Macro-Morphological Traits of Leaves for Urban Tree Selection for Air Pollution Biomonitoring: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Detection
2.2. Information Analysis
3. Results and Discussion
3.1. Urban Air Pollutants Associated with LMTs
3.2. LMTs Associated with Air Pollution Biomonitoring
3.3. LMT Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CO | Carbon monoxide |
CO2 | Carbon dioxide |
LA | Leaf area |
LDMC | Leaf dry matter content |
LMTs | Leaf macro-morphological traits |
LS | Leaf surface |
LT | Leaf thickness |
NO2 | Nitrogen dioxide |
O3 | Ozone |
PM | Atmospheric particulate matter |
PM10 | Atmospheric particulate matter ≤ 10 um |
PM2.5 | Atmospheric particulate matter ≤ 2.5 um |
Q | Quartile |
rs | Spearman coefficient |
SD | Stomatal density |
SLA | Specific leaf area |
SO2 | Sulfur dioxide |
TSP | Total suspended particles |
VOCs | Volatile organic compounds |
WHO | World Health Organization |
References
- Egas, C.; Naulin, P.I.; Préndez, M.; Egas, C.; Naulin, P.I.; Préndez, M. Contaminación Urbana Por Material Particulado y Su Efecto Sobre Las Características Morfo-Anatómicas de Cuatro Especies Arbóreas de Santiago de Chile. Inf. Tecnol. 2018, 29, 111–118. [Google Scholar] [CrossRef]
- Guo, P.; Su, Y.; Wan, W.; Liu, W.; Zhang, H.; Sun, X.; Ouyang, Z.; Wang, X. Urban Plant Diversity in Relation to Land Use Types in Built-up Areas of Beijing. Chin. Geogr. Sci. 2018, 28, 100–110. [Google Scholar] [CrossRef]
- Roy, A.; Bhattacharya, T.; Kumari, M. Air Pollution Tolerance, Metal Accumulation and Dust Capturing Capacity of Common Tropical Trees in Commercial and Industrial Sites. Sci. Total Environ. 2020, 722, 137622. [Google Scholar] [CrossRef]
- Pataki, D.E.; McCarthy, H.R.; Gillespie, T.; Jenerette, G.D.; Pincetl, S. A Trait-Based Ecology of the Los Angeles Urban Forest. Ecosphere 2013, 4, art72. [Google Scholar] [CrossRef]
- Cameron, R.W.F.; Blanuša, T. Green Infrastructure and Ecosystem Services—Is the Devil in the Detail? Ann. Bot. 2016, 118, 377–391. [Google Scholar] [CrossRef]
- Hanisch, M.; Schweiger, O.; Cord, A.F.; Volk, M.; Knapp, S. Plant Functional Traits Shape Multiple Ecosystem Services, Their Trade-Offs and Synergies in Grasslands. J. Appl. Ecol. 2020, 57, 1535–1550. [Google Scholar] [CrossRef]
- Miedema, L.J.; Capmourteres, V.; Anand, M. Impact of Land Composition and Configuration on the Functional Trait Assembly of Forest Communities in Southern Ontario. Ecosphere 2019, 10, e02633. [Google Scholar] [CrossRef]
- Duran Rivera, B.; Alzate Guarin, F. Intercepción de partículas suspendidas totales (PST) por cinco especies de árboles urbanos en el Valle de Aburrá. Rev. Fac. Ing. Univ. Antioq. 2009, 47, 59–66. [Google Scholar]
- Wolf, J.; Haase, D.; Kühn, I. The Functional Composition of the Neophytic Flora Changes in Response to Environmental Conditions along a Rural-Urban Gradient. NeoBiota 2020, 54, 23–47. [Google Scholar] [CrossRef]
- Milanović, M.; Knapp, S.; Pyšek, P.; Kühn, I. Linking Traits of Invasive Plants with Ecosystem Services and Disservices. Ecosyst. Serv. 2020, 42, 101072. [Google Scholar] [CrossRef]
- Sgrigna, G.; Baldacchini, C.; Dreveck, S.; Cheng, Z.; Calfapietra, C. Relationships between Air Particulate Matter Capture Efficiency and Leaf Traits in Twelve Tree Species from an Italian Urban-Industrial Environment. Sci. Total Environ. 2020, 718, 137310. [Google Scholar] [CrossRef]
