Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulaba-Bafubiandi, A.F.; Karimi-Maleh, H.; Karimi, F.; Rezapour, M. A voltammetric carbon paste sensor modified with NiO nanoparticle and ionic liquid for fast analysis of p-nitrophenol in water samples. J. Mol. Liq. 2019, 285, 430. [Google Scholar] [CrossRef]
- Akond, U.S.; Barman, K.; Mahanta, A.; Jasimuddin, S. Electrochemical Sensor for Detection of p-nitrophenolBased on Nickel Oxide Nanoparticles/alpha-cyclodextrin Functionalized Reduced Graphene Oxide. Electroanalysis 2021, 33, 900. [Google Scholar] [CrossRef]
- Mohanta, D.; Mahanta, A.; Mishra, S.R.; Jasimuddin, S.; Ahmaruzzaman, M. Novel SnO2@ZIF-8/g-C3N4 nanohybrids for excellent electrochemical performance towards sensing of p-nitrophenol. Environ. Res. 2021, 197, 111077. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Y.; Zhao, J.; Li, S.H.; Guo, M.J.; Fan, Z. An electrochemical sensor for the detection of p-nitrophenol based on a cyclodextrin-decorated gold nanoparticle-mesoporous carbon hybrid. Analyst 2019, 144, 4400. [Google Scholar] [CrossRef]
- Cao, K.; Si, C.; Zhang, H.; Hu, J.; Zheng, D. An electrochemical sensor based on a glassy carbon electrode modified with optimized Cu-Fe3O4 nanocomposite for 4-nitrophenol detection. J. Mater. Sci.-Mater. El. 2022, 33, 2386. [Google Scholar] [CrossRef]
- Cheng, Y.; Jiu, L.; Zhuo, K.; Yuan, Z.; Zhang, Q.; Sang, S. Electrochemical Detection of 4-p-nitrophenol Based on TiO2NPs/RGO/AuNPs Composite Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2018, 13, 9098. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, Y.; Ye, J.X.; Lei, Y.; Liu, A.L. Facile Label-Free Electrochemical DNA Biosensor for Detection of Osteosarcoma-Related Survivin Gene. Biosensors 2022, 12, 747. [Google Scholar] [CrossRef]
- Ge, L.; Wang, W.X.; Sun, X.M.; Hou, T.; Li, F. Versatile and Programmable DNA Logic Gates on Universal and Label-Free Homogeneous Electrochemical Platform. Anal. Chem. 2016, 88, 9691–9698. [Google Scholar] [CrossRef]
- Massah, R.T.; Jiokeng, S.L.Z.; Liang, J.; Njanja, E.; Ntep, T.M.M.; Spiess, A.; Rademacher, L.; Janiak, C.; Tonle, I.K. Sensitive Electrochemical Sensor Based on an Aminated MIL-101(Cr) MOF for the Detection of Tartrazine. ACS Omega 2022, 7, 19420–19427. [Google Scholar] [CrossRef]
- Skinner, W.S.; Ong, K.G. Modern Electrode Technologies for Ion and Molecule Sensing. Sensors 2020, 20, 4568. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, S.; Ding, Y.; Yang, X.; Guo, K.; Zhao, J.T. Two-dimensional mesoporous ZnCo2O4 nanosheets as a novel electrocatalyst for detection of o-nitrophenol and p-nitrophenol. Biosens. Bioelectron. 2018, 112, 177. [Google Scholar] [CrossRef] [PubMed]
- Munonde, T.S.; Nomngongo, P.N. Nanocomposites for Electrochemical Sensors and Their Applications on the Detection of Trace Metals in Environmental Water Samples. Sensors 2021, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Hong, Q.; Li, H.; Liu, C.C.; Li, F. Direct-Laser-Writing of Metal Sulfide-Graphene Nanocomposite Photoelectrode toward Sensitive Photoelectrochemical Sensing. Adv. Funct. Mater. 2019, 29, 1904000. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Rao, M.V.; Li, Q.L. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors 2019, 19, 905. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, W.; Kan, S.; Liu, P.; Hao, R.; Hu, H.; Zhang, J.; Liu, H.; Liu, M.; Liu, K. Tuning morphology and structure of Fe–N–C catalyst for ultra-high oxygen reduction reaction activity. Int. J. Hydrogen Energy 2020, 45, 6380–6390. [Google Scholar] [CrossRef]
- Liu, X.; Yue, T.; Qi, K.; Qiu, Y.; Xia, B.Y.; Guo, X. Metal-organic framework membranes: From synthesis to electrocatalytic applications. Chinese Chem. Lett. 2020, 31, 2189. [Google Scholar] [CrossRef]
- Liu, B.J.; Yang, F.; Zou, Y.X.; Peng, Y. Adsorption of Phenol and p-Nitrophenol from Aqueous Solutions on Metal-Organic Frameworks: Effect of Hydrogen Bonding. J. Chem. Eng. Data 2014, 59, 1476–1482. [Google Scholar] [CrossRef]
- Kan, S.; Xu, M.; Feng, W.; Wu, Y.; Du, C.; Gao, X.; Wu, Y.; Liu, H. Tuning the Overall Water Splitting on Electrodeposited NiCoFeP Film. ChemElectroChem 2021, 8, 539–546. [Google Scholar] [CrossRef]
- Ye, Z.Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R.J. Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. Nano-Micro Lett. 2021, 13, 264. [Google Scholar] [CrossRef]
