Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope
Abstract
:1. Introduction
2. Nanomaterial Synthesis
2.1. Top-Down Approach
2.1.1. Nanolithography
2.1.2. Mechanical Milling
2.1.3. Sputtering
2.1.4. Thermal Decomposition
2.2. Bottom-Up Approach
2.2.1. Hydrothermal
2.2.2. Sol-Gel
2.2.3. Chemical Vapor Deposition (CVD)
2.2.4. Pyrolysis
3. An Overview of Nanobiosensors
3.1. Evolution of Nanobiosensors
3.2. Development of Nanobiosensors
4. Applications of Nanobiosensors
4.1. Biomedical and Diagnostic Applications
4.2. Environmental Applications
4.3. Food Industry
4.4. Electronics Applications
5. Limitations, Challenges, and Current Trends of Nanobiosensors
6. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nehra, A.; Singh, K.P. Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens. Bioelectron. 2015, 74, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Palanisamy, P.; Raichur, A.M. Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater. Sci. Eng. C 2009, 29, 199–204. [Google Scholar] [CrossRef]
- Roy, A.; Ray, A.; Saha, S.; Ghosh, M.; Das, T.; Satpati, B.; Nandi, M.; Das, S. NiO-CNT composite for high performance supercapacitor electrode and oxygen evolution reaction. Electrochim. Acta 2018, 283, 327–337. [Google Scholar] [CrossRef]
- Umapathi, R.; Raju, C.V.; Ghoreishian, S.M.; Rani, G.M.; Kumar, K.; Oh, M.-H.; Park, J.P.; Huh, Y.S. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev. 2022, 470, 214708. [Google Scholar] [CrossRef]
- Choi, N.; Park, B.; Lee, M.; Umapathi, R.; Oh, S.; Cho, Y.; Huh, Y. Fabrication of Carbon Disulfide Added Colloidal Gold Colorimetric Sensor for the Rapid and On-Site Detection of Biogenic Amines. Sensors 2021, 21, 1738. [Google Scholar] [CrossRef] [PubMed]
- Baird, C.L.; Myszka, D.G. Current and emerging commercial optical biosensors. J. Mol. Recognit. 2001, 14, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Diculescu, V.C.; Chiorcea-Paquim, A.M.; Oliveira-Brett, A.M. Applications of a DNA-electrochemical biosensor. TrAC Trends Anal. Chem. 2016, 79, 23–36. [Google Scholar] [CrossRef]
- Muthamma, K.; Sunil, D.; Shetty, P. Carbon dots as emerging luminophores in security inks for anti-counterfeit applications—An up-to-date review. Appl. Mater. Today 2021, 23, 101050. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S.G. Advances in continuous-flow based microfluidic PCR devices—A review. Eng. Res. Express 2020, 2, 042001. [Google Scholar] [CrossRef]
- Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol. 2022, 119, 69–89. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Velmurugan, K.; Prasanth, E.; Amreen, K.; Nirmal, J.; Goel, S. Smartphone enabled miniaturized temperature controller platform to synthesize nio/cuo nanoparticles for electrochemical sensing and nanomicelles for ocular drug delivery applications. Biomed. Microdevices 2021, 23, 31. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.B.; Us, J.; Amreen, K.; Goel, S. Portable Thermal Management Platform for Synthesis of ZnO Nanoparticle in a Microfluidic Device: Validated for Electrochemical Sensing and Glucose Fuel Cell Applications. IEEE Trans. Electron Devices 2021, 68, 4070–4076. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev. 2021, 453, 214305. [Google Scholar] [CrossRef]
- PPatra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects 10 Technology 1007 Nanotechnology 03 Chemical Sciences 0306 Physical Chemistry (incl. Structural) 03 Chemical Sciences 0303 Macromolecular and Materials Chemistry 11 Medical and He. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Mashinchian, O.; Johari-Ahar, M.; Ghaemi, B.; Rashidi, M.; Barar, J.; Omidi, Y. Impacts of quantum dots in molecular detection and bioimaging of cancer. BioImpacts 2014, 4, 149–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umapathi, R.; Rani, G.M.; Kim, E.; Park, S.; Cho, Y.; Huh, Y.S. Sowing kernels for food safety: Importance of rapid on-site detction of pesticide residues in agricultural foods. Food Front. 2022, 1–11. [Google Scholar] [CrossRef]
- Zhang, Q.; Uchaker, E.; Candelaria, S.L.; Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171. [Google Scholar] [CrossRef] [PubMed]
- Aula, S.; Lakkireddy, S.; Jamil, K.; Kapley, A.; Swamy, A.V.N.; Lakkireddy, H.R. Biophysical, biopharmaceutical and toxicological significance of biomedical nanoparticles. RSC Adv. 2015, 5, 47830–47859. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S. Microfluidic devices for synthesizing nanomaterials—A review. Nano Express 2020, 1, 032004. [Google Scholar] [CrossRef]
- Umapathi, R.; Sonwal, S.; Lee, M.J.; Rani, G.M.; Lee, E.-S.; Jeon, T.-J.; Kang, S.-M.; Oh, M.-H.; Huh, Y.S. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord. Chem. Rev. 2021, 446, 214061. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- Puneeth, S.B.; Kulkarni, M.B.; Goel, S.G. Microfluidic viscometers for biochemical and biomedical applications: A review. Eng. Res. Express 2021, 3, 022003. [Google Scholar] [CrossRef]
- Kwon, S.H.; Lee, S.; Jang, J.; Seo, Y.; Lim, H.Y. A point-of-care diagnostic system to influenza viruses using chip-based ultra-fast PCR. J. Med. Virol. 2018, 90, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chan, H.N.; Liu, Z.; Micheal, S.; Li, L.; Baniani, D.B.; Tan, M.J.A.; Huang, L.; Wang, J. Recent Developments in Microfluidic-Based Point-of-care Testing (POCT) Diagnoses. Nanotechnol. Microfluid. 2020. [Google Scholar] [CrossRef]
- Chen, J.; Meng, H.; Tian, Y.; Yang, R.; Du, D.; Li, Z.; Qu, L.; Lin, Y. Recent advances in functionalized MnO 2 nanosheets for biosensing and biomedicine applications. Nanoscale Horiz. 2019, 4, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Xu, J.; Hu, Y.; Wang, S.; Ma, X.; Guo, J. Nanomaterials in electrochemical cytosensors. Analyst 2020, 145, 2058–2069. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Nie, Y.; Zhang, J.X.J. Microfluidics for silica biomaterials synthesis: Opportunities and challenges. Biomater. Sci. 2019, 7, 2218–2240. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Yang, Y.; Chen, Y.; Wu, F.; Li, W.; Lyu, P.; Ma, Y.; Tan, W.; Huang, W. Synthesis of hollow flower-like FE3O4/MnO2/Mn3O4 magnetically separable microspheres with valence heterostructure for dye degradation. Catalysts 2019, 9, 589. [Google Scholar] [CrossRef]