- Rötzer, T.; Rahman, M.A.; Moser-Reischl, A.; Pauleit, S.; Pretzsch, H. Process Based Simulation of Tree Growth and Ecosystem Services of Urban Trees under Present and Future Climate Conditions. Sci. Total Environ. 2019, 676, 651–664. [Google Scholar] [CrossRef]
- Ossola, A.; Hoeppner, M.J.; Burley, H.M.; Gallagher, R.V.; Beaumont, L.J.; Leishman, M.R. The Global Urban Tree Inventory: A Database of the Diverse Tree Flora That Inhabits the World’s Cities. Glob. Ecol. Biogeogr. 2020, 29, 1907–1914. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, F.; Wang, T.; Jim, C.Y.; Xu, T.; Jin, J. Evaluating the Ecological Services of Roof Greening Plants in Beijing Based on Functional Traits. Sustainability 2019, 11, 5310. [Google Scholar] [CrossRef]
- Galindo Segura, L.A.; Finegan, B.; Delgado-Rodríguez, D.; Mesén Sequeira, F.; Galindo Segura, L.A.; Finegan, B.; Delgado-Rodríguez, D.; Mesén Sequeira, F. Variación intraespecífica de rasgos funcionales de Cedrela odorata L. en la Península de Nicoya, Costa Rica. Rev. Mex. Cienc. For. 2020, 11, 57–86. [Google Scholar] [CrossRef]
- Rodríguez-Alarcón, S.J.; Pinzón-Pérez, L.; López-Cruz, J.; Cabrera-Amaya, D. Rasgos funcionales de plantas leñosas en áreas verdes de Bogotá, Colombia. Biota Colomb. 2020, 21, 108–133. [Google Scholar] [CrossRef]
- Montes-Pulido, C.R. Uso de rasgos funcionales de plantas como estimadores de carbono almacenado en biomasa aérea. Rev. Investig. Agrar. Ambient. 2014, 5, 237–243. [Google Scholar] [CrossRef]
- Khan, A.; Zheng, J.; Tan, D.K.Y.; Khan, A.; Akhtar, K.; Kong, X.; Munsif, F.; Iqbal, A.; Afridi, M.Z.; Ullah, A.; et al. Changes in Leaf Structural and Functional Characteristics When Changing Planting Density at Different Growth Stages Alters Cotton Lint Yield under a New Planting Model. Agronomy 2019, 9, 859. [Google Scholar] [CrossRef]
- Matasov, V.; Belelli Marchesini, L.; Yaroslavtsev, A.; Sala, G.; Fareeva, O.; Seregin, I.; Castaldi, S.; Vasenev, V.; Valentini, R. IoT Monitoring of Urban Tree Ecosystem Services: Possibilities and Challenges. Forests 2020, 11, 775. [Google Scholar] [CrossRef]
- Janhäll, S. Review on Urban Vegetation and Particle Air Pollution—Deposition and Dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- Petroff, A.; Mailliat, A.; Amielh, M.; Anselmet, F. Aerosol Dry Deposition on Vegetative Canopies. Part I: Review of Present Knowledge. Atmos. Environ. 2008, 42, 3625–3653. [Google Scholar] [CrossRef]
- Roupsard, P.; Amielh, M.; Maro, D.; Coppalle, A.; Branger, H.; Connan, O.; Laguionie, P.; Hébert, D.; Talbaut, M. Measurement in a Wind Tunnel of Dry Deposition Velocities of Submicron Aerosol with Associated Turbulence onto Rough and Smooth Urban Surfaces. J. Aerosol Sci. 2013, 55, 12–24. [Google Scholar] [CrossRef]
- Petroff, A.; Zhang, L.; Pryor, S.C.; Belot, Y. An Extended Dry Deposition Model for Aerosols onto Broadleaf Canopies. J. Aerosol Sci. 2009, 40, 218–240. [Google Scholar] [CrossRef]
- Vong, R.J.; Vong, I.J.; Vickers, D.; Covert, D.S. Size-Dependent Aerosol Deposition Velocities during BEARPEX’07. Atmos. Chem. Phys. 2010, 10, 5749–5758. [Google Scholar] [CrossRef]
- Buccolieri, R.; Salim, S.M.; Leo, L.S.; Di Sabatino, S.; Chan, A.; Ielpo, P.; de Gennaro, G.; Gromke, C. Analysis of Local Scale Tree–Atmosphere Interaction on Pollutant Concentration in Idealized Street Canyons and Application to a Real Urban Junction. Atmos. Environ. 2011, 45, 1702–1713. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P. Field Investigations for Evaluating Green Infrastructure Effects on Air Quality in Open-Road Conditions. Atmos. Environ. 2019, 201, 132–147. [Google Scholar] [CrossRef]