- Lai, X.D.; Jiang, H.; Wang, X.M. Biodegradable Metal Organic Frameworks for Multimodal Imaging and Targeting Theranostics. Biosensors 2021, 11, 299. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, K.; Kan, S.; Liu, P.; Hao, R.; Liu, W.; Wu, Y.; Liu, H.; Liu, M.; Liu, K. Highly Dispersed Fe-Nx Active Sites on Graphitic-N Dominated Porous Carbon for Synergetic Catalysis of Oxygen Reduction Reaction. Carbon 2021, 171, 1–9. [Google Scholar] [CrossRef]
- Carrasco, S. Metal-Organic Frameworks for the Development of Biosensors: A Current Overview. Biosensors 2018, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Yang, J.; Huang, X. The Design of Water Oxidation Electrocatalysts from Nanoscale Metal-Organic Frameworks. Chem.-Eur. J. 2018, 24, 15143. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Konnerth, H.; Yeh, J.Y.; Prechtl, M.H.G.; Wen, C.Y.; Wu, K.C.W. De novo synthesis of Cr-embedded MOF-199 and derived porous CuO/CuCr2O4 composites for enhanced phenol hydroxylation. Green Chem. 2019, 21, 1889. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Q.; Qiao, J.; Zhang, Q.; Zhou, X. From metal-organic framework to morphology- and size-controlled 3D mesoporous Cr2O3 toward a high surface area and enhanced volatile organic compound oxidation catalyst. Rsc Adv. 2019, 9, 10865. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Ren, L.; Kumar, P.; Cybulskis, V.J.; Mkhoyan, K.A.; Davis, M.E.; Tsapatsis, M. A Chromium Hydroxide/MIL-101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angew. Chem. Int. Edit. 2018, 57, 4926. [Google Scholar] [CrossRef] [PubMed]
- Rather, S.U.; Muhammad, A.; Al-Zahrani, A.A.; Youssef, T.E. Synthesis, Characterization and CO2 Adsorption of Cr(III)-Based Metal-Organic Framework. Sci. Adv. Mater. 2018, 10, 1669. [Google Scholar] [CrossRef]
- Duan, F.; Hu, M.; Guo, C.; Song, Y.; Wang, M.; He, L.; Zhang, Z.; Pettinari, R.; Zhou, L. Chromium-based metal-organic framework embedded with cobalt phthalocyanine for the sensitively impedimetric cytosensing of colorectal cancer (CT26) cells and cell imaging. Chem. Eng. J. 2020, 398, 125452. [Google Scholar] [CrossRef]
- Cui, H.; Cui, S.; Tian, Q.; Zhang, S.; Wang, M.; Zhang, P.; Liu, Y.; Zhang, J.; Li, X. Electrochemical Sensor for the Detection of 1-Hydroxypyrene Based on Composites of PAMAM-Regulated Chromium-Centered Metal-Organic Framework Nanoparticles and Graphene Oxide. Acs Omega 2021, 6, 31184. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.Z.; Huang, Y.Q.; Yang, J.M. Effect of the Synergetic Interplay between the Electrostatic Interactions, Size of the Dye Molecules, and Adsorption Sites of MIL-101(Cr) on the Adsorption of Organic Dyes from Aqueous Solutions. Cryst. Growth Des. 2018, 18, 7533–7540. [Google Scholar] [CrossRef]
- Xu, Y.H.; Wang, Y.L.; Ding, Y.P.; Luo, L.Q.; Liu, X.J.; Zhang, Y.X. Determination of p-nitrophenol on carbon paste electrode modified with a nanoscaled compound oxide Mg(Ni)FeO. J. Appl. Electrochem. 2013, 43, 679–687. [Google Scholar] [CrossRef]
- Wang, K.D.; Wu, C.; Wang, F.; Jiang, G.Q. MOF-Derived CoPx Nanoparticles Embedded in Nitrogen-Doped Porous Carbon Polyhedrons for Nanomolar Sensing of p-Nitrophenol. ACS Appl. Nano Mater. 2018, 1, 5843–5853. [Google Scholar] [CrossRef]
- Zhang, T.T.; Lang, Q.L.; Yang, D.P.; Li, L.; Zeng, L.X.; Zheng, C.; Li, T.; Wei, M.D.; Liu, A.H. Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochim. Acta 2013, 106, 127–134. [Google Scholar] [CrossRef]
Specimen No. | Original | Added (μM) | Detected (μM) | Recovery | RSD |
---|---|---|---|---|---|
#1 | NBD * | 30.0 | 30.2 | 100.7% | 3.67% |
#2 | NBD | 100.0 | 101.3 | 101.3% | 2.85% |
#3 | NBD | 200.0 | 204.6 | 102.3% | 3.19% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Pan, P.; Huang, H.; Liu, H. Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol. Biosensors 2022, 12, 813. https://doi.org/10.3390/bios12100813
Hu C, Pan P, Huang H, Liu H. Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol. Biosensors. 2022; 12(10):813. https://doi.org/10.3390/bios12100813
Chicago/Turabian StyleHu, Chao, Ping Pan, Haiping Huang, and Hongtao Liu. 2022. "Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol" Biosensors 12, no. 10: 813. https://doi.org/10.3390/bios12100813
APA StyleHu, C., Pan, P., Huang, H., & Liu, H. (2022). Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol. Biosensors, 12(10), 813. https://doi.org/10.3390/bios12100813