Ultrasensitive Photoelectrochemical Immunoassay Strategy Based on Bi2S3/Ag2S for the Detection of the Inflammation Marker Procalcitonin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis Procedure of Bi2S3
2.3. Steps of Synthesis of Bi2S3/Ag2S
2.4. The Establishment Process of the Proposed PEC Immunosensor
2.5. PEC Analysis of PCT
3. Results and Discussion
3.1. The Characteristics of Bi2S3 and Bi2S3/Ag2S
3.2. The Performance Characterization of the Proposed PEC Immunosensor
3.3. Optimal Conditions for Analysis
3.4. PCT Detection
3.5. Specificity, Stability, and Application of the PEC Immunosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wussler, D.; Kozhuharov, N.; Oliveira, M.T.; Bossa, A.; Sabti, Z.; Nowak, A.; Murray, K.; de Lavallaz, J.F.; Badertscher, P.; Twerenbold, R. Clinical utility of procalcitonin in the diagnosis of pneumonia. Clin. Chem. 2019, 65, 1532–1542. [Google Scholar] [CrossRef]
- Brabenec, L.; Hellenthal, K.; Müller, M.; Kintrup, S.; Zurek-Leffers, F.; Kardell, M.; Otto, M.; Wagner, N.-M. Procalcitonin mediates vascular dysfunction in obesity. Life Sci. 2022, 307, 120889. [Google Scholar] [CrossRef]
- Wolfisberg, S.; Gregoriano, C.; Schuetz, P. Procalcitonin for individualizing antibiotic treatment: An update with a focus on COVID-19. Crit. Rev. Clin. Lab. Sci. 2022, 59, 54–65. [Google Scholar] [CrossRef]
- Battaglia, F.; Baldoneschi, V.; Meucci, V.; Intorre, L.; Minunni, M.; Scarano, S. Detection of canine and equine procalcitonin for sepsis diagnosis in veterinary clinic by the development of novel MIP-based SPR biosensors. Talanta 2021, 230, 122347. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, L.; Xue, J.; Zhang, N.; Fan, D.; Ma, H.; Ren, X.; Hu, L.; Wei, Q. Bioactivity-protected electrochemiluminescence biosensor using gold nanoclusters as the low-potential luminophor and Cu2S snowflake as co-reaction accelerator for procalcitonin analysis. ACS Sens. 2019, 4, 1909–1916. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, J.; Hu, J.; Xiong, S.; Zeng, L.; Huang, X.; Xiong, Y. Low-sample-consumption and ultrasensitive detection of procalcitonin by boronate affinity recognition-enhanced dynamic light scattering biosensor. Biosens. Bioelectron. 2022, 200, 113914. [Google Scholar] [CrossRef]
- Ge, X.; Zhang, J.; Feng, Y.; Wang, A.; Mei, L.; Feng, J.J. Label-free electrochemical biosensor for determination of procalcitonin based on graphene-wrapped Co nanoparticles encapsulated in carbon nanobrushes coupled with AuPtCu nanodendrites. Microchim. Acta 2022, 189, 110. [Google Scholar] [CrossRef]
- Miao, J.; Du, K.; Li, X.; Xu, X.; Dong, X.; Fang, J.; Cao, W.; Wei, Q. Ratiometric electrochemical immunosensor for the detection of procalcitonin based on the ratios of SiO2-Fc-COOH–Au and UiO-66-TB complexes. Biosens. Bioelectron. 2021, 171, 112713. [Google Scholar] [CrossRef]
- Zhao, L.; Song, X.; Ren, X.; Wang, H.; Fan, D.; Wu, D.; Wei, Q. Ultrasensitive near-infrared electrochemiluminescence biosensor derived from Eu-MOF with antenna effect and high efficiency catalysis of specific CoS2 hollow triple shelled nanoboxes for procalcitonin. Biosens. Bioelectron. 2021, 191, 113409. [Google Scholar] [CrossRef]
- Song, X.; Zhao, L.; Zhang, N.; Liu, L.; Ren, X.; Ma, H.; Kuang, X.; Li, Y.; Luo, C.; Wei, Q. Ultrasensitive electrochemiluminescence biosensor with silver nanoclusters as a novel signal probe and α-Fe2O3-Pt as an efficient co-reaction accelerator for procalcitonin immunoassay. Anal. Chem. 2023, 95, 1582–1588. [Google Scholar] [CrossRef]
- Zhang, N.; Feng, J.; Zhao, G.; Duan, X.; Wang, Y.; Zhang, D.; Wei, Q. Ultrasensitive photochemical immunosensor based on flowerlike SnO2/BiOI/Ag2S composites for detection of procalcitonin. Biosensors 2021, 11, 421. [Google Scholar] [CrossRef]
