The Kinetic and Analytical Aspects of Enzyme Competitive Inhibition: Sensing of Tyrosinase Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Carbon Paste Electrodes
2.2. Tyrosinase Immobilization
2.3. Enzymatic Assays
2.3.1. Electrochemical Assays
2.3.2. Spectrophotometric Assays
2.4. Biosensor Response Measurements
2.5. Competitive Inhibition of Tyrosinase
3. Results and Discussion
3.1. Analytical Performances of Tyrosinase Biosensors for Substrate Determination
3.2. Analytical Performances of Biosensors Based on Immobilized Tyrosinase for Inhibitor Determination
3.3. Kinetic Study and Analytical Aspects of Free Tyrosinase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campaña, A.L.; Florez, S.L.; Noguera, M.J.; Fuentes, O.P.; Puentes, P.R.; Cruz, J.C.; Osma, J.F. Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater. Biosensors 2019, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xiao, F.; Liu, H. Hierarchical CNTs@CuMn Layered Double Hydroxide Nanohybrid with Enhanced Electrochemical Performance in H2S Detection from Live Cells. Anal. Chem. 2019, 91, 3912–3920. [Google Scholar] [CrossRef]
- Asif, M.; Haitao, W.; Shuang, D.; Aziz, A.; Zhang, G.; Xiao, F.; Liu, H. Chemical Metal oxide intercalated layered double hydroxide nanosphere: With enhanced electrocatalyic activity towards H2O2 for biological applications. Sens. Actuators B Chem. 2017, 239, 243–252. [Google Scholar] [CrossRef]
- Ashraf, G.; Asif, M.; Aziz, A.; Iftikhar, T.; Liu, H. Rice-Spikelet-like Copper Oxide Decorated with Platinum Stranded in the CNT Network for Electrochemical In Vitro Detection of Serotonin. ACS Appl. Mater. Interfaces 2021, 5, 6023–6033. [Google Scholar] [CrossRef]
- Alvau, M.D.; Tartaggia, S.; Meneghello, A.; Casetta, B.; Calia, G.; Serra, P.A.; Polo, F.; Toffoli, G. Enzyme-Based Electrochemical Biosensor for Therapeutic Drug Monitoring of Anticancer Drug Irinotecan. Anal. Chem. 2018, 90, 6012–6019. [Google Scholar] [CrossRef]
- Bollella, P.; Gorton, L. Enzyme based amperometric biosensors. Curr. Opin. Electrochem. 2018, 10, 157–173. [Google Scholar] [CrossRef]
- Asif, M.; Aziz, A.; Azeem, M.; Ashraf, G.; Xiao, F.; Chen, X.; Liu, H. A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv. Colloid Interface Sci. 2018, 262, 21–38. [Google Scholar] [CrossRef]
- Aina, F.; Manan, A.; Weng, W.; Abdullah, J.; Azah, N.; Ahmad, I. Nanocrystalline cellulose decorated quantum dots based tyrosinase biosensor for phenol determination. Mater. Sci. Eng. C 2019, 99, 37–46. [Google Scholar] [CrossRef]
- Achi, F.; Bensana, A. Nanobiosensors for Detection of Phenolic Compounds. In Nanotechnology in the Life Sciences; Springer: Cham, Switzerland, 2020; pp. 275–307. ISBN 9783030451165. [Google Scholar]
- Casanova, A.; Cuartero, M.; Alacid, Y.; Almagro, C.M.; García-Cánovas, F.; García, M.S.; Ortuño, J.A. A sustainable amperometric biosensor for the analysis of ascorbic, benzoic, gallic and kojic acids through catechol detection. Innovation and signal processing. Analyst 2020, 145, 3645–3655. [Google Scholar] [CrossRef] [Green Version]
- Nejadmansouri, M.; Majdinasab, M.; Nunes, G.S.; Marty, J.L. An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. Sensors 2021, 4, 1176. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Development of a novel electrochemical biosensor based on carbon nanofibers–gold nanoparticles– tyrosinase for the detection of ferulic acid in cosmetics. Sensors 2020, 20, 6724. [Google Scholar] [CrossRef]
- Sýs, M.; Obluková, M.; Kolivo, V.; Sokolová, R.; Korecká, L. Catalytic properties of variously immobilized mushroom tyrosinase: A kinetic study for future development of biomimetic amperometric biosensors. J. Electroanal. Chem. 2020, 864, 114066. [Google Scholar] [CrossRef]
- García-Guzmán, J.J.; López-Iglesias, D.; Cubillana-Aguilera, L.; Lete, C.; Lupu, S.; Palacios-Santander, J.M.; Bellido-Milla, D. Assessment of the Polyphenol Indices and Antioxidant Capacity for Beers and Wines Using a tyrosinase-based biosensor prepared by sinusoidal current method. Sensors 2018, 1, 66. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zheng, J.; He, Y.; Sheng, Q. A sandwich-type phenolic biosensor based on tyrosinase embedding into single-wall carbon nanotubes and polyaniline nanocomposites. Sens. Actuators B Chem. 2013, 186, 417–422. [Google Scholar] [CrossRef]
- Liu, D.; Chen, J.; Shi, Y. Tyrosinase immobilization on aminated magnetic nanoparticles by physical adsorption combined with covalent crosslinking with improved catalytic activity, reusability and storage stability. Anal. Chim. Acta 2018, 1006, 90–98. [Google Scholar] [CrossRef]
- Lasmi, K.; Derder, H.; Kermad, A.; Sam, S.; Boukhalfa-abib, H.; Belhousse, S.; Zohra, F.; Hamdani, K.; Gabouze, N. Tyrosinase immobilization on functionalized porous silicon surface for optical monitoring of pyrocatechol. Appl. Surf. Sci. 2018, 466, 3–9. [Google Scholar] [CrossRef]
