Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulaba-Bafubiandi, A.F.; Karimi-Maleh, H.; Karimi, F.; Rezapour, M. A voltammetric carbon paste sensor modified with NiO nanoparticle and ionic liquid for fast analysis of p-nitrophenol in water samples. J. Mol. Liq. 2019, 285, 430. [Google Scholar] [CrossRef]
- Akond, U.S.; Barman, K.; Mahanta, A.; Jasimuddin, S. Electrochemical Sensor for Detection of p-nitrophenolBased on Nickel Oxide Nanoparticles/alpha-cyclodextrin Functionalized Reduced Graphene Oxide. Electroanalysis 2021, 33, 900. [Google Scholar] [CrossRef]
- Mohanta, D.; Mahanta, A.; Mishra, S.R.; Jasimuddin, S.; Ahmaruzzaman, M. Novel SnO2@ZIF-8/g-C3N4 nanohybrids for excellent electrochemical performance towards sensing of p-nitrophenol. Environ. Res. 2021, 197, 111077. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Y.; Zhao, J.; Li, S.H.; Guo, M.J.; Fan, Z. An electrochemical sensor for the detection of p-nitrophenol based on a cyclodextrin-decorated gold nanoparticle-mesoporous carbon hybrid. Analyst 2019, 144, 4400. [Google Scholar] [CrossRef]
- Cao, K.; Si, C.; Zhang, H.; Hu, J.; Zheng, D. An electrochemical sensor based on a glassy carbon electrode modified with optimized Cu-Fe3O4 nanocomposite for 4-nitrophenol detection. J. Mater. Sci.-Mater. El. 2022, 33, 2386. [Google Scholar] [CrossRef]
- Cheng, Y.; Jiu, L.; Zhuo, K.; Yuan, Z.; Zhang, Q.; Sang, S. Electrochemical Detection of 4-p-nitrophenol Based on TiO2NPs/RGO/AuNPs Composite Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2018, 13, 9098. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, Y.; Ye, J.X.; Lei, Y.; Liu, A.L. Facile Label-Free Electrochemical DNA Biosensor for Detection of Osteosarcoma-Related Survivin Gene. Biosensors 2022, 12, 747. [Google Scholar] [CrossRef]
- Ge, L.; Wang, W.X.; Sun, X.M.; Hou, T.; Li, F. Versatile and Programmable DNA Logic Gates on Universal and Label-Free Homogeneous Electrochemical Platform. Anal. Chem. 2016, 88, 9691–9698. [Google Scholar] [CrossRef]
- Massah, R.T.; Jiokeng, S.L.Z.; Liang, J.; Njanja, E.; Ntep, T.M.M.; Spiess, A.; Rademacher, L.; Janiak, C.; Tonle, I.K. Sensitive Electrochemical Sensor Based on an Aminated MIL-101(Cr) MOF for the Detection of Tartrazine. ACS Omega 2022, 7, 19420–19427. [Google Scholar] [CrossRef]
- Skinner, W.S.; Ong, K.G. Modern Electrode Technologies for Ion and Molecule Sensing. Sensors 2020, 20, 4568. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, S.; Ding, Y.; Yang, X.; Guo, K.; Zhao, J.T. Two-dimensional mesoporous ZnCo2O4 nanosheets as a novel electrocatalyst for detection of o-nitrophenol and p-nitrophenol. Biosens. Bioelectron. 2018, 112, 177. [Google Scholar] [CrossRef] [PubMed]
- Munonde, T.S.; Nomngongo, P.N. Nanocomposites for Electrochemical Sensors and Their Applications on the Detection of Trace Metals in Environmental Water Samples. Sensors 2021, 21, 131. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Hong, Q.; Li, H.; Liu, C.C.; Li, F. Direct-Laser-Writing of Metal Sulfide-Graphene Nanocomposite Photoelectrode toward Sensitive Photoelectrochemical Sensing. Adv. Funct. Mater. 2019, 29, 1904000. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Rao, M.V.; Li, Q.L. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors 2019, 19, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Liu, W.; Kan, S.; Liu, P.; Hao, R.; Hu, H.; Zhang, J.; Liu, H.; Liu, M.; Liu, K. Tuning morphology and structure of Fe–N–C catalyst for ultra-high oxygen reduction reaction activity. Int. J. Hydrogen Energy 2020, 45, 6380–6390. [Google Scholar] [CrossRef]
- Liu, X.; Yue, T.; Qi, K.; Qiu, Y.; Xia, B.Y.; Guo, X. Metal-organic framework membranes: From synthesis to electrocatalytic applications. Chinese Chem. Lett. 2020, 31, 2189. [Google Scholar] [CrossRef]
- Liu, B.J.; Yang, F.; Zou, Y.X.; Peng, Y. Adsorption of Phenol and p-Nitrophenol from Aqueous Solutions on Metal-Organic Frameworks: Effect of Hydrogen Bonding. J. Chem. Eng. Data 2014, 59, 1476–1482. [Google Scholar] [CrossRef]
- Kan, S.; Xu, M.; Feng, W.; Wu, Y.; Du, C.; Gao, X.; Wu, Y.; Liu, H. Tuning the Overall Water Splitting on Electrodeposited NiCoFeP Film. ChemElectroChem 2021, 8, 539–546. [Google Scholar] [CrossRef]
- Ye, Z.Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R.J. Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. Nano-Micro Lett. 2021, 13, 264. [Google Scholar] [CrossRef]