- Yang, J.; Chang, Y.; Yan, P. Ranking the Suitability of Common Urban Tree Species for Controlling PM2.5 Pollution. Atmos. Pollut. Res. 2015, 6, 267–277. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Quantification of the Traffic-Generated Particulate Matter Capture by Plant Species in a Living Wall and Evaluation of the Important Leaf Characteristics. Sci. Total Environ. 2018, 635, 1012–1024. [Google Scholar] [CrossRef]
- Viecco, M.; Vera, S.; Jorquera, H.; Bustamante, W.; Gironás, J.; Dobbs, C.; Leiva, E. Potential of Particle Matter Dry Deposition on Green Roofs and Living Walls Vegetation for Mitigating Urban Atmospheric Pollution in Semiarid Climates. Sustainability 2018, 10, 2431. [Google Scholar] [CrossRef]
- Barwise, Y.; Kumar, P. Designing Vegetation Barriers for Urban Air Pollution Abatement: A Practical Review for Appropriate Plant Species Selection. NPJ Clim. Atmos. Sci. 2020, 3, 12. [Google Scholar] [CrossRef]
- Baldauf, R. Roadside Vegetation Design Characteristics That Can Improve Local, near-Road Air Quality. Transp. Res. Part D Transp. Environ. 2017, 52, 354–361. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air Pollution Abatement Performances of Green Infrastructure in Open Road and Built-up Street Canyon Environments—A Review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Abelleira Martínez, O.J.; Fremier, A.K.; Günter, S.; Ramos Bendaña, Z.; Vierling, L.; Galbraith, S.M.; Bosque-Pérez, N.A.; Ordoñez, J.C. Scaling up Functional Traits for Ecosystem Services with Remote Sensing: Concepts and Methods. Ecol. Evol. 2016, 6, 4359–4371. [Google Scholar] [CrossRef]
- Seyednasrollah, B.; Swenson, J.J.; Domec, J.-C.; Clark, J.S. Leaf Phenology Paradox: Why Warming Matters Most Where It Is Already Warm. Remote Sens. Environ. 2018, 209, 446–455. [Google Scholar] [CrossRef]
- Guerreiro, C.B.B.; Foltescu, V.; de Leeuw, F. Air Quality Status and Trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef]
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Thiec, D.L.; Niinemets, Ü.; Mikkelsen, T.N.; et al. Functional Traits of Urban Trees: Air Pollution Mitigation Potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- Goya-Heredia, A.; Zafra-Mejía, C.A.; Rodríguez-Miranda, J.P. Tendencias metodológicas en la evaluación del grado de contaminación y de riesgos por metales pesados presentes en sedimentos viales urbanos. Rev. UIS Ing. 2020, 19, 133–148. [Google Scholar] [CrossRef]
- Maclvor, J.S.; Macivor, J.S.; Cadotte, M.W.; Livingstone, S.W.; Lundholm, J.T.; Yasui, S.-L.E. Phylogenetic Ecology and the Greening of Cities. J. Appl. Ecol. 2016, 53, 1470–1476. [Google Scholar] [CrossRef]
- Lin, Y.; Zou, J.; Yang, W.; Li, C.-Q. A Review of Recent Advances in Research on PM2.5 in China. Int. J. Environ. Res. Public Health 2018, 15, 438. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to Cities’ Ambient Particulate Matter (PM): A Systematic Review of Local Source Contributions at Global Level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.-C. PM2.5 Pollution in a Megacity of Southwest China: Source Apportionment and Implication. Atmos. Chem. Phys. 2014, 14, 8679–8699. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM2.5 Speciation in Representative Megacities and across China. Atmos. Chem. Phys. 2011, 11, 5207–5219. [Google Scholar] [CrossRef]