- Vaidya, S.; Rastogi, P.; Agarwal, S.; Gupta, S.K.; Ahmad, T.; Antonelli, J.A.M.; Ramanujachary, K.V.; Lofland, S.E.; Ganguli, A.K. Nanospheres, nanocubes, and nanorods of nickel oxalate: Control of shape and size by surfactant and solvent. J. Phys. Chem. C 2008, 112, 12610–12615. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Suresh, A.; Sathyanadan, M.; Mahesh, P. A competent top down approach methodology for design and development of commercial vehicle box type exhaust after treatment system. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Olatomiwa, A.L.; Adam, T.; Gopinath, S.C.B.; Kolawole, S.Y.; Olayinka, O.H.; Hashim, U. Graphene synthesis, fabrication, characterization based on bottom-up and top-down approaches: An overview. J. Semicond. 2022, 43, 061101. [Google Scholar] [CrossRef]
- Young, C.W.; Lien, C.C.; Ay, C.; Pan, P.C. Computer simulation analysis of microchannel for a continuous-flow PCR chip. Appl. Mech. Mater. 2013, 364, 238–243. [Google Scholar] [CrossRef]
- Sharma, E.; Rathi, R.; Misharwal, J.; Sinhmar, B.; Kumari, S.; Dalal, J.; Kumar, A. Evolution in Lithography Techniques: Microlithography to Nanolithography. Nanomaterials 2022, 12, 2754. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Jiang, Y.; Dmuchowski, C.M.; Ke, C.; Deng, J. Electric-Field-Assisted Contact Mode Atomic Force Microscope-Based Nanolithography With Low Stiffness Conductive Probes. J. Micro Nano-Manuf. 2022, 10, 011001. [Google Scholar] [CrossRef]
- Shin, H.W.; Son, J.Y. Ferroelectric domain wall current corresponding to ferroelectric domain structures of BaTiO3 nanodots fabricated by dip-pen nanolithography. Ceram. Int. 2022. [Google Scholar] [CrossRef]
- Martínez, L.M.; Cruz-Angeles, J.; Vázquez-Dávila, M.; Martínez, E.; Cabada, P.; Navarrete-Bernal, C.; Cortez, F. Mechanical Activation by Ball Milling as a Strategy to Prepare Highly Soluble Pharmaceutical Formulations in the Form of Co-Amorphous, Co-Crystals, or Polymorphs. Pharmaceutics 2022, 14, 2003. [Google Scholar] [CrossRef]
- Valenti, C.; Federici, M.I.; Masciotti, F.; Marinucci, L.; Xhimitiku, I.; Cianetti, S.; Pagano, S. Mechanical properties of 3D-printed prosthetic materials compared with milled and conventional processing: A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2022. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, T.; Chen, N.; Feng, C.; Lu, W.; Guo, H. Simultaneous bio-reduction of nitrate and Cr(VI) by mechanical milling activated corn straw. J. Hazard. Mater. 2022, 429, 128258. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Y.; Yan, M. A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology. Sep. Purif. Technol. 2022, 298, 121627. [Google Scholar] [CrossRef]
- Sergievskaya, A.; Chauvin, A.; Konstantinidis, S. Sputtering onto liquids: A critical review. Beilstein J. Nanotechnol. 2022, 13, 10–53. [Google Scholar] [CrossRef]
- Arulkumar, S.; Parthiban, S.; Kwon, J.Y.; Uraoka, Y.; Bermundo, J.P.S.; Mukherjee, A.; Das, B.C.; Arulkumar, S.; Parthiban, S.; Kwon, J.; et al. High mobility silicon indium oxide thin-film transistor fabrication by sputtering process. Vacuum 2022, 199, 110963. [Google Scholar] [CrossRef]
- Liang, Y.-J.; Zhang, L.; Chen, M.; Fan, L.; Liao, W.; Xun, Y.; Fu, L.; Liu, J.; Liu, F.; Yang, A. Anisotropic shaped Fe3O4 nanoparticles: Microwave-assisted thermal decomposition synthesis and their electromagnetic properties. AIP Adv. 2020, 10, 085208. [Google Scholar] [CrossRef]
- Lesnikovich, A.; Ivashkevich, O.; Levchik, S.; Balabanovich, A.; Gaponik, P.; Kulak, A. Thermal decomposition of aminotetrazoles. Thermochim. Acta 2002, 388, 233–251. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, P.; Zhang, C.; Yuan, L.; Xiao, X.; Dai, L.; Huo, K. Striding the threshold of photocatalytic lignin-first biorefining via a bottom-up approach: From model compounds to realistic lignin. Green Chem. 2022, 24, 5351–5378. [Google Scholar] [CrossRef]
- Binderbauer, P.J.; Kienberger, T.; Staubmann, T. Synthetic load profile generation for production chains in energy intensive industrial subsectors via a bottom-up approach. J. Clean. Prod. 2022, 331, 130024. [Google Scholar] [CrossRef]
- Moden, E.M.; Plăiașu, A.G. Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials. Ann. “Dunarea de Jos” Univ. Galati. Fascicle IX Metall. Mater. Sci. 2020, 43, 53–60. [Google Scholar] [CrossRef]
- Sansenya, T.; Masri, N.; Chankhanittha, T.; Senasu, T.; Piriyanon, J.; Mukdasai, S.; Nanan, S. Hydrothermal synthesis of ZnO photocatalyst for detoxification of anionic azo dyes and antibiotic. J. Phys. Chem. Solids 2022, 160, 110353. [Google Scholar] [CrossRef]
- Ahmadpour, G.; Nilforoushan, M.R.; Boroujeny, B.S.; Tayebi, M.; Jesmani, S.M. Effect of substrate surface treatment on the hydrothermal synthesis of zinc oxide nanostructures. Ceram. Int. 2022, 48, 2323–2329. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, Y.; Ma, Y.; Li, J. Synthesis and formation mechanism of urchin-like nano/micro-hybrid α-MnO2. J. Alloy. Compd. 2010, 490, 331–335. [Google Scholar] [CrossRef]
- Ahmad, S.; Aadil, M.; Ejaz, S.R.; Akhtar, M.U.; Noor, H.; Haider, S.; Alsafari, I.A.; Yasmin, G. Sol-gel synthesis of nanostructured ZnO/SrZnO2 with boosted antibacterial and photocatalytic activity. Ceram. Int. 2022, 48, 2394–2405. [Google Scholar] [CrossRef]
- Zangeneh, A.; Vatani, A.; Fakhroeian, Z.; Peyghambarzadeh, S. Experimental study of forced convection and subcooled flow boiling heat transfer in a vertical annulus using different novel functionalized ZnO nanoparticles. Appl. Therm. Eng. 2016, 109, 789–802. [Google Scholar] [CrossRef]
- Song, X.; Díaz-Cuenca, A. Sol–Gel Synthesis of Endodontic Cements: Post-Synthesis Treatment to Improve Setting Performance and Bioactivity. Materials 2022, 15, 6051. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Wu, Q.; Zhang, X.; Yang, T.; Li, D.; Zhang, X.; Ma, C.; Liu, R.; Xin, L.; He, M. Chemical vapor deposition growth of single-walled carbon nanotubes from plastic polymers. Carbon 2022, 187, 115–125. [Google Scholar] [CrossRef]
- Sun, J.; Han, M.; Gu, Y.; Yang, Z.X.; Zeng, H. Recent Advances in Group III–V Nanowire Infrared Detectors. Adv. Opt. Mater. 2018, 6, 1800256. [Google Scholar] [CrossRef]
- Hernandez Ruiz, K.; Wang, Z.; Ciprian, M.; Zhu, M.; Tu, R.; Zhang, L.; Luo, W.; Fan, Y.; Jiang, W. Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications. Small Sci. 2022, 2, 2100047. [Google Scholar] [CrossRef]
- Yogalakshmi, K.N.; Poornima Devi, T.; Sivashanmugam, P.; Kavitha, S.; Yukesh Kannah, R.; Sunita, V.S.; Adish, K.; Gopalakrishnan, K.; Rajesh Banu, J. Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere 2022, 286, 131824. [Google Scholar] [CrossRef]
- Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; Mackey, H.; Al-Ansari, T. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Dong, P.; Huang, J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem. 2019, 7, 671. [Google Scholar] [CrossRef]
