.; Thota, P.; Singh, M.P.; Rajasubramaniam, S.; Das, A.; Bharti, P.K. First Successful Field Evaluation of New, One-Minute Haemozoin-Based Malaria Diagnostic Device. EClinicalMedicine 2020, 22, 100347. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.M.; Heptinstall, J.; Matelon, R.J.; Savage, L.; Wears, M.L.; Beddow, J.; Cox, M.; Schallig, H.D.F.H.; Mens, P.F. A Magneto-Optic Route toward the in Vivo Diagnosis of Malaria: Preliminary Results and Preclinical Trial Data. Biophys. J. 2008, 95, 994–1000. [Google Scholar] [CrossRef] [Green Version]
- Kong, T.F.; Ye, W.; Peng, W.K.; Hou, H.W.; Marcos; Preiser, P.R.; Nguyen, N.T.; Han, J. Enhancing Malaria Diagnosis through Microfluidic Cell Enrichment and Magnetic Resonance Relaxometry Detection. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lukianova-Hleb, E.Y.; Bezek, S.; Szigeti, R.; Khodarev, A.; Kelley, T.; Hurrell, A.; Berba, M.; Kumar, N.; D’Alessandro, U.; Lapotko, D.O. Transdermal Diagnosis of Malaria Using Vapor Nanobubbles. Emerg. Infect. Dis. 2015, 21, 1122–1127. [Google Scholar] [CrossRef] [Green Version]
- Lukianova-Hleb, E.Y.; Campbell, K.M.; Constantinou, P.E.; Braam, J.; Olson, J.S.; Ware, R.E.; Sullivan, D.J.; Lapotko, D.O. Hemozoin-Generated Vapor Nanobubbles for Transdermal Reagent- and Needle-Free Detection of Malaria. Proc. Natl. Acad. Sci. USA 2014, 111, 900–905. [Google Scholar] [CrossRef] [Green Version]
- Thamarath, S.S.; Xiong, A.; Lin, P.H.; Preiser, P.R.; Han, J. Enhancing the Sensitivity of Micro Magnetic Resonance Relaxometry Detection of Low Parasitemia Plasmodium Falciparum in Human Blood. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noah, N.M.; Ndangili, P.M. Current Trends of Nanobiosensors for Point-of-Care Diagnostics. J. Anal. Methods Chem. 2019, 2019, 2179718. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Srinivasan, B.; Tung, S. Development and Applications of Portable Biosensors. J. Lab. Autom. 2015, 20, 365–389. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, A.C.; Paulsen, I.T.; Williams, T.C. Blueprints for Biosensors: Design, Limitations, and Applications. Genes 2018, 9, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, E.H.; Lee, S.Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors 2010, 10, 4558–4576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soraya, G.V.; Abeyrathne, C.D.; Buffet, C.; Huynh, D.H.; Uddin, S.M.; Chan, J.; Skafidas, E.; Kwan, P.; Rogerson, S.J. Ultrasensitive and Label-Free Biosensor for the Detection of Plasmodium Falciparum Histidine-Rich Protein II in Saliva. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.; Cheung, Y.-W.; Wang, L.; Lee, M.; Figueroa-Miranda, G.; Liang, S.; Mayer, D.; Tanner, J.A. An Electrochemical Aptamer-Based Biosensor Targeting Plasmodium Falciparum Histidine-Rich Protein II for Malaria Diagnosis. Biosens. Bioelectron. 2021, 192, 113472. [Google Scholar] [CrossRef]
- Loyez, M.; Wells, M.; Hambÿe, S.; Hubinon, F.; Blankert, B.; Wattiez, R.; Caucheteur, C. PfHRP2 Detection Using Plasmonic Optrodes: Performance Analysis. Malar. J. 2021, 20, 332. [Google Scholar] [CrossRef]
- Dutta, G. Electrochemical Biosensors for Rapid Detection of Malaria. Mater. Sci. Energy Technol. 2020, 3, 150–158. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical Biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef]