- Kroeger, T.; McDonald, R.I.; Boucher, T.; Zhang, P.; Wang, L. Where the People Are: Current Trends and Future Potential Targeted Investments in Urban Trees for PM10 and Temperature Mitigation in 27 U.S. Cities. Landsc. Urban Plan. 2018, 177, 227–240. [Google Scholar] [CrossRef]
- Kheirbek, I.; Wheeler, K.; Walters, S.; Kass, D.; Matte, T. PM2.5 and Ozone Health Impacts and Disparities in New York City: Sensitivity to Spatial and Temporal Resolution. Air Qual. Atmos. Health 2013, 6, 473–486. [Google Scholar] [CrossRef]
- Ostoić, S.; Salbitano, F.; Borelli, S.; Verlič, A. Urban Forest Research in the Mediterranean: A Systematic Review. Urban For. Urban Green. 2018, 31, 185–196. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air Pollution Removal by Trees in Public Green Spaces in Strasbourg City, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef]
- Reche, C.; Querol, X.; Alastuey, A.; Viana, M.; Pey, J.; Moreno, T.; Rodríguez, S.; González, Y.; Fernández-Camacho, R.; de la Rosa, J.; et al. New Considerations for PM, Black Carbon and Particle Number Concentration for Air Quality Monitoring across Different European Cities. Atmos. Chem. Phys. 2011, 11, 6207–6227. [Google Scholar] [CrossRef]
- World Health Organization. Guías para la Calidad del Aire Relativas al Material Particulado, el Ozono, el Dióxido de Nitrógeno y el Dióxido de Azufre; WHO: Geneva, Switzerland, 2005; pp. 5–21. [Google Scholar]
- Zhao, Y.; Nielsen, C.P.; Lei, Y.; McElroy, M.B.; Hao, J. Quantifying the Uncertainties of a Bottom-up Emission Inventory of Anthropogenic Atmospheric Pollutants in China. Atmos. Chem. Phys. 2011, 11, 2295–2308. [Google Scholar] [CrossRef]
- Karmakar, D.; Padhy, P.K. Air Pollution Tolerance, Anticipated Performance, and Metal Accumulation Indices of Plant Species for Greenbelt Development in Urban Industrial Area. Chemosphere 2019, 237, 124522. [Google Scholar] [CrossRef]
- Gómez-Moreno, F.J.; Artíñano, B.; Ramiro, E.D.; Barreiro, M.; Núñez, L.; Coz, E.; Dimitroulopoulou, C.; Vardoulakis, S.; Yagüe, C.; Maqueda, G.; et al. Urban Vegetation and Particle Air Pollution: Experimental Campaigns in a Traffic Hotspot. Environ. Pollut. 2019, 247, 195–205. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Qiu, S.; Peng, J. Using the Modified I-Tree Eco Model to Quantify Air Pollution Removal by Urban Vegetation. Sci. Total Environ. 2019, 688, 673–683. [Google Scholar] [CrossRef]
- Xu, W.; Wu, Q.; Liu, X.; Tang, A.; Dore, A.J.; Heal, M.R. Characteristics of Ammonia, Acid Gases, and PM2.5 for Three Typical Land-Use Types in the North China Plain. Environ. Sci. Pollut. Res. 2016, 23, 1158–1172. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, T.; Cheng, X.; Gong, S.; Zhang, X.; Tang, L.; Liu, D.; Wu, X.; Wang, L.; Chen, Y. Inverse Relations of PM2.5 and O3 in Air Compound Pollution between Cold and Hot Seasons over an Urban Area of East China. Atmosphere 2017, 8, 59. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and Temporal Variations of Six Criteria Air Pollutants in 31 Provincial Capital Cities in China during 2013–2014. Environ. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J. Air Pollution Removal by Urban Forests in Canada and Its Effect on Air Quality and Human Health. Urban For. Urban Green. 2018, 29, 40–48. [Google Scholar] [CrossRef]