- Racik, M.; Manikandan, A.; Mahendiran, M.; Madhavan, J.; Victor Antony Raj, M.; Mohamed, M.G.; Maiyalagan, T. Hydrothermal synthesis and characterization studies of α-Fe2O3/MnO2 nanocomposites for energy storage supercapacitor application. Ceram. Int. 2020, 46, 6222–6233. [Google Scholar] [CrossRef]
- Uhl, A.M.; Andrew, J.S. Sol-Gel Based Electrospray Synthesis of Barium Titanate Nanoparticles. IEEE Trans. Nanobiosci. 2020, 19, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.N.R.; Kulkarni, G.U.; Govindaraj, A.; Satishkumar, B.C.; Thomas, P.J. Metal nanoparticles, nanowires, and carbon nanotubes. Pure Appl. Chem. 2000, 72, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, J.; Tailor, G.; Kumar, D. Synthesis and d Characterizatio on of Chromium m nanoparticles by thermal decomposition method. Mater. Today Proc. 2020, 29, 321–326. [Google Scholar] [CrossRef]
- Velmurugan, K.; Kulkarni, M.B.; Gupta, I.; Das, R.; Goel, S.; Nirmal, J. Role of Microfluidics in Drug Delivery. In Microfluidics and Multi Organs on Chip; Mohanan, P.V., Ed.; Springer Nature Singapore: Singapore, 2022; pp. 107–133. ISBN 978-981-19-1379-2. [Google Scholar]
- Kulkarni, M.B.; Goel, S. A Review on Recent Advancements in Chamber-Based Microfluidic PCR Devices. Microelectron. Signal Process. 2021, 49–70. [Google Scholar]
- Kulkarni, M.B.; Salve, M.; Goel, S. Miniaturized Thermal Monitoring Module with CO2 Laser Ablated Microfluidic Device for Electrochemically Validated DNA Amplification. IEEE Trans. Instrum. Meas. 2021, 70, 4006008. [Google Scholar] [CrossRef]
- Becker, H.; Dietz, W. Microfluidic devices for μ -TAS applications fabricated by polymer hot embossing. Microfluid. Devices Syst. 1998, 3515, 177–182. [Google Scholar] [CrossRef]
- Prakash, R.; Kaler, K.V.I.S. An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination. Microfluid. Nanofluid. 2007, 3, 177–187. [Google Scholar] [CrossRef]
- Gavrilaș, S.; Ursachi, C.; Perța-Crișan, S.; Munteanu, F.-D. Recent Trends in Biosensors for Environmental Quality Monitoring. Sensors 2022, 22, 1513. [Google Scholar] [CrossRef]
- Soldatkin, O.O.; Piliponskiy, I.I.; Rieznichenko, L.S.; Gruzina, T.G.; Dybkova, S.M.; Dzyadevych, S.V.; Soldatkin, A.P. Application of gold nanoparticles for improvement of analytical characteristics of conductometric enzyme biosensors. Appl. Nanosci. 2022, 12, 995–1003. [Google Scholar] [CrossRef]
- Giepmans, B.N.G.; Adams, S.R.; Ellisman, M.H.; Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Ge, X.; Wang, Y.; Xu, J. Nanoparticles and Nanocomposites with Microfluidic Technology; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128150672. [Google Scholar]
- Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Umapathi, R.; Kumar, K.; Rani, G.M.; Venkatesu, P. Influence of biological stimuli on the phase behaviour of a biomedical thermoresponsive polymer: A comparative investigation of hemeproteins. J. Colloid Interface Sci. 2019, 541, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tomeh, M.A.; Zhao, X. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems. Mol. Pharm. 2020, 17, 4421–4434. [Google Scholar] [CrossRef]
- Mostafa, M.; Ebnalwaled, K.; Saied, H.A.; Roshdy, R. Effect of laser beam on structural, optical, and electrical properties of BaTiO3 nanoparticles during sol-gel preparation. J. Korean Ceram. Soc. 2018, 55, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Tamayo, J.; Kosaka, P.M.; Ruz, J.J.; Paulo, Á.S.; Calleja, M. Biosensors based on nanomechanical systems. Chem. Soc. Rev. 2013, 42, 1287–1311. [Google Scholar] [CrossRef] [Green Version]
- Baluta, S.; Meloni, F.; Halicka, K.; Szyszka, A.; Zucca, A.; Pilo, M.I.; Cabaj, J. Differential pulse voltammetry and chronoamperometry as analytical tools for epinephrine detection using a tyrosinase-based electrochemical biosensor. Rcs Adv. 2022, 12, 25342–25353. [Google Scholar] [CrossRef]
- Nasseri, B.; Soleimani, N.; Rabiee, N.; Kalbasi, A.; Karimi, M.; Hamblin, M.R. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 2018, 117, 112–128. [Google Scholar] [CrossRef]
- Clark, L.C., Jr.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Das, T.K.; Das, N.C. Advances on catalytic reduction of 4-nitrophenol by nanostructured materials as benchmark reaction. Int. Nano Lett. 2022, 12, 223–242. [Google Scholar] [CrossRef]
- Tomar, A.S.; Gupta, R.; Bijanu, A.; Arya, R.; Mishra, D.; Singh, A.; Salammal, S.T. Progress in fabrication and manufacturing of sodium aluminosilicate materials (geopolymers) as protective coating materials: A review. J. Polym. Res. 2022, 29, 239. [Google Scholar] [CrossRef]
- Hecht, H.; Schomburg, D.; Kalisz, H.; Schmid, R. The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme. Biosens. Bioelectron. 1993, 8, 197–203. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M.; Hafner, E.M. The Feynman Lectures on Physics; Vol. I. Am. J. Phys. 1965, 33, 750–752. [Google Scholar] [CrossRef]
- Fang, H.; Yang, Z.; Ong, C.; Li, Y.; Wang, C. Preparation and magnetic properties of (Zn–Sn) substituted barium hexaferrite nanoparticles for magnetic recording. J. Magn. Magn. Mater. 1998, 187, 129–135. [Google Scholar] [CrossRef]
- Murphy, B.E.P.; Grigg, E.R.N. Radioassays. Semin. Nucl. Med. 1979, 9, 169–172. [Google Scholar] [CrossRef]
- Willner, I.; Katz, E.; Willner, B. Electrical contact of redox enzyme layers associated with electrodes: Routes to amperometric biosensors. Electroanalysis 1997, 9, 965–977. [Google Scholar] [CrossRef]
- Frew, J.E.; Hill, H.A.O.; Thomas, J.D.R. Electron-transfer biosensors. Philos. Trans. R. Soc. B Biol. Sci. 1987, 316, 95–106. [Google Scholar] [CrossRef]
- Turner, A. Diabetes mellitus: Biosensors for research and management. Biosensors 1985, 1, 85–115. [Google Scholar] [CrossRef]
- Mukhopadhayay, S. Immunodiagnosis as an aid for early detection of Fasciola gigantica by glutathione S-transferase (GST). J. Parasit. Dis. 2012, 36, 207–209. [Google Scholar]
- Ceylan, A.; Rumaiz, A.K.; Shah, S.I. Inert gas condensation of evaporated Ni and laser ablated CoO. J. Appl. Phys. 2007, 101, 094302. [Google Scholar] [CrossRef]
- Arlinghaus, H.F.; Kwoka, M.N.; Jacobson, K.B. Analysis of Biosensor Chips for Identification of Nucleic Acids. Anal. Chem. 1997, 69, 3747–3753. [Google Scholar] [CrossRef]
- Drexler, K.E. Machine-phase nanotechnology. Sci. Am. 2001, 285, 74–75. [Google Scholar] [CrossRef] [PubMed]
- Cinel, N.A.; Bütün, S.; Özbay, E. Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. Opt. Express 2012, 20, 2587–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, T.; Rechnitz, G. Amperometric enzyme-immunosensor based on ferrocene-mediated amplification. Biosensors 1987, 3, 307–312. [Google Scholar] [CrossRef]