- Obisesan, O.R.; Adekunle, A.S.; Oyekunle, J.A.O.; Sabu, T.; Nkambule, T.T.I.; Mamba, B.B. Development of Electrochemical Nanosensor for the Detection of Malaria Parasite in Clinical Samples. Front. Chem. 2019, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moutaouakil, A.E.; Belmoubarik, M.; Peng, W.K. Graphene in the Fight against Malaria. arXiv 2020, arXiv:2008.13605. [Google Scholar]
- Toh, R.J.; Peng, W.K.; Han, J.; Pumera, M. Direct in Vivo Electrochemical Detection of Haemoglobin in Red Blood Cells. Sci. Rep. 2014, 4, 6209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villena Gonzales, W.; Mobashsher, A.T.; Abbosh, A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors 2019, 19, 800. [Google Scholar] [CrossRef] [Green Version]
- Briand, V.A.; Thilakarathne, V.; Kasi, R.M.; Kumar, C.V. Novel Surface Plasmon Resonance Sensor for the Detection of Heme at Biological Levels via Highly Selective Recognition by Apo-Hemoglobin. Talanta 2012, 99, 113–118. [Google Scholar] [CrossRef]
- Piliarik, M.; Homola, J. Surface Plasmon Resonance (SPR) Sensors: Approaching Their Limits? Opt. Exp. 2009, 17, 16505–16517. [Google Scholar] [CrossRef]
- Morris, R. Spectrophotometry. Curr. Protoc. Essent. Lab. Tech. 2015, 11, 2.1.1–2.1.30. [Google Scholar] [CrossRef]
- Sharma, V.; Kalyani, V.L. Design Two Dimensional Nanocavity Photonic Crystal Biosensor Detection in Malaria. Int. J. Emerg. Res. Manag. Technol. 2018, 6, 16–20. [Google Scholar] [CrossRef]
- Bendib, S.; Bendib, B. Photonic Crystals for Malaria Detection. J. Biosens. Bioelectron. 2018, 9, 120057. [Google Scholar] [CrossRef]
- Rashidnia, A.; Pakarzadeh, H.; Hatami, M.; Ayyanar, N. Photonic Crystal-Based Biosensor for Detection of Human Red Blood Cells Parasitized by Plasmodium Falciparum. Opt. Quantum Electron. 2021, 54, 38. [Google Scholar] [CrossRef]
- Ankita; Suthar, B.; Bhargava, A. Biosensor Application of One-Dimensional Photonic Crystal for Malaria Diagnosis. Plasmonics 2021, 16, 59–63. [Google Scholar] [CrossRef]
- Chaudhary, V.S.; Kumar, D.; Kumar, S. Gold-Immobilized Photonic Crystal Fiber-Based SPR Biosensor for Detection of Malaria Disease in Human Body. IEEE Sens. J. 2021, 21, 17800–17807. [Google Scholar] [CrossRef]
- Abshire, J.R.; Rowlands, C.J.; Ganesan, S.M.; So, P.T.C.; Niles, J.C. Quantification of Labile Heme in Live Malaria Parasites Using a Genetically Encoded Biosensor. Proc. Natl. Acad. Sci. USA 2017, 114, E2068–E2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrett, N.L.; Sekine, R.; Dixon, M.W.A.; Tilley, L.; Bambery, K.R.; Wood, B.R. Bio-Sensing with Butterfly Wings: Naturally Occurring Nano-Structures for SERS-Based Malaria Parasite Detection. Phys. Chem. Chem. Phys. 2014, 17, 21164–21168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moody, A. Rapid Diagnostic Tests for Malaria Parasites. Clin. Microbiol. Rev. 2002, 15, 66–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuen, C. Magnetic Field Enriched Surface Enhanced Resonance Raman Spectroscopy for Early Malaria Diagnosis. J. Biomed. Opt. 2012, 17, 017005. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Yuen, C.; Aniweh, Y.; Preiser, P.; Liu, Q. Towards Ultrasensitive Malaria Diagnosis Using Surface Enhanced Raman Spectroscopy. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Yadav, S.; Khanam, R.; Singh, J.P. A Purview into Highly Sensitive Magnetic SERS Detection of Hemozoin Biomarker for Rapid Malaria Diagnosis. Sens. Act. Chem. 2022, 355, 131303. [Google Scholar] [CrossRef]