- Hodgson, J.G.; Montserrat-Martí, G.; Charles, M.; Jones, G.; Wilson, P.; Shipley, B.; Sharafi, M.; Cerabolini, B.E.L.; Cornelissen, J.H.C.; Band, S.R.; et al. Is Leaf Dry Matter Content a Better Predictor of Soil Fertility than Specific Leaf Area? Ann. Bot. 2011, 108, 1337–1345. [Google Scholar] [CrossRef]
- Singh, H.; Yadav, M.; Kumar, N.; Kumar, A.; Kumar, M. Assessing Adaptation and Mitigation Potential of Roadside Trees under the Influence of Vehicular Emissions: A Case Study of Grevillea Robusta and Mangifera Indica Planted in an Urban City of India. PLoS ONE 2020, 15, e0227380. [Google Scholar] [CrossRef]
- Baraldi, R.; Chieco, C.; Neri, L.; Facini, O.; Rapparini, F.; Morrone, L.; Rotondi, A.; Carriero, G. An Integrated Study on Air Mitigation Potential of Urban Vegetation: From a Multi-Trait Approach to Modeling. Urban For. Urban Green. 2019, 41, 127–138. [Google Scholar] [CrossRef]
- Conway, T.M.; Almas, A.D.; Coore, D. Ecosystem Services, Ecological Integrity, and Native Species Planting: How to Balance These Ideas in Urban Forest Management? Urban For. Urban Green. 2019, 41, 1–5. [Google Scholar] [CrossRef]
- Jeanjean, A.P.R.; Monks, P.S.; Leigh, R.J. Modelling the Effectiveness of Urban Trees and Grass on PM2.5 Reduction via Dispersion and Deposition at a City Scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef]
- Borowy, D.; Swan, C.M. A Multi-Trait Comparison of an Urban Plant Species Pool Reveals the Importance of Intraspecific Trait Variation and Its Influence on Distinct Functional Responses to Soil Quality. Front. Ecol. Evol. 2020, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Sodhi, D.S.; Livingstone, S.W.; Carboni, M.; Cadotte, M.W. Plant Invasion Alters Trait Composition and Diversity across Habitats. Ecol. Evol. 2019, 9, 6199–6210. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Singh, H. A Simple, Cost-Effective Method for Leaf Area Estimation. J. Bot. 2011, 2011, e658240. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Chen, Q. Potential of Thirteen Urban Greening Plants to Capture Particulate Matter on Leaf Surfaces across Three Levels of Ambient Atmospheric Pollution. Int. J. Environ. Res. Public Health 2019, 16, 402. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Iglesias, B.; Villar, R.; Poorter, L. Rasgos funcionales como indicadores de la respuesta a la sequía en plántulas de 10 especies leñosas mediterráneas. Congr. For. Español 2013, 10, 6CFE01-078. [Google Scholar]
- Kichenin, E.; Wardle, D.A.; Peltzer, D.A.; Morse, C.W.; Freschet, G.T. Contrasting Effects of Plant Inter- and Intraspecific Variation on Community-Level Trait Measures along an Environmental Gradient. Funct. Ecol. 2013, 27, 1254–1261. [Google Scholar] [CrossRef]
- Easlon, H.M.; Bloom, A.J. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area. Appl. Plant Sci. 2014, 2, 1400033. [Google Scholar] [CrossRef]
- Lamanna, C.; Blonder, B.; Violle, C.; Kraft, N.J.B.; Sandel, B.; Šímová, I.; Donoghue, J.C.; Svenning, J.-C.; McGill, B.J.; Boyle, B.; et al. Functional Trait Space and the Latitudinal Diversity Gradient. Proc. Natl. Acad. Sci. USA 2014, 111, 13745–13750. [Google Scholar] [CrossRef]
- Marando, F.; Salvatori, E.; Fusaro, L.; Manes, F. Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome. Forests 2016, 7, 150. [Google Scholar] [CrossRef]