- Gupta, Y.; Pandey, C.M.; Ghrera, A.S. Development of conducting cellulose paper for electrochemical sensing of procalcitonin. Microchim. Acta 2023, 190, 32. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Wang, Y.; Ren, R.; Fan, D.; Wu, D.; Du, Y.; Xu, K.; Ren, X.; Wei, Q. Enzyme-free colorimetric immunoassay for procalcitonin based on MgFe2O4 sacrificial probe with the Prussian blue production. Sens. Actuators B-Chem. 2020, 316, 128163. [Google Scholar] [CrossRef]
- Zhang, Y.; Si, X.; Zhang, M.; Yang, X.; Yuan, H.; Wang, X.; Zhang, Y.; Wang, H. Rapid colorimetric determination of procalcitonin using magnetic separation and enzymatic catalysis. Anal. Lett. 2019, 52, 602–612. [Google Scholar] [CrossRef]
- Huang, E.; Huang, D.; Wang, Y.; Cai, D.; Luo, Y.; Zhong, Z.; Liu, D. Active droplet-array microfluidics-based chemiluminescence immunoassay for point-of-care detection of procalcitonin. Biosens. Bioelectron. 2022, 195, 113684. [Google Scholar] [CrossRef]
- Tanak, A.S.; Jagannath, B.; Tamrakar, Y.; Muthukumar, S.; Prasad, S. Non-faradaic electrochemical impedimetric profiling of procalcitonin and C-reactive protein as a dual marker biosensor for early sepsis detection. Anal. Chim. Acta X 2019, 3, 100029. [Google Scholar] [CrossRef]
- Molinero-Fernández, Á.; López, M.; Escarpa, A. An on-chip microfluidic-based electrochemical magneto-immunoassay for the determination of procalcitonin in plasma obtained from sepsis diagnosed preterm neonates. Analyst 2020, 145, 5004–5010. [Google Scholar] [CrossRef]
- Molinero-Ferna, A.G.; Moreno-Guzman, M.; Arruza, L.; Lo, M.A.N.; Escarpa, A. Polymer-based micromotor fluorescence immunoassay for on-the-move sensitive procalcitonin determination in very low birth weight infants’ plasma. ACS Sens. 2020, 5, 1336–1344. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Wang, C.; Hu, X.; Liu, Y.; Wang, G. Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor. Electrochim. Acta 2019, 317, 341–347. [Google Scholar] [CrossRef]
- Afzal, A.; Iqbal, M.; Dastgeer, G.; Nazir, G.; Mumtaz, S.; Usman, M.; Eom, J. WS2/GeSe/WS2 bipolar transistor-based chemical sensor with fast response and recovery times. ACS Appl. Mater. Inter. 2020, 12, 39524–39532. [Google Scholar] [CrossRef]
- Aydin, M.; Aydin, E.; Sezgintürk, M. Advances in immunosensor technology. Adv. Clin. Chem. 2021, 102, 1–62. [Google Scholar]
- Zhang, J.; Xue, X.; Du, Y.; Zhao, J.; Ma, H.; Ren, X.; Wei, Q.; Ju, H. Antigen-down PEC immunosensor for Cyfra21-1 detection based on photocurrent polarity switching strategy. Anal. Chem. 2022, 94, 12368–12373. [Google Scholar] [CrossRef]
- Liu, K.; Deng, H.; Wang, Y.; Cheng, S.; Xiong, X.; Li, C. A sandwich-type photoelectrochemical immunosensor based on ReS2 nanosheets for high-performance determination of carcinoembryonic antigen. Sensor. Actuators B-Chem. 2020, 320, 128341. [Google Scholar] [CrossRef]
- Li, H.; Mu, Y.; Yan, J.; Cui, D.; Ou, W.; Wan, Y.; Liu, S. Label-free photoelectrochemical immunosensor for neutrophil gelatinase-associated lipocalin based on the use of nanobodies. Anal. Chem. 2015, 87, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, H.; Shi, X.; Ding, C.; Fan, G. Photoanode-supported cathodic immunosensor for sensitive and specific detection of human chorionic gonadotropin. Anal. Chim. Acta 2022, 1199, 339560. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Q.; Li, Q.; Zheng, L.; Yang, X.; Wang, X.; Nie, G. A “signal-off” type photoelectrochemical immunosensor for detecting carcinoembryonic antigen based on TiO2 NRs/BiOI heterojunction and SiO2/PDA-Au inhibitor. Microchem. J. 2022, 182, 107888. [Google Scholar] [CrossRef]