- Martin, C.R.; Kohli, P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2003, 2, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Tothill, I.E. Biosensors developments and potential applications in the agricultural diagnosis sector. Comput. Electron. Agric. 2001, 30, 205–218. [Google Scholar] [CrossRef]
- Bartlett, P.N.; Bradford, V.Q.; Albery, W.J.; Burns, D.T.; Miller, J.N.; Townshend, A.; Townshend, A. The use of redox mediator modified glucose oxidase in amperometric enzyme electrodes. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 1990, 333, 165. [Google Scholar] [CrossRef]
- Erickson, K.; Wilding, P. Evaluation of a novel point-of-care system, the i-STAT portable clinical analyzer. Clin. Chem. 1993, 39, 283–287. [Google Scholar] [CrossRef]
- Arora, N. Recent Advances in Biosensors Technology. A Review. Octa J. Biosci. 2019, 1, 147–150. [Google Scholar]
- Ngounou, B.; Neugebauer, S.; Frodl, A.; Reiter, S.; Schuhmann, W. Combinatorial synthesis of a library of acrylic acid-based polymers and their evaluation as immobilisation matrix for amperometric biosensors. Electrochim. Acta 2004, 49, 3855–3863. [Google Scholar] [CrossRef]
- Haniff, M.; Vajravelu, A.; Muhammad, T.; Mohamed, A.G. Fundamentals of Biosensor—An Introduction with its Applications in the Engineering Perspective. Int. J. Adv. Eng. Manag. 2021, 3, 249–257. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Enaganti, P.K.; Amreen, K.; Goel, S. Integrated Temperature Controlling Platform to Synthesize ZnO Nanoparticles and its Deposition on Al-Foil for Biosensing. IEEE Sens. J. 2021, 21, 9538–9545. [Google Scholar] [CrossRef]
- Vigneshvar, S.; Sudhakumari, C.C.; Senthilkumaran, B.; Prakash, H. Recent advances in biosensor technology for potential applications—An overview. Front. Bioeng. Biotechnol. 2016, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.T.; Lee, Y.C.; Lai, Y.H.; Lim, J.C.; Huang, N.T.; Lin, C.T.; Huang, J.J. Review of Integrated Optical Biosensors for Point-Of-Care Applications. Biosensors 2020, 10, 209. [Google Scholar] [CrossRef]
- Su, H.; Li, S.; Jin, Y.; Xian, Z.; Yang, D.; Zhou, W.; Mangaran, F.; Leung, F.; Sithamparanathan, G.; Kerman, K. Nanomaterial-based biosensors for biological detections. Adv. Health Care Technol. 2017, 3, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Jain, U.; Saxena, K.; Hooda, V.; Balayan, S.; Singh, A.P.; Tikadar, M.; Chauhan, N. Emerging vistas on pesticides detection based on electrochemical biosensors—An update. Food Chem. 2021, 371, 131126. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; et al. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem. 2022, 109, 21–51. [Google Scholar] [CrossRef]
- Miller, C.A.; Ho, J.M.L.; Bennett, M.R. Strategies for Improving Small-Molecule Biosensors in Bacteria. Biosensors 2022, 12, 64. [Google Scholar] [CrossRef]
- Chu, H.; Wei, L.; Cui, R.; Wang, J.; Li, Y. Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. Coord. Chem. Rev. 2010, 254, 1117–1134. [Google Scholar] [CrossRef]
- Guan, J.; Sagar, L.K.; Li, R.; Wang, D.; Bappi, G.; Wang, W.; Watkins, N.; Bourgeois, M.R.; Levina, L.; Fan, F.; et al. Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns. ACS Nano 2020, 14, 3426–3433. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Herricks, A.T.; Xia, Y. CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air. Nano Lett. 2002, 2, 1333–1338. [Google Scholar] [CrossRef]
- Sonker, R.K.; Yadav, B.; Gupta, V.; Tomar, M. Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor. Mater. Chem. Phys. 2019, 239, 121975. [Google Scholar] [CrossRef]
- Krahne, R.; Morello, G.; Figuerola, A.; George, C.; Deka, S.; Manna, L. Physical properties of elongated inorganic nanoparticles. Phys. Rep. 2011, 501, 75–221. [Google Scholar] [CrossRef]
- Ouyang, D.; Huang, Z.; Choy, W.C.H. Solution-Processed Metal Oxide Nanocrystals as Carrier Transport Layers in Organic and Perovskite Solar Cells. Adv. Funct. Mater. 2018, 29, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sakdaphetsiri, K.; Teanphonkrang, S.; Schulte, A. Cheap and Sustainable Biosensor Fabrication by Enzyme Immobilization in Commercial Polyacrylic Acid/Carbon Nanotube Films. ACS Omega 2022, 7, 19347–19354. [Google Scholar] [CrossRef]
- Chuong, J.J.C.C.; Rahman, M.; Ibrahim, N.; Heng, L.Y.; Tan, L.L.; Ahmad, A. Harmful Microalgae Detection: Biosensors versus Some Conventional Methods. Sensors 2022, 22, 3144. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goyal, S.; Dhar, A.; Sriram, D.; Goel, S. Miniaturized and IoT Enabled Continuous-Flow-Based Microfluidic PCR Device for DNA Amplification. IEEE Trans. Nanobiosci. 2021, 21, 97–104. [Google Scholar] [CrossRef]
- Hashimoto, M.; Barany, F.; Soper, S.A. Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations. Biosens. Bioelectron. 2006, 21, 1915–1923. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, J.; Wang, J.; Wang, H. Continuous-flow polymerase chain reaction microfluidics by using spiral capillary channel embedded on copper. Anal. Lett. 2007, 40, 497–511. [Google Scholar] [CrossRef]
- Lee, D.S.; Park, S.H.; Chung, K.H.; Pyo, H.B. A disposable plastic-silicon micro PCR chip using flexible printed circuit board protocols and its application to genomic DNA amplification. IEEE Sens. J. 2008, 8, 558–564. [Google Scholar] [CrossRef]
- Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef] [PubMed]
- Mohan, J.M.; Amreen, K.; Kulkarni, M.B.; Javed, A.; Dubey, S.K.; Goel, S. Optimized Ink Jetted Paper Device for Electroanalytical Detection of Picric Acid. Colloids Surf. B Biointerfaces 2021, 208, 112056. [Google Scholar] [CrossRef] [PubMed]
- Jayapiriya, U.S.; Goel, S. Optimization of carbon cloth bioelectrodes for enzyme-based biofuel cell for wearable bioelectronics. In Proceedings of the 2020 IEEE 20th International Conference on Nanotechnology, Montreal, QC, Canada, 29–31 July 2020; pp. 150–154. [Google Scholar] [CrossRef]
- Xuan, X.; Hossain, F.; Park, J.Y. A Fully Integrated and Miniaturized Heavy-metal-detection Sensor Based on Micro-patterned Reduced Graphene Oxide. Sci. Rep. 2016, 6, 33125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, M.B.; Goel, S. Miniaturized DNA amplification platform with soft-lithographically fabricated continuous-flow PCR microfluidic device on a portable temperature controller. Microfluid. Nanofluid. 2021, 25, 69. [Google Scholar] [CrossRef]
- Ali, S.; Hassan, A.; Hassan, G.; Eun, C.H.; Bae, J.; Lee, C.H.; Kim, I.J. Disposable all-printed electronic biosensor for instantaneous detection and classification of pathogens. Sci. Rep. 2018, 8, 5920. [Google Scholar] [CrossRef] [Green Version]
- Tsaloglou, M.N.; Nemiroski, A.; Camci-Unal, G.; Christodouleas, D.C.; Murray, L.P.; Connelly, J.T.; Whitesides, G.M. Handheld isothermal amplification and electrochemical detection of DNA in resource-limited settings. Anal. Biochem. 2018, 543, 116–121. [Google Scholar] [CrossRef]