- Cai, Z.; Hu, Y.; Sun, Y.; Gu, Q.; Wu, P.; Cai, C.; Yan, Z. Plasmonic SERS Biosensor Based on Multibranched Gold Nanoparticles Embedded in Polydimethylsiloxane for Quantification of Hematin in Human Erythrocytes. Anal. Chem. 2021, 93, 1025–1032. [Google Scholar] [CrossRef]
- McBirney, S.E.; Chen, D.; Scholtz, A.; Ameri, H.; Armani, A.M. Rapid Diagnostic for Point-of-Care Malaria Screening. ACS Sens. 2018, 3, 1264–1270. [Google Scholar] [CrossRef]
- Armani, A.; Chen, D.; McBirney, S.; Kaypaghian, K.; Huber, H.; Ameri, H. Portable Optical Diagnostics for Early Malaria Detection. In Frontiers in Biological Detection: From Nanosensors to Systems XI; International Society for Optics and Photonics: San Francisco, CA, USA, 2019; Volume 10895. [Google Scholar] [CrossRef]
- Kolluri, N.; Klapperich, C.M.; Cabodi, M. Towards Lab-on-a-Chip Diagnostics for Malaria Elimination. Lab Chip 2018, 18, 75–94. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.J.; Howell, A.; Martin, K.A.; Manage, D.P.; Gordy, W.; Campbell, S.D.; Lam, S.; Jin, A.; Polley, S.D.; Samuel, R.A.; et al. A Lab-on-Chip for Malaria Diagnosis and Surveillance. Malar. J. 2014, 13, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, W.K.; Kong, T.F.; Ng, C.S.; Chen, L.; Huang, Y.; Bhagat, A.A.S.; Nguyen, N.T.; Preiser, P.R.; Han, J. Micromagnetic Resonance Relaxometry for Rapid Label-Free Malaria Diagnosis. Nat. Med. 2014, 20, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Karl, S.; Mueller, I.; St Pierre, T.G. Considerations Regarding the Micromagnetic Resonance Relaxometry Technique for Rapid Label-Free Malaria Diagnosis. Nat. Med. 2015, 21, 1387. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.K.; Chen, L.; Han, J. Development of Miniaturized, Portable Magnetic Resonance Relaxometry System for Point-of-Care Medical Diagnosis. Rev. Sci. Instrum. 2012, 83, 095115. [Google Scholar] [CrossRef] [Green Version]
- Veiga, M.I.; Peng, W.K. Rapid Phenotyping towards Personalized Malaria Medicine. Malar. J. 2020, 19, 68. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.K.; Ng, T.T.; Loh, T.P. Machine Learning Assistive Rapid, Label-Free Molecular Phenotyping of Blood with Two-Dimensional NMR Correlational Spectroscopy. Commun. Biol. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Peng, W.K.; Paesani, D. Omics Meeting Onics: Towards the Next Generation of Spectroscopic-Based Technologies in Personalized Medicine. J. Pers. Med. 2019, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Singh, K.; Lobiyal, D.K.; Safvan, C.P.; Sahu, B.K.; Yadav, P.; Singh, S. A Sensitive On-chip Probe–Based Portable Nuclear Magnetic Resonance for Detecting Low Parasitaemia Plasmodium Falciparum in Human Blood. Med. Dev. Sens. 2020, 3, 1–11. [Google Scholar] [CrossRef]
- Peng, W.K.; Chen, L.; Boehm, B.O.; Han, J.; Loh, T.P. Molecular Phenotyping of Oxidative Stress in Diabetes Mellitus with Point-of-Care NMR System. Npj Ag. Mech. Dis. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Dupré, A.; Lei, K.-M.; Mak, P.-I.; Martins, R.P.; Peng, W.K. Micro- and Nanofabrication NMR Technologies for Point-of-Care Medical Applications–A Review. Microelectron. Eng. 2019, 209, 66–74. [Google Scholar] [CrossRef]