- Zha, Y.; Shi, Y.; Tang, J.; Liu, X.; Feng, C.; Zhang, Y. Spatial-Temporal Variability and Dust-Capture Capability of 8 Plants in Urban China. Pol. J. Environ. Stud. 2018, 28, 453–462. [Google Scholar] [CrossRef]
- Yu, K.; Van Geel, M.; Ceulemans, T.; Geerts, W.; Ramos, M.M.; Sousa, N.; Castro, P.M.L.; Kastendeuch, P.; Najjar, G.; Ameglio, T.; et al. Foliar Optical Traits Indicate That Sealed Planting Conditions Negatively Affect Urban Tree Health. Ecol. Indic. 2018, 95, 895–906. [Google Scholar] [CrossRef]
- Rodríguez García, D.; Delgado Montes, C.; López Serrano, Y.; Brooks Laverdeza, R. Cambios en rasgos funcionales de las hojas de Piper reticulatum (Piperaceae) en luz y sombra en La Selva, Costa Rica. Cuad. Investig. UNED 2020, 12, 130–136. [Google Scholar] [CrossRef]
- Moreno-Barreto, E.; Rubiano, K.; Moreno-Barreto, E.; Rubiano, K. Efecto del método de emplazamiento en la respuesta funcional de seis especies arbóreas de Bogotá. Colomb. For. 2020, 23, 5–19. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, H.; Cao, Y.; Li, J.; Zhu, Q.; Yao, J.; Xu, C. Effect of Simulated Warming on Leaf Functional Traits of Urban Greening Plants. BMC Plant Biol. 2020, 20, 139. [Google Scholar] [CrossRef]
- Lüttge, U.; Buckeridge, M. Trees: Structure and Function and the Challenges of Urbanization. Trees 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Nowak, D.J.; Randler, P.B.; Greenfield, E.J.; Comas, S.J.; Carr, M.A.; Alig, R.J. Sustaining America’s Urban Trees and Forests: A Forests on the Edge Report; Gen. Tech. Rep. NRS-62; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2010; Volume 62, 27p. [CrossRef]
- Vieira, J.; Matos, P.; Mexia, T.; Silva, P.; Lopes, N.; Freitas, C.; Correia, O.; Santos-Reis, M.; Branquinho, C.; Pinho, P. Green Spaces Are Not All the Same for the Provision of Air Purification and Climate Regulation Services: The Case of Urban Parks. Environ. Res. 2018, 160, 306–313. [Google Scholar] [CrossRef]
- Jansson, M. Green Space in Compact Cities: The Benefits and Values of Urban Ecosystem Services in Planning. Nord. J. Archit. Res. 2014, 26, 139–160. [Google Scholar]
- Liu, H.-L.; Shen, Y.-S. The Impact of Green Space Changes on Air Pollution and Microclimates: A Case Study of the Taipei Metropolitan Area. Sustainability 2014, 6, 8827–8855. [Google Scholar] [CrossRef]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using Green Infrastructure to Improve Urban Air Quality (GI4AQ). Ambio 2020, 49, 62–73. [Google Scholar] [CrossRef]
- Pinho, P.; Correia, O.; Lecoq, M.; Munzi, S.; Vasconcelos, S.; Gonçalves, P.; Rebelo, R.; Antunes, C.; Silva, P.; Freitas, C.; et al. Evaluating Green Infrastructure in Urban Environments Using a Multi-Taxa and Functional Diversity Approach. Environ. Res. 2016, 147, 601–610. [Google Scholar] [CrossRef]
- Gill, A.S.; Purnell, K.; Palmer, M.I.; Stein, J.; McGuire, K.L. Microbial Composition and Functional Diversity Differ Across Urban Green Infrastructure Types. Front. Microbiol. 2020, 11, 912. [Google Scholar] [CrossRef]
- Matthews, T.; Lo, A.Y.; Byrne, J.A. Reconceptualizing Green Infrastructure for Climate Change Adaptation: Barriers to Adoption and Drivers for Uptake by Spatial Planners. Landsc. Urban Plan. 2015, 138, 155–163. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and Valuing Ecosystem Services for Urban Planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Kumar, P.; Khare, M.; Harrison, R.M.; Bloss, W.J.; Lewis, A.C.; Coe, H.; Morawska, L. New Directions: Air Pollution Challenges for Developing Megacities like Delhi. Atmos. Environ. 2015, 122, 657–661. [Google Scholar] [CrossRef]