- Avargani, V.M.; Norton, B.; Rahimi, A.; Karimi, H. Integrating paraffin phase change material in the storage tank of a solar water heater to maintain a consistent hot water output temperature. Sustain. Energy Technol. Assess. 2021, 47, 101350. [Google Scholar] [CrossRef]
- Park, J.; Park, H. Thermal cycling characteristics of a 3D-printed serpentine microchannel for DNA amplification by polymerase chain reaction. Sens. Actuators A Phys. 2017, 268, 183–187. [Google Scholar] [CrossRef]
- Sun, Y.; Satyanarayan, M.; Nguyen, N.-T.; Kwok, Y.C. Continuous flow polymerase chain reaction using a hybrid PMMA-PC microchip with improved heat tolerance. Sens. Actuators B Chem. 2008, 130, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Trinh, K.T.L.; Lee, N.Y. Glass-polytetrafluoroethylene-glass based sandwich microdevice for continuous-flow polymerase chain reaction and its application for fast identification of foodborne pathogens. Talanta 2018, 176, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Kwon, K.W.; Park, M.C.; Lee, S.H.; Kim, S.M.; Suh, K.Y. Soft lithography for microfluidics: A Review. Biochip J. 2008, 2, 1–11. [Google Scholar]
- Whulanza, Y.; Aditya, R.; Arvialido, R.; Utomo, M.S.; Bachtiar, B.M. Ease fabrication of PCR modular chip for portable DNA detection kit. AIP Conf. Proc. 2017, 1817, 040006. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, J.; Ma, W.; Zheng, W. PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 2006, 24, 243–284. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Kulkarni, M.B.; Gupta, H.; Ponnalagu, R.; Dubey, S.K.; Goel, S. Portable and Autonomous Device for Real-time Colorimetric Detection: Validation for Phosphorous and Nitrite Detection. Sens. Actuators A Phys. 2021, 330, 112896. [Google Scholar] [CrossRef]
- Bhaiyya, M.; Kulkarni, M.B.; Pattnaik, P.K.; Goel, S. Internet of things-enabled photomultiplier tube- and smartphone-based electrochemiluminescence platform to detect choline and dopamine using 3D-printed closed bipolar electrodes. Luminescence 2021, 37, 357–365. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S. Recent advancements in integrated microthermofluidic systems for biochemical and biomedical applications—A review. Sens. Actuators A Phys. 2022, 341, 113590. [Google Scholar] [CrossRef]
- Soni, A.; Surana, R.K.; Jha, S.K. Chemical Smartphone based optical biosensor for the detection of urea in saliva. Sens. Actuators B Chem. 2018, 269, 346–353. [Google Scholar] [CrossRef]
- Yang, Q.; Li, N.; Li, Q.; Chen, S.; Wang, H.L.; Yang, H. Amperometric sarcosine biosensor based on hollow magnetic Pt–Fe3O4@C nanospheres. Anal. Chim. Acta 2019, 1078, 161–167. [Google Scholar] [CrossRef]
- Yerlikaya, S.; Broger, T.; MacLean, E.; Pai, M.; Denkinger, C.M. A tuberculosis biomarker database: The key to novel TB diagnostics. Int. J. Infect. Dis. 2017, 56, 253–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sposito, A.J.; Kurdekar, A.; Zhao, J.; Hewlett, I. Application of nanotechnology in biosensors for enhancing pathogen detection. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef]
- D’Orazio, P. Biosensors in clinical chemistry. Clin. Chim. Acta 2003, 334, 41–69. [Google Scholar] [CrossRef]
- Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.; Gaponenko, S.; Nabiev, I.; Woggon, U.; Artemyev, M. Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids. Nano Lett. 2002, 2, 1449–1452. [Google Scholar] [CrossRef]
- Zhao, X.; Li, M.; Liu, Y. Microfluidic-Based Approaches for Foodborne Pathogen Detection. Microorganisms 2019, 7, 381. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Brady, J.; Al-Badani, F.; Yu, S.; Hart, J.; Jung, S.; Tran, T.T.; Myung, N.V. Nanoengineering Approaches Toward Artificial Nose. Front. Chem. 2021, 9, 1–29. [Google Scholar] [CrossRef]
- Sela, M.N. Role of Treponema denticola in periodontal diseases. Crit. Rev. Oral Biol. Med. 2001, 12, 399–413. [Google Scholar] [CrossRef]
- Wong, Y.; Zysman-Colman, E. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Adv. Mater. 2017, 29, 1605444. [Google Scholar] [CrossRef] [Green Version]
- Antonacci, A.; Arduini, F.; Moscone, D.; Palleschi, G.; Scognamiglio, V. Nanostructured (Bio)sensors for smart agriculture. TrAC Trends Anal. Chem. 2018, 98, 95–103. [Google Scholar] [CrossRef]
- Taylor, P.; Safarpour, H.; Rad, F.; Basirat, M.; Shahryari, F. Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can. J. Plant Pathol. 2012, 34, 507–515. [Google Scholar]
- Efros, A.L.; Delehanty, J.B.; Huston, A.L.; Medintz, I.L.; Barbic, M.; Harris, T.D. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 2018, 13, 278–288. [Google Scholar] [CrossRef]
- Hu, S.; Jie, Y.; Jin, K.; Zhang, Y.; Guo, T.; Huang, Q.; Mei, Q.; Ma, F.; Ma, H. All-in-One Digital Microfluidics System for Molecular Diagnosis with Loop-Mediated Isothermal Amplification. Biosensors 2022, 12, 324. [Google Scholar] [CrossRef]
- Garcia-Rey, S.; Nielsen, J.B.; Nordin, G.P.; Woolley, A.T.; Basabe-Desmonts, L.; Benito-Lopez, F. High-Resolution 3D Printing Fabrication of a Microfluidic Platform for Blood Plasma Separation. Polymers 2022, 14, 2537. [Google Scholar] [CrossRef]
- Tian, J.; Li, Y.; Dong, J.; Huang, M.; Lu, J. Photoelectrochemical TiO2 nanotube arrays biosensor for asulam determination based on in-situ generation of quantum dots. Biosens. Bioelectron. 2018, 110, 1–7. [Google Scholar] [CrossRef]
- Chen, J.; Fan, L.; Yang, C.; Wang, S.; Zhang, M.; Xu, J.; Luo, S. Facile synthesis of Ag nanoparticles-loaded chitosan antibacterial nanocomposite and its application in polypropylene. Int. J. Biol. Macromol. 2020, 161, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Ndolomingo, M.J.; Bingwa, N.; Meijboom, R. Review of supported metal nanoparticles: Synthesis methodologies, advantages and application as catalysts. J. Mater. Sci. 2020, 55, 6195–6241. [Google Scholar] [CrossRef]
- Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Ariffin, S.A.; Adam, T.; Hashim, U.; Sfaridah, S.F.; Zamri, I.; Uda, M.N.A. Plant diseases detection using nanowire as biosensor transducer. Adv. Mater. Res. 2013, 832, 113–117. [Google Scholar] [CrossRef]
- Sasirekha, C.; Arumugam, S.; Muralidharan, G. Green synthesis of ZnO/carbon (ZnO/C) as an electrode material for symmetric supercapacitor devices. Appl. Surf. Sci. 2018, 449, 521–527. [Google Scholar] [CrossRef]
- Teng, H.; Zuo, Y.; Jin, Z.; Wu, Y.; Yang, Y. Associations between acetylcholinesterase-1 mutations and chlorpyrifos resistance in beet armyworm, Spodoptera exigua. Pestic. Biochem. Physiol. 2022, 184, 105105. [Google Scholar] [CrossRef]