- Lai, X.D.; Jiang, H.; Wang, X.M. Biodegradable Metal Organic Frameworks for Multimodal Imaging and Targeting Theranostics. Biosensors 2021, 11, 299. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, K.; Kan, S.; Liu, P.; Hao, R.; Liu, W.; Wu, Y.; Liu, H.; Liu, M.; Liu, K. Highly Dispersed Fe-Nx Active Sites on Graphitic-N Dominated Porous Carbon for Synergetic Catalysis of Oxygen Reduction Reaction. Carbon 2021, 171, 1–9. [Google Scholar] [CrossRef]
- Carrasco, S. Metal-Organic Frameworks for the Development of Biosensors: A Current Overview. Biosensors 2018, 8, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Q.; Yang, J.; Huang, X. The Design of Water Oxidation Electrocatalysts from Nanoscale Metal-Organic Frameworks. Chem.-Eur. J. 2018, 24, 15143. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Konnerth, H.; Yeh, J.Y.; Prechtl, M.H.G.; Wen, C.Y.; Wu, K.C.W. De novo synthesis of Cr-embedded MOF-199 and derived porous CuO/CuCr2O4 composites for enhanced phenol hydroxylation. Green Chem. 2019, 21, 1889. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Q.; Qiao, J.; Zhang, Q.; Zhou, X. From metal-organic framework to morphology- and size-controlled 3D mesoporous Cr2O3 toward a high surface area and enhanced volatile organic compound oxidation catalyst. Rsc Adv. 2019, 9, 10865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Ren, L.; Kumar, P.; Cybulskis, V.J.; Mkhoyan, K.A.; Davis, M.E.; Tsapatsis, M. A Chromium Hydroxide/MIL-101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angew. Chem. Int. Edit. 2018, 57, 4926. [Google Scholar] [CrossRef] [PubMed]
- Rather, S.U.; Muhammad, A.; Al-Zahrani, A.A.; Youssef, T.E. Synthesis, Characterization and CO2 Adsorption of Cr(III)-Based Metal-Organic Framework. Sci. Adv. Mater. 2018, 10, 1669. [Google Scholar] [CrossRef]
- Duan, F.; Hu, M.; Guo, C.; Song, Y.; Wang, M.; He, L.; Zhang, Z.; Pettinari, R.; Zhou, L. Chromium-based metal-organic framework embedded with cobalt phthalocyanine for the sensitively impedimetric cytosensing of colorectal cancer (CT26) cells and cell imaging. Chem. Eng. J. 2020, 398, 125452. [Google Scholar] [CrossRef]
- Cui, H.; Cui, S.; Tian, Q.; Zhang, S.; Wang, M.; Zhang, P.; Liu, Y.; Zhang, J.; Li, X. Electrochemical Sensor for the Detection of 1-Hydroxypyrene Based on Composites of PAMAM-Regulated Chromium-Centered Metal-Organic Framework Nanoparticles and Graphene Oxide. Acs Omega 2021, 6, 31184. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.Z.; Huang, Y.Q.; Yang, J.M. Effect of the Synergetic Interplay between the Electrostatic Interactions, Size of the Dye Molecules, and Adsorption Sites of MIL-101(Cr) on the Adsorption of Organic Dyes from Aqueous Solutions. Cryst. Growth Des. 2018, 18, 7533–7540. [Google Scholar] [CrossRef]
- Xu, Y.H.; Wang, Y.L.; Ding, Y.P.; Luo, L.Q.; Liu, X.J.; Zhang, Y.X. Determination of p-nitrophenol on carbon paste electrode modified with a nanoscaled compound oxide Mg(Ni)FeO. J. Appl. Electrochem. 2013, 43, 679–687. [Google Scholar] [CrossRef]
- Wang, K.D.; Wu, C.; Wang, F.; Jiang, G.Q. MOF-Derived CoPx Nanoparticles Embedded in Nitrogen-Doped Porous Carbon Polyhedrons for Nanomolar Sensing of p-Nitrophenol. ACS Appl. Nano Mater. 2018, 1, 5843–5853. [Google Scholar] [CrossRef]
- Zhang, T.T.; Lang, Q.L.; Yang, D.P.; Li, L.; Zeng, L.X.; Zheng, C.; Li, T.; Wei, M.D.; Liu, A.H. Simultaneous voltammetric determination of nitrophenol isomers at ordered mesoporous carbon modified electrode. Electrochim. Acta 2013, 106, 127–134. [Google Scholar] [CrossRef]
Specimen No. | Original | Added (μM) | Detected (μM) | Recovery | RSD |
---|---|---|---|---|---|
#1 | NBD * | 30.0 | 30.2 | 100.7% | 3.67% |
#2 | NBD | 100.0 | 101.3 | 101.3% | 2.85% |
#3 | NBD | 200.0 | 204.6 | 102.3% | 3.19% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, C.; Pan, P.; Huang, H.; Liu, H. Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol. Biosensors 2022, 12, 813. https://doi.org/10.3390/bios12100813
Hu C, Pan P, Huang H, Liu H. Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol. Biosensors. 2022; 12(10):813. https://doi.org/10.3390/bios12100813
Chicago/Turabian StyleHu, Chao, Ping Pan, Haiping Huang, and Hongtao Liu. 2022. "Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol" Biosensors 12, no. 10: 813. https://doi.org/10.3390/bios12100813
APA StyleHu, C., Pan, P., Huang, H., & Liu, H. (2022). Cr-MOF-Based Electrochemical Sensor for the Detection of P-Nitrophenol. Biosensors, 12(10), 813. https://doi.org/10.3390/bios12100813