- Ou, Y.; West, J.J.; Smith, S.J.; Nolte, C.G.; Loughlin, D.H. Air Pollution Control Strategies Directly Limiting National Health Damages in the US. Nat. Commun. 2020, 11, 957. [Google Scholar] [CrossRef]
- Santos, A.; Pinho, P.; Munzi, S.; Botelho, M.J.; Palma-Oliveira, J.M.; Branquinho, C. The Role of Forest in Mitigating the Impact of Atmospheric Dust Pollution in a Mixed Landscape. Environ. Sci. Pollut. Res. 2017, 24, 12038–12048. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Nock, C.A.; Paquette, A.; Follett, M.; Nowak, D.J.; Messier, C. Effects of Urbanization on Tree Species Functional Diversity in Eastern North America. Ecosystems 2013, 16, 1487–1497. [Google Scholar] [CrossRef]
- Pearse, W.D.; Cavender-Bares, J.; Hobbie, S.E.; Avolio, M.L.; Bettez, N.; Roy Chowdhury, R.; Darling, L.E.; Groffman, P.M.; Grove, J.M.; Hall, S.J.; et al. Homogenization of Plant Diversity, Composition, and Structure in North American Urban Yards. Ecosphere 2018, 9, e02105. [Google Scholar] [CrossRef]
- Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L. Urban Particulate Pollution Reduction by Four Species of Green Roof Vegetation in a UK City. Atmos. Environ. 2012, 61, 283–293. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Khlystov, A. Investigation of Ultrafine Particle Deposition to Vegetation Branches in a Wind Tunnel. Aerosol Sci. Technol. 2012, 46, 465–472. [Google Scholar] [CrossRef]
- Sæbø, A.; Popek, R.; Nawrot, B.; Hanslin, H.M.; Gawronska, H.; Gawronski, S.W. Plant Species Differences in Particulate Matter Accumulation on Leaf Surfaces. Sci. Total Environ. 2012, 427–428, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Dzierżanowski, K.; Popek, R.; Gawrońska, H.; Sæbø, A.; Gawroński, S.W. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. Int. J. Phytoremediation 2011, 13, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Przybysz, A.; Sæbø, A.; Hanslin, H.M.; Gawroński, S.W. Accumulation of Particulate Matter and Trace Elements on Vegetation as Affected by Pollution Level, Rainfall and the Passage of Time. Sci. Total Environ. 2014, 481, 360–369. [Google Scholar] [CrossRef] [PubMed]
Stage | Keywords | Databases | Total Docs. | Average Index (Q) | Quartile | Quartile Variation | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Scopus | ScienceDirect | Google Scholar | |||||||||
Docs. | Index | Docs. | Index | Docs. | Index | ||||||
1 | Leaf morphology, urban trees, and air pollution | 8181 | 1.000 | 1525 | 1.000 | 16,800 | 1.000 | 26,506 | - | - | - |
2 | PM—all fractions | 4203 | 0.514 | 1141 | 0.748 | 17,100 | 1.018 | 22,444 | 0.760 | Q1 | Q2, Q1, Q1 |
O3 | 3464 | 0.423 | 484 | 0.317 | 17,100 | 1.018 | 21,048 | 0.586 | Q2 | Q3, Q3, Q1 | |
PM2.5 | 2335 | 0.285 | 637 | 0.418 | 13,600 | 0.810 | 16,572 | 0.504 | Q2 | Q3, Q3, Q1 | |
CO2 | 994 | 0.122 | 218 | 0.143 | 17,100 | 1.018 | 18,312 | 0.427 | Q3 | Q4, Q4, Q1 | |
PM10 | 1447 | 0.177 | 404 | 0.265 | 13,900 | 0.827 | 15,751 | 0.423 | Q3 | Q4, Q1, Q1 | |
CO | 1194 | 0.146 | 149 | 0.098 | 11,900 | 0.708 | 13,243 | 0.317 | Q3 | Q4, Q4, Q2 | |
NO2 | 1632 | 0.199 | 153 | 0.100 | 9810 | 0.584 | 11,595 | 0.295 | Q3 | Q4, Q4, Q2 | |