- Bilal, S.; Nasir, M.; Hassan, M.M.; Rehman, M.F.U.; Sami, A.J.; Hayat, A. A novel construct of an electrochemical acetylcholinesterase biosensor for the investigation of malathion sensitivity to three different insect species using a NiCr2O4/g-C3N4 composite integrated pencil graphite electrode. RSC Adv. 2022, 12, 16860–16874. [Google Scholar] [CrossRef] [PubMed]
- Celik, H.; Soylemez, S. An Electrochemical Acetylcholinesterase Biosensor Based on Fluorene(bisthiophene) Comprising Polymer for Paraoxon Detection. Electroanalysis 2022. [Google Scholar] [CrossRef]
- Temkin, A.M.; Uche, U.I.; Evans, S.; Anderson, K.M.; Perrone-Gray, S.; Campbell, C.; Naidenko, O.V. Racial and social disparities in Ventura County, California related to agricultural pesticide applications and toxicity. Sci. Total Environ. 2022, 853, 158399. [Google Scholar] [CrossRef]
- He, J.; Zhang, L.; Xu, L.; Kong, F.; Xu, Z. Development of Nanozyme-Labeled Biomimetic Immunoassay for Determination of Sulfadiazine Residue in Foods. Adv. Polym. Technol. 2020, 2020, 7647580. [Google Scholar] [CrossRef]
- Negrete, J.C. Bioinformatics Nanotechnology an Option in Mexican Agriculture. J. Biotechnol. Bioin-Form. Res. 2020, 2, 2–4. [Google Scholar]
- Zarei, M. Advances in point-of-care technologies for molecular diagnostics. Biosens. Bioelectron. 2017, 98, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gartia, M.R.; Jiang, J.; Chang, T.W.; Qian, J.; Liu, Y.; Liu, X.; Liu, G.L. Audio jack based miniaturized mobile phone electrochemical sensing platform. Sens. Actuators B Chem. 2014, 209, 677–685. [Google Scholar] [CrossRef]
- Li, S.J.; Xia, N.; Lv, X.L.; Zhao, M.M.; Yuan, B.Q.; Pang, H. A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. Sens. Actuators B Chem. 2014, 190, 809–817. [Google Scholar] [CrossRef]
- Gui, Q.; Lawson, T.; Shan, S.; Yan, L.; Liu, Y. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 2017, 17, 1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liss, M.; Petersen, B.; Wolf, H.; Prohaska, E. An aptamer-based quartz crystal protein biosensor. Anal. Chem. 2002, 74, 4488–4495. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, S.; Kaushik, B.K. MXenes-Based Fiber-Optic SPR Sensor for Colorectal Cancer Diagnosis. IEEE Sens. J. 2022, 22, 6661–6668. [Google Scholar] [CrossRef]
- El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 2013, 16, 1747–1752. [Google Scholar] [CrossRef]
- Rhouati, A.; Hayat, A.; Hernandez, D.B.; Meraihi, Z.; Munoz, R.; Marty, J.L. Development of an automated flow-based electrochemical aptasensor for on-line detection of Ochratoxin A. Sens. Actuators B Chem. 2013, 176, 1160–1166. [Google Scholar] [CrossRef]
- Pandey, P.; Merwyn, S.; Agarwal, G.S.; Tripathi, B.K.; Pant, S.C. Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria. J. Nanopart. Res. 2012, 14, 709. [Google Scholar] [CrossRef]
- Juan-Colás, J.; Parkin, A.; Dunn, K.E.; Scullion, M.G.; Krauss, T.F.; Johnson, S.D. The electrophotonic silicon biosensor. Nat. Commun. 2016, 7, 12769. [Google Scholar] [CrossRef] [Green Version]
- Puneeth, S.B.; Puranam, S.A.; Goel, S. 3-D Printed Integrated and Automated Electro-Microfluidic Viscometer for Biochemical Applications. IEEE Trans. Instrum. Meas. 2018, 68, 2648–2655. [Google Scholar]
- Chou, J.C.; Wu, C.Y.; Kuo, P.Y.; Lai, C.H.; Nien, Y.H.; Wu, Y.X.; Lin, S.H.; Liao, Y.H. The Flexible Urea Biosensor Using Magnetic Nanoparticles. IEEE Trans. Nanotechnol. 2019, 18, 484–490. [Google Scholar] [CrossRef]
- Han, S.-M.; Kim, Y.-W.; Chun, J.-H.; Oh, H.-B.; Paek, S.-H. Performance Characterization of Two-Dimensional Paper Chromatography-based Biosensors for Biodefense, Exemplified by Detection of Bacillus anthracis Spores. Biochip J. 2018, 12, 59–68. [Google Scholar] [CrossRef]
- Wang, L.; Huo, X.; Qi, W.; Xia, Z.; Li, Y.; Lin, J. Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 2020, 211, 120715. [Google Scholar] [CrossRef]
- Mofokeng, T.P.; Tetana, Z.N.; Ozoemena, K.I. Defective 3D nitrogen-doped carbon nanotube-carbon fibre networks for high-performance supercapacitor: Transformative role of nitrogen-doping from surface-confined to diffusive kinetics. Carbon 2020, 169, 312–326. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, T.; Rong, S.; Zeng, D.; Yu, H.; Zhang, Z.; Chang, D.; Pan, H. A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite. Bioelectrochemistry 2019, 127, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, Q.; Zhang, D.; Lu, Y.; Liu, Q.; Wang, P. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium. Biosens. Bioelectron. 2014, 54, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Zhu, C.; Wang, Y.; Du, D.; Zhu, M.-J.; Luo, Y.; Xu, W.; Lin, Y. Nanozyme Enhanced Colorimetric Immunoassay for Naked-Eye Detection of Salmonella Enteritidis. J. Anal. Test. 2019, 3, 99–106. [Google Scholar] [CrossRef]
- Zheng, L.; Cai, G.; Qi, W.; Wang, S.; Wang, M.-H.; Lin, J. Optical Biosensor for Rapid Detection of Salmonella typhimurium Based on Porous Gold@Platinum Nanocatalysts and a 3D Fluidic Chip. ACS Sens. 2019, 5, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Guo, R.; Xue, L.; Cai, G.; Wang, S.; Li, Y.; Liao, M.; Wang, M.; Lin, J. An Acid-Responsive Microfluidic Salmonella Biosensor Using Curcumin as Signal Reporter and ZnO-Capped Mesoporous Silica Nanoparticles for Signal Amplification. Sens. Actuators B Chem. 2020, 312, 127958. [Google Scholar] [CrossRef]
- Hassan, R.Y.A. Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. Sensors 2022, 22, 7539. [Google Scholar] [CrossRef]
- Maheswaran, R.; Shanmugavel, B.P. A Critical Review of the Role of Carbon Nanotubes in the Progress of Next-Generation Electronic Applications. J. Electron. Mater. 2022, 51, 2786–2800. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, P.; Sahu, P.K. Study and Analysis of Dielectrically Modulated Vertical Tunnel FET Biosensor Considering Non-Ideal Hybridization. Silicon 2022. [Google Scholar] [CrossRef]
- Pan, Y.; Qin, Z.; Kheiri, S.; Ying, B.; Pan, P.; Peng, R.; Liu, X. Optical Printing of Conductive Silver on Ultrasmooth Nanocellulose Paper for Flexible Electronics. Adv. Eng. Mater. 2021, 24, 2101598. [Google Scholar] [CrossRef]
- Dadras-Toussi, O.; Khorrami, M.; Titus, A.S.C.L.S.; Majd, S.; Mohan, C.; Abidian, M.R. Multiphoton Lithography of Organic Semiconductor Devices for 3D Printing of Flexible Electronic Circuits, Biosensors, and Bioelectronics. Adv. Mater. 2022, 34, 2200512. [Google Scholar] [CrossRef]