- Di Gregorio, E.; Ferrauto, G.; Schwarzer, E.; Gianolio, E.; Valente, E.; Ulliers, D.; Aime, S.; Skorokhod, O. Relaxometric Studies of Erythrocyte Suspensions Infected by Plasmodium Falciparum: A Tool for Staging Infection and Testing Anti-Malarial Drugs. Magn. Reson. Med. 2020, 84, 3366–3378. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Huang, H.; Lim, H.; Lim, C.; Shin, S. Magnetic Separation of Malaria-Infected Red Blood Cells in Various Developmental Stages. Anal. Chem. 2013, 85, 7316–7323. [Google Scholar] [CrossRef] [PubMed]
- Milesi, F.; Giacometti, M.; Coppadoro, L.P.; Ferrari, G.; Fiore, G.B.; Bertacco, R. On-Chip Selective Capture and Detection of Magnetic Fingerprints of Malaria. Sensors 2020, 20, 4972. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, M.; Monticelli, M.; Piola, M.; Milesi, F.; Coppadoro, L.; Giuliani, E.; Jacchetti, E.; Raimondi, M.T.; Ferrari, G.; Antinori, S.; et al. On-chip Magnetophoretic Capture in a Model of Malaria-infected Red Blood Cells. Biotechnol. Bioeng. 2022, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Myrand-Lapierre, M.-E.; Deng, X.; Ang, R.R.; Matthews, K.; Santoso, A.T.; Ma, H. Multiplexed Fluidic Plunger Mechanism for the Measurement of Red Blood Cell Deformability. Lab Chip 2015, 15, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Matthews, K.; Duffy, S.P.; Myrand-Lapierre, M.-E.; Ang, R.R.; Li, L.; Scott, M.D.; Ma, H. Microfluidic Analysis of Red Blood Cell Deformability as a Means to Assess Hemin-Induced Oxidative Stress Resulting from Plasmodium Falciparum Intraerythrocytic Parasitism. Integr. Biol. 2017, 9, 519–528. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Preiser, P.; Zheng, Y. A Photoacoustic-Surface-Acoustic-Wave Sensor for Ring-Stage Malaria Parasite Detection. IEEE Trans. Circuits Syst. Exp. Briefs 2020, 67, 881–885. [Google Scholar] [CrossRef]
- Guz, Ł. Technical Aspects of SAW Gas Sensors Application in Environmental Measurements. MATEC Web Conf. 2019, 252, 06007. [Google Scholar] [CrossRef]
- Rifaie-Graham, O.; Pollard, J.; Raccio, S.; Balog, S.; Rusch, S.; Hernández-Castañeda, M.A.; Mantel, P.Y.; Beck, H.P.; Bruns, N. Hemozoin-Catalyzed Precipitation Polymerization as an Assay for Malaria Diagnosis. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Raccio, S.; Pollard, J.; Djuhadi, A.; Balog, S.; Pellizzoni, M.M.; Rodriguez, K.J.; Rifaie-Graham, O.; Bruns, N. Rapid Quantification of the Malaria Biomarker Hemozoin by Improved Biocatalytically Initiated Precipitation Atom Transfer Radical Polymerizations. Analyst 2020, 145, 7741–7751. [Google Scholar] [CrossRef] [PubMed]
- Catarino, S.O.; Felix, P.; Sousa, P.J.; Pinto, V.; Veiga, M.I.; Minas, G. Portable Device for Optical Quantification of Hemozoin in Diluted Blood Samples. IEEE Trans. Biomed. Eng. 2020, 67, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Lima, R.; Minas, G.; Catarino, S.O. Hemozoin and Hemoglobin Characterization by Optical Absorption Towards a Miniaturized Spectrophotometric Malaria Diagnostic System. In Proceedings of the 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), Coimbra, Portugal, 16–18 February 2017. [Google Scholar] [CrossRef]
- Baptista, V.; Calçada, C.; Silva, M.; Teixeira, M.; Ferreira, P.; Minas, G.; Peng, W.K.; Catarino, S.O.; Veiga, M.I. Hemozoin: The Future in Malaria Diagnosis. In MAM 2020–Molecular Approaches to Malaria. 2020. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/cmi.13289 (accessed on 8 December 2021).