SO2 | 1379 | 0.169 | 157 | 0.103 | 9910 | 0.590 | 11,446 | 0.287 | Q3 | Q4, Q4, Q2 | |
COVs | 1216 | 0.149 | 255 | 0.167 | 2180 | 0.130 | 3651 | 0.149 | Q4 | Q4, Q4, Q4 | |
TSP | 42 | 0.005 | 37 | 0.024 | 1200 | 0.071 | 1279 | 0.034 | Q4 | Q4, Q4, Q4 | |
3 | LA | 7457 | 1.000 | 2245 | 1.000 | 313,000 | 1.000 | 322,702 | 1.000 | Q1 | Q1, Q1, Q1 |
SLA | 1096 | 0.147 | 192 | 0.086 | 17,500 | 0.056 | 18,788 | 0.096 | Q4 | Q4, Q4, Q4 | |
LS | 1030 | 0.138 | 835 | 0.372 | 35,300 | 0.113 | 37,165 | 0.080 | Q4 | Q4, Q3, Q4 | |
LDMC | 196 | 0.026 | 41 | 0.018 | 4720 | 0.015 | 4957 | 0.020 | Q4 | Q4, Q4, Q4 | |
4 | Green infrastructure | 750 | 1.000 | 345 | 1.000 | 19,400 | 1.000 | 20,495 | 1.000 | Q1 | Q1, Q1, Q1 |
Air quality management | 233 | 0.311 | 243 | 0.704 | 18,800 | 0.969 | 19,276 | 0.661 | Q2 | Q3, Q2, Q1 | |
Urban tree management | 3 | 0.013 | 2 | 0.008 | 331 | 0.017 | 336 | 0.013 | Q4 | Q4, Q4, Q4 |
Site | Values | PM2.5 | PM10 | O3 | NO2 | SO2 | CO |
---|---|---|---|---|---|---|---|
China | Maximum | 631 | 136 | 268 | 23.6 | 19.3 | 1.26 |
Minimum | 34.0 | 42.0 | 18.0 | 6.50 | 4.30 | 0.48 | |
Mean | 155 | 92.0 | 83.6 | 14.4 | 10.8 | 0.74 | |
Median | 72.0 | 91.3 | 36.4 | 14.4 | 9.60 | 0.71 | |
Europe | Maximum | 224 | 173 | 120 | 87.1 | 12.9 | 0.78 |
Minimum | 10.0 | 10.1 | 1.02 | 0.31 | 1.18 | 0.02 | |
Mean | 115 | 63.5 | 50.3 | 43.7 | 7.08 | 0.49 | |
Median | 112 | 41.1 | 40.1 | 39.7 | 6.43 | 0.75 | |
USA | Maximum | 16.4 | 265 | 47.2 | 0.63 | 0.92 | 50.0 |
Minimum | 12.6 | 0.50 | 30.2 | 0.25 | 0.32 | 31.0 | |
Mean | 13.9 | 70.4 | 37.8 | 0.43 | 0.52 | 41.1 | |
Median | 13.4 | 0.42 | 37.5 | 0.41 | 0.46 | 41.5 | |
Global | Maximum | 631 | 265 | 268 | 87.1 | 19.3 | 50.7 |
Minimum | 10.0 | 0.50 | 1.04 | 0.25 | 0.24 | 0.28 | |
Mean | 123 | 69.9 | 66.1 | 14.6 | 6.73 | 14.2 | |
Median | 71.8 | 50.0 | 36.4 | 7.34 | 5.60 | 0.90 |
Air Pollutants | p-Valor | rs-Spearman |
---|---|---|
PM2.5–PM10 | 0.049 | 0.707 |
PM2.5–O3 | <0.001 | 0.926 |
PM2.5–SO2 | 0.011 | 0.824 |
PM2.5–NO2 | 0.003 | 0.890 |
PM10–O3 | 0.039 | 0.731 |
PM10–SO2 | 0.089 * | 0.636 |
PM10–NO2 | 0.017 | 0.798 |
O3–SO2 | 0.051 * | 0.703 |
O3–NO2 | 0.022 | 0.780 |
SO2–NO2 | <0.001 | 0.951 |
Leaf Traits | Index (Q) | Citation Frequency |
---|---|---|
LA | 1.000 | 80.0% |
SLA | 0.096 | 9.60% |
LS | 0.080 | 8.00% |
LDMC | 0.020 | 2.00% |
LT | 0.013 | 1.30% |
SD | 0.001 | 0.10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Santamaría, K.; Zafra-Mejía, C.A.; Rondón-Quintana, H.A. Macro-Morphological Traits of Leaves for Urban Tree Selection for Air Pollution Biomonitoring: A Review. Biosensors 2022, 12, 812. https://doi.org/10.3390/bios12100812
Rodríguez-Santamaría K, Zafra-Mejía CA, Rondón-Quintana HA. Macro-Morphological Traits of Leaves for Urban Tree Selection for Air Pollution Biomonitoring: A Review. Biosensors. 2022; 12(10):812. https://doi.org/10.3390/bios12100812
Chicago/Turabian StyleRodríguez-Santamaría, Karen, Carlos Alfonso Zafra-Mejía, and Hugo Alexander Rondón-Quintana. 2022. "Macro-Morphological Traits of Leaves for Urban Tree Selection for Air Pollution Biomonitoring: A Review" Biosensors 12, no. 10: 812. https://doi.org/10.3390/bios12100812
APA StyleRodríguez-Santamaría, K., Zafra-Mejía, C. A., & Rondón-Quintana, H. A. (2022). Macro-Morphological Traits of Leaves for Urban Tree Selection for Air Pollution Biomonitoring: A Review. Biosensors, 12(10), 812. https://doi.org/10.3390/bios12100812