- Thakur, M.; Wang, B.; Verma, M.L. Development and applications of nanobiosensors for sustainable agricultural and food industries: Recent developments, challenges and perspectives. Environ. Technol. Innov. 2022, 26, 102371. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wang, J.; Chen, Q.; Huang, H.; Huang, L.; Cao, S.; Ma, X. UV–visible diffuse reflectance spectroscopy used in analysis of lignocellulosic biomass material. Wood Sci. Technol. 2020, 54, 837–846. [Google Scholar] [CrossRef]
- Si, H.; Xu, G.; Jing, F.; Sun, P.; Zhao, D.; Wu, D. A multi-volume microfluidic device with no reagent loss for low-cost digital PCR application. Sens. Actuators B Chem. 2020, 318, 128197. [Google Scholar] [CrossRef]
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Guo, Q.; Cui, D. Recent advances in nanotechnology applied to biosensors. Sensors 2009, 9, 1033–1053. [Google Scholar] [CrossRef] [PubMed]
- Banigo, A.; Azeez, T.; Ejeta, K.; Lateef, A.; Ajuogu, E. Nanobiosensors: Applications in biomedical technology. IOP Conf. Ser. Mater. Sci. Eng. 2020, 805, 012028. [Google Scholar] [CrossRef]
- Dewan, N.; Ahmed, P.; Chowdhury, G.; Pandit, S.; Dasgupta, D. Nanotechnology based biosensors and its application. Pharma Innov. J. 2016, 5, 18. [Google Scholar]
- Tang, J.; Ibrahim, M.; Chakrabarty, K.; Karri, R. Toward Secure and Trustworthy Cyberphysical Microfluidic Biochips. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2018, 38, 589–603. [Google Scholar] [CrossRef]
- Annabestani, M.; Shaegh, A.M.; Esmaeili-Dokht, P.; Fardmanesh, M. An Intelligent Machine Learning-Based Sheath-free Microfluidic Impedance Flow cytometer. In Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2020; pp. 284–288. [Google Scholar]
- Koo, S.-B.; Jo, D.-G.; Park, C.-Y.; Kim, Y.-S.; Song, H.-J.; Kim, J.-D. Low-cost miniaturization of gel document system using blue LED. Sens. Mater. 2019, 31, 377–385. [Google Scholar] [CrossRef]
- Huang, X.; Duan, Y.; Zhao, L.; Liu, S.; Qin, D.; Zhang, F.; Lin, D. Dexamethasone pharmacokinetics characteristics via sub-tenon microfluidic system in uveitis rabbits. J. Drug Deliv. Sci. Technol. 2020, 57, 101639. [Google Scholar] [CrossRef]
- Kant, K.; Shahbazi, M.A.; Dave, V.P.; Ngo, T.A.; Chidambara, V.A.; Than, L.Q.; Bang, D.D.; Wolff, A. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol. Adv. 2018, 36, 1003–1024. [Google Scholar] [CrossRef] [Green Version]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 2019, 141, 111417. [Google Scholar] [CrossRef] [PubMed]
- Soy, S.; Sharma, S.R.; Nigam, V.K. Bio-fabrication of thermozyme-based nano-biosensors: Their components and present scenario. J. Mater. Sci. Mater. Electron. 2022, 33, 5523–5533. [Google Scholar] [CrossRef]
- Singh, S.; Numan, A.; Cinti, S. Electrochemical nano biosensors for the detection of extracellular vesicles exosomes: From the benchtop to everywhere? Biosens. Bioelectron. 2022, 216, 114635. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Yashas; Enaganti, P.K.; Amreen, K.; Goel, S. Internet of Things enabled portable thermal management system with microfluidic platform to synthesize MnO2 nanoparticles for electrochemical sensing. Nanotechnology 2020, 31, 425504. [Google Scholar] [CrossRef] [PubMed]
Techniques | Reaction Temperature and Time | Morphology | Size (nm) | Advantages | Disadvantages | Ref |
---|---|---|---|---|---|---|
Hydrothermal | >220 °C and ~12–24 h | Spherical | 10–200 | Control over a minimal size range and suitable form | Peripheral product, high pressure required | [61] |
Sol-gel | Ambient environments, ~2–4 h | Spherical | 400–650 | Hybrid nanoparticles are made possible by producing atoms with the exact shape and length | Contains components of the sol-gel matrix on their surfaces | [62] |
Pyrolysis | 5–50 °C, a few h | Sphere with a smaller diameter | 1200 | High pace of output | Formation of large collections | [63] |
Thermal decomposition | 100–300 °C, ~24–36 h | Spherical with flakes | 550–600 | High scalability, decent shape control, and minimal size distribution | High temperature and inert environment requirements | [64] |
Variables | Conventional | Microfluidic |
---|---|---|
Device footprint | Sophisticated | Miniaturized |
Reagent volume | Millilitres | Micro to nanolitres |
Temperature | High | Low |
Operation | Macroscale | Micro/nanoscale |
Control Medium | Manual | Automatic |
Execution time | More | Less |
Year | Nanobiosensor Development Phase |
---|---|
1857 | Michael Faraday was the first to report the synthesis of gold nanostructured materials [82]. |
1940 | Fumed-based silica nanomaterials synthesized in USA [83]. |
1956 | Lyons from the cincinnati paediatrics clinic demonstrated the first glucose enzyme electrode-based nanobiosensor [84]. |
1959 | Richard Feynman, identified the bottom-up approach [85]. |
1960 | Metallic nanopowder was produced for magnetic recording tapes [86]. |
1962 | Radioimmunoassay was created by Solomon Aaron Berson [87]. |
1965 | The direct potentiometric measurement of urea following urease hydrolysis was one of the first publications in the field of biosensors that S. Katz presented [88]. |
1972 | For the first time, Betso et al. demonstrated that cytochrome directly transfers electrons [89]. |
1973 | W. Mindt developed a lactate electrode [90]. |
1974 | Norio Taniguchi, a Japanese scientist, proposed Thin-film deposition and ion beam milling and used the term “nanotechnology” for the first time [91]. |
1976 | Granqvist and Buhrman synthesized nanocrystals by inert gas evaporation [92]. |
1978 | First microbe-based nanobiosensors [93]. |
1981 | Eric Drexler proposed molecular nanotechnology [94]. |
1983 | First surface plasmon resonance immune nanobiosensors [95]. |
1984 | Cass was the first to propose ferrocene-mediated amperometric glucose nanobiosensor [96]. |
1985 | Discovery of fullerenes and synthesis of CNTs used as nanobiosensor [97]. |
1990 | Pharmacia Biacore projected an SPR-based nanobiosensor [98]. |
1992 | Bartlett et al. presented mediator-modified enzymes [99]. |
1995 | i-STAT demonstrated a portable blood nanobiosensor [100]. |
1998 | IUPAC introduced chemosensor in an analogy of nanobiosensor [101]. |
2005 | Electrodeposition paints were first used as immobilization matrix for biosensors by Schuhmann [102]. |
2017 | Girbi developed a neuron-on-chip (NoC) nanobiosensor to quantity the nerve impulse conduction [103]. |
2021 | Kulkarni et al. introduced an aluminium (Al) foil-based nanobiosensor [104]. |
Nanomaterials | Advantages | Disadvantages | Ref |
---|---|---|---|
Carbon nanotubes (CNTs) |
|
| [113] |
Quantum dots |
|
| [114] |
Nanowires |
|
| [115] |
Nanoparticles |
|
| [116] |
Nanorods |
|
| [117] |
Metal oxide nanomaterials |
|
| [118] |
Substances/Ref | Melting Point (°C) | Thermal Conductivity (W/mK) | Advantages | Disadvantages |
---|---|---|---|---|
Polymethylmethacrylate [121] | 125 °C | 0.16–0.18 |
|
|