- Costa, M.S.; Baptista, V.; Minas, G.; Veiga, M.I.; Catarino, S.O. Effect of the Materials ’ Properties in the Design of High Transmittance and Low FWHM SiO2/TiO2 Thin Film Optical Filters for Integration in a Malaria Diagnostics Device. BIODEVICES 2021, 1, 21–31. [Google Scholar]
- Costa, M.S.; Baptista, V.; Ferreira, G.M.; Lima, D.; Minas, G.; Veiga, M.I.; Catarino, S.O. Multilayer Thin-Film Optical Filters for Reflectance-Based Malaria Diagnostics. Micromachines 2021, 12, 890. [Google Scholar] [CrossRef] [PubMed]
- Ley, B.; Thriemer, K. A Novel Generation of Hemozoin Based Malaria Diagnostics Show Promising Performance. EClinicalMedicine 2020, 22, 100369. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, H.O.; Thota, P.; Braga, G.; Ricopa, L.; Barazorda, K.; Salas, C.; Bishop, D.K.; Joya, C.A. Field Validation of a Magneto-Optical Detection Device (Gazelle) for Portable Point-of-Care Plasmodium Vivax Diagnosis. PLoS ONE 2021, 16, e0253232. [Google Scholar] [CrossRef] [PubMed]
- de Melo, G.C.; Netto, R.L.A.; Mwangi, V.I.; Salazar, Y.E.A.R.; de Souza Sampaio, V.; Monteiro, W.M.; de Almeida e Val, F.F.; Rocheleau, A.; Thota, P.; Lacerda, M.V.G. Performance of a Sensitive Haemozoin-based Malaria Diagnostic Test Validated for Vivax Malaria Diagnosis in Brazilian Amazon. Malar. J. 2021, 20, 1–10. [Google Scholar] [CrossRef]
- Mbanefo, A.; Kumar, N. Evaluation of Malaria Diagnostic Methods as a Key for Successful Control and Elimination Programs. Trop. Med. Infect. Dis. 2020, 5, 102. [Google Scholar] [CrossRef]
- Ziraba, A.K.; Haregu, T.N.; Mberu, B. A Review and Framework for Understanding the Potential Impact of Poor Solid Waste Management on Health in Developing Countries. Arch. Public Health 2016, 74, 1–11. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, V.; Peng, W.K.; Minas, G.; Veiga, M.I.; Catarino, S.O. Review of Microdevices for Hemozoin-Based Malaria Detection. Biosensors 2022, 12, 110. https://doi.org/10.3390/bios12020110
Baptista V, Peng WK, Minas G, Veiga MI, Catarino SO. Review of Microdevices for Hemozoin-Based Malaria Detection. Biosensors. 2022; 12(2):110. https://doi.org/10.3390/bios12020110
Chicago/Turabian StyleBaptista, Vitória, Weng Kung Peng, Graça Minas, Maria Isabel Veiga, and Susana O. Catarino. 2022. "Review of Microdevices for Hemozoin-Based Malaria Detection" Biosensors 12, no. 2: 110. https://doi.org/10.3390/bios12020110
APA StyleBaptista, V., Peng, W. K., Minas, G., Veiga, M. I., & Catarino, S. O. (2022). Review of Microdevices for Hemozoin-Based Malaria Detection. Biosensors, 12(2), 110. https://doi.org/10.3390/bios12020110