- Zhang, L.; Ran, J.; Qiao, S.; Jaroniec, M. Characterization of semiconductor photocatalysts. Chem. Soc. Rev. 2019, 48, 5184–5206. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, P.; Wang, Q.; Wu, Y.; Cao, D.; Qiao, Q. Construction of Bi2S3-BiOBr nanosheets on TiO2 NTA as the effective photocatalysts: Pollutant removal, photoelectric conversion and hydrogen generation. J. Colloid Interf. Sci. 2021, 585, 459–469. [Google Scholar] [CrossRef]
- Wang, B.; Cao, J.; Dong, Y.; Liu, F.; Fu, X.; Ren, S.; Ma, S.; Liu, Y. An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays. Chem. Commun. 2018, 54, 806–809. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, L.; Wei, X.; Li, J. Chitosan-based molecularly imprinted photoelectric sensor with ZnO/Bi2O3/Bi2S3 sensing layer for thiamethoxam determination. Microchim. Acta 2022, 189, 247. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, Y.; Fan, J.; Tang, Z. Construction of novel Z-scheme flower-like Bi2S3/SnIn4S8 heterojunctions with enhanced visible light photodegradation and bactericidal activity. Appl. Surf. Sci. 2019, 465, 212–222. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Liu, X.; Ren, Y.; Xu, K.; Zhang, N.; Sun, X.; Yang, X.; Ren, X.; Wei, Q. A dual-mode PCT electrochem-ical immunosensor with CuCo2S4 bimetallic sulfides as enhancer. Biosens. Bioelectron. 2020, 163, 112280. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.; Huang, T.; Wang, C.; Huang, C.; Tsai, T.; Yu, S.; Chen, Y.; Hong, S.; Hsu, C.; Chang, T. Fiber optic nanogold-linked immunosorbent assay for rapid detection of procalcitonin at femtomolar concentration level. Biosens. Bioelectron. 2020, 151, 111871. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shao, X.; Han, Y.; Zhang, H. Detection of procalcitonin (PCT) using the double antibody sandwich method based on fluorescence resonance energy transfer between upconversion nanoparticles and quantum dots. Anal. Methods 2018, 10, 1015–1022. [Google Scholar] [CrossRef]
- Wang, X.; Ma, L.; Hu, C.; Liu, T.; Sun, S.; Liu, X.; Guan, M. Simultaneous quantitative detection of IL-6 and PCT using SERS magnetic immunoassay with sandwich structure. Nanotechnology 2021, 32, 255702. [Google Scholar] [CrossRef]
- Xu, X.; Lei, X.; Ye, L.; Song, S.; Liu, L.; Xu, L.; Xu, C.; Hua, K. Gold-based paper sensor for sensitive detection of procalcitonin in clinical samples. Chinese J. Anal. Chem. 2022, 50, 100062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Wang, Y.; Wang, H.; Bai, G.; Zhang, N.; Wang, Y.; Wei, Q. Ultrasensitive Photoelectrochemical Immunoassay Strategy Based on Bi2S3/Ag2S for the Detection of the Inflammation Marker Procalcitonin. Biosensors 2023, 13, 366. https://doi.org/10.3390/bios13030366
Zhao G, Wang Y, Wang H, Bai G, Zhang N, Wang Y, Wei Q. Ultrasensitive Photoelectrochemical Immunoassay Strategy Based on Bi2S3/Ag2S for the Detection of the Inflammation Marker Procalcitonin. Biosensors. 2023; 13(3):366. https://doi.org/10.3390/bios13030366
Chicago/Turabian StyleZhao, Guanhui, Yingying Wang, Huixin Wang, Guozhen Bai, Nuo Zhang, Yaoguang Wang, and Qin Wei. 2023. "Ultrasensitive Photoelectrochemical Immunoassay Strategy Based on Bi2S3/Ag2S for the Detection of the Inflammation Marker Procalcitonin" Biosensors 13, no. 3: 366. https://doi.org/10.3390/bios13030366
APA StyleZhao, G., Wang, Y., Wang, H., Bai, G., Zhang, N., Wang, Y., & Wei, Q. (2023). Ultrasensitive Photoelectrochemical Immunoassay Strategy Based on Bi2S3/Ag2S for the Detection of the Inflammation Marker Procalcitonin. Biosensors, 13(3), 366. https://doi.org/10.3390/bios13030366