Polycarbonate [122] | 265 °C | 0.21–0.25 |
|
|
Polytetrafluorethylene [123] | 330 °C | 0.28 |
|
|
Polyimide [124] | 265 °C | 0.12–0.36 |
|
|
Glass [125] | 1350 °C | 0.86 |
|
|
Paper [126] | 210 °C | 0.04 |
|
|
Cloth [127] | 120 °C | 0.083–0.18 |
|
|
Nanofabrication | Specifications | Merits | Demerits | Ref |
---|---|---|---|---|
Lithography | Trace width = 0.05 mm | Excellent resolution | Requires clean room facility | [128] |
UV-DLW | Wavelength = 405 nm | Superior resolution | Expensive tool | [129] |
Voltera Inkjet printer | Trace width = 0.15 mm | Flexible substrates | Refilling of Ink such as carbon, graphene, silver | [130] |
Screen printer | Trace width = 0.3 mm | Inexpensive | Less sensitive | [131] |
Wax printer | 100 to 500 μm | Reduce production time. | Limited materials | [132] |
3D printer (FDM/SLA) | Resolution = 35–100 microns | Greater resolution and precision | Requires post-processing responsibilities like cleaning with IPA | [133] |
Laser Ablation (CO2) | Wavelength = 10.6 µm | Precise dissection, good efficacy | Bulky and costly | [134] |
Photolithography | Max width = 325 mm, maximum substrate thickness = 3 mm | Photosensitive polymers are essential | Expensive mask | [135] |
Softlithography | Silicone elastomer (PDMS) | Apparent | Low thermal conductivity | [136] |
Computer Numerical Control (CNC) Milling | Fast cutting speed = 8000 mm/min | Rigid design, Require less maintenance | Expensive | [137] |
Nanobiosensor | Nanomaterials Used | Type of Sensor | Applications (Detection) | Limit of Detection (LOD) | Ref |
---|---|---|---|---|---|
Antibiotic residue sensor | Au, Pt and SiO2 NPs | Nano enzyme coupled with MIP as a bio-inspired body | Sulfadiazine | IC15: 0.08 mg and IC50 6.1 mg/L | [146] |
AChE | DNA based materials | Electrochemical | Phytophthorapulmivora causing black pod rot in cacao pod | - | [147] |
QD nanosensor | Gold nanoparticles | Immunosensor | Mycotoxins ZEA, DON, FB1/FB2 | - | [148] |
QD nanosensor | QDs | Fluorescence | Pathogens | - | [149] |
Artificial nasal sensor | Carbon | Profile of volatile organic compounds | Pathogens depending on the organic compounds released | Sensitivity of 85% to 95% | [150] |
Acetylcholinesterase on white paper using indophenol acetate | Enzyme | Colored antiphon | Paraoxon | 3.5 μg/L | [151] |
AChE | SMWCNTs | Electrochemical | Methylparathion, parathion and paraoxan | 0.4 pM | [152] |
Surface plasmon resonance (SPR) | MWCNTs | SPR | Cymbidium Mosaic virus | - | [153] |
Nucleic acid nanosensor | CNTs | Immunosensor | Ganoderma boninse | 0.2 ng/L | [154] |
QD nanosensor | Quantum dots | Fluorescence | Pathogens and viruses | - | [155] |
Nanobiosensor | Nanomaterials Used | Type of Sensor | Applications (Detection) | Limit of Detection (LOD) | Ref |
---|---|---|---|---|---|
AChE | SWCNTs and MWCNTs | Electrochemical | Parathion, Pesticides methylparathion, and paraoxan | 0.5 pM | [161] |
Plant hormone sensor | Receptor DAD2 from Petunia hybrid and HTLT from Striga hermohthica with green fluorescent protein | Fluorescent | Strigolactones as signaling molecules for plant growth and parasitism | High quantity testing approach | [162] |
Smart | Zinc oxide and Copper | Electrochemical | Enhance the germination of tomato chili and cucurbits in Mexico | 60 ppm | [163] |
Acetylcholinesterase | Cholinergic enzyme | Amperometric | Chlorpyrifos | 0.02 μg/L | [164] |
Acetylcholinesterase immobilised on CuO | Cholinergic enzyme | Square wave voltammetry (SWV) | Malathion | 0.33 ng/L | [165] |
Acetylcholinesterase with MWCNTs | Enzyme | Differential pulse voltammetry | Paraoxon | 2 ng/mL | [166] |
Pesticide nanobiosensor | Graphene with molecularly imprinted polymers | Electrochemical | Pesticide revealing of chlorothlonil and chlorpyrifos methyl | 0.14 mg/L | [167] |
Molecular imprinted polymer | Mesoporous molecular sieves entrenched with carbon dots | Electrochemical | Natural plant Kaempferol polyphenol | 14 μg/L | [168] |
Agricultural nanosensor | ZnO and Cu | Electrochemical | Improve the germination of tomatoes, peppers, and other vegetables in Mexico | 60 ppm | [169] |
Nanobiosensor | Nanomaterials Used | Type of Sensor | Applications (Detection) | Limit of Detection (LOD) | Ref |
---|---|---|---|---|---|
Toxin | SWCNTs | Optical and piezoelectric | Small toxins in food molecules | nM-fM | [173] |
Aptamer sensor | Carbon | Aptamer | Antibiotic traces of carcinogens and acrylamide | 12 ng/mL | [174] |
Surface plasmon resonance | Carbon | Cantilever | Aflatoxins in rice and peanut | 2.5 ppb | [175] |
Melamine | DNA-Cu NPs | Fluorescence | Melamine in milk | 50–100 µmol/L | [176] |
Chemosynthetic mimotope peptide | Chemosynthetic peptide | Immunochromatographic | Ochratoxin A | 0.196 ng/mL | [177] |
Nanosensor | Sol-gel based ZnO NPs | β-galactosidase | E.coli | 101 CFU/mL | [178] |
Array sensor | Carbon | Molecular array | Screening of genetically modified organism | - | [179] |
Viscosity | Magnetic particles | Variation in viscosity | Pathogens | - | [180] |
Ag NPs | Urease-antibody | ELISA | Salmonella in food samples | 102 CFU/mL | [181] |
Antibody | ZnO | Sandwich ELISA | Salmonella typhimurium | - | [182] |
Biofilm | Graphite oxide based aptamers | Electrochemical work station—DPV | Biofilms and Zearalenone Ochratoxin A | 1.79 ng/mL–1.48 ng/mL | [183] |
Carbon nanofibers (CNFs) | Nucleic acid aptamers | Electrochemical work station-SWV | Vibrio cholerae | 1.25 × 10−14 | [184] |
ZIF-8 Gold nanoparticles/ Chitosan | Nucleic acid aptamers | Electrochemical work station—DPV | Bacillus cereus | 3 CFU/mL | [185] |
Multichannel nanosensor | Carbon particles | Immunosensor | Mainly used to measure the concentration of sweets such as saccharin, cyclamate, glucose, and sucrose | Saccharin 6–16 mM | [186] |
Fe3O4 nanoparticles | Antibody | ELISA | Salmonella in milk | 35 CFU/mL | [187] |
Magnetic nanosensor | Antibody | ELISA with sandwich structure | Salmonella in chicken | 10 CFU/mL | [188] |
ZnO nanosensor | Antibody | ELISA with sandwich structure | Salmonella typhimurium | 5 CFU/mL | [189] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors 2022, 12, 892. https://doi.org/10.3390/bios12100892
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors. 2022; 12(10):892. https://doi.org/10.3390/bios12100892
Chicago/Turabian StyleKulkarni, Madhusudan B., Narasimha H. Ayachit, and Tejraj M. Aminabhavi. 2022. "Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope" Biosensors 12, no. 10: 892. https://doi.org/10.3390/bios12100892
APA StyleKulkarni, M. B., Ayachit, N. H., & Aminabhavi, T. M. (2022). Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors, 12(10), 892. https://doi.org/10.3390/bios12100892