- Wong, A.A.; Santos, A.; Filho, O.F.; Sotomayor, M. Amperometric tyrosinase biosensor based on carbon black paste electrode for sensitive detection of catechol in environmental samples. Electroanalysis 2021, 2, 431–437. [Google Scholar] [CrossRef]
- El Harrad, L.; Bourais, I.; Mohammadi, H.; Amine, A. Recent advances in electrochemical biosensors based on enzyme inhibition for clinical and pharmaceutical applications. Sensors 2018, 18, 164. [Google Scholar] [CrossRef] [Green Version]
- Stanford, S.M.; Bottini, N. Targeting Tyrosine Phosphatases: Time to End the Stigma. Trends Pharmacol. Sci. 2017, 38, 524–540. [Google Scholar] [CrossRef] [PubMed]
- Ouertani, A.; Neifar, M.; Ouertani, R.; Masmoudi, A.S.; Mosbah, A.; Cherif, A. Effectiveness of enzyme inhibitors in biomedicine and pharmacotherapy. Adv. Tissue Eng. Regen. Med. 2019, 5, 85–90. [Google Scholar] [CrossRef]
- Li, L.; Cai, Y.; Sun, X.; Du, X.; Jiang, Z.; Ni, H.; Yang, Y.; Chen, F. Tyrosinase inhibition by p-coumaric acid ethyl ester identified from camellia pollen. Food Sci. Nutr. 2021, 9, 389–400. [Google Scholar] [CrossRef]
- Shie, J.J.; Fang, J.M. Development of effective anti-influenza drugs: Congeners and conjugates—A review. J. Biomed. Sci. 2019, 26, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahzad, S.; Qadir, M.A.; Ahmed, M.; Ahmad, S.; Khan, M.J.; Gulzar, A.; Muddassar, M. Folic acid-sulfonamide conjugates as antibacterial agents: Design, synthesis and molecular docking studies. RSC Adv. 2020, 10, 42983–42992. [Google Scholar] [CrossRef]
- Robin, T.; Reuveni, S.; Urbakh, M. Single-molecule theory of enzymatic inhibition. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Amine, A.; El Harrad, L.; Arduini, F.; Moscone, D.; Palleschi, G. Analytical aspects of enzyme reversible inhibition. Talanta 2014, 118, 368–374. [Google Scholar] [CrossRef]
- Amine, A.; Arduini, F.; Moscone, D.; Palleschi, G. Recent advances in biosensors based on enzyme inhibition. Biosens. Bioelectron. 2016, 76, 180–194. [Google Scholar] [CrossRef]
- Ramsay, R.R.; Tipton, K.F. Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs. Molecules 2017, 22, 1192. [Google Scholar] [CrossRef] [Green Version]
- Segel, I.H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems Horizons in Biochemistry and Biophysics; John Wiley Sons: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada, 1975; Volume 60, pp. 220–221. [Google Scholar]
- Bezerra, R.M.F.; Dias, A.A. Utilization of integrated Michaelis-Menten equation to determine kinetic constants. Biochem. Mol. Biol. Educ. 2007, 35, 145–150. [Google Scholar] [CrossRef]
- Amine, A.; Cinti, S.; Arduini, F.; Moscone, D.; Palleschi, G. How to extend range linearity in enzyme inhibition-based biosensing assays. Talanta 2018, 189, 365–369. [Google Scholar] [CrossRef]
- Arduini, F.; Di Nardo, F.; Amine, A.; Micheli, L.; Palleschi, G.; Moscone, D. Carbon Black-Modified Screen-Printed Electrodes as Electroanalytical Tools. Electroanalysis 2012, 24, 743–751. [Google Scholar] [CrossRef]
- Nadifiyine, S.; Haddam, M.; Mandli, J.; Chadel, S.; Blanchard, C.C.; Marty, J.L.; Amine, A. Amperometric Biosensor Based on Tyrosinase Immobilized on to a Carbon Black Paste Electrode for Phenol Determination in Olive Oil. Anal. Lett. 2013, 46, 2705–2726. [Google Scholar] [CrossRef]
- Apetrei, C.; Rodríguez-méndez, M.L.; De Saja, J.A. Amperometric tyrosinase based biosensor using an electropolymerized phosphate-doped polypyrrole film as an immobilization support. Application for detection of phenolic compounds. Electrochim. Acta 2011, 56, 8919–8925. [Google Scholar] [CrossRef]
- Campanhã, F.; Janegitz, B.C.; Brett, C.M.A.; Fatibello-filho, O. Tyrosinase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film. Sens. Actuators B Chem. 2013, 188, 1101–1108. [Google Scholar] [CrossRef]
- Chen, L.; Gu, B.; Zhu, G.; Wu, Y.; Liu, S.; Xu, C. Electron transfer properties and electrocatalytic behavior of tyrosinase on ZnO nanorod. J. Electroanal. Chem. 2008, 617, 7–13. [Google Scholar] [CrossRef]
- Camargo, J.R.; Baccarin, M.; Raymundo-pereira, P.A.; Anderson, M.; Oliveira, G.G.; Fatibello-filho, O.; Oliveira, O.N. Electrochemical biosensor made with tyrosinase immobilized in a matrix of nanodiamonds and potato starch for detecting phenolic compound. Anal. Chim. Acta 2018, 1034, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Takashima, W.; Kaneto, K. Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Sens. Actuators B Chem. 2004, 102, 271–277. [Google Scholar] [CrossRef]
- Pérez-lópez, B.; Merkoçi, A. Magnetic Nanoparticles Modifi ed with Carbon Nanotubes for Electrocatalytic Magnetoswitchable Biosensing Applications. Adv. Funct. Mater. 2011, 255–260. [Google Scholar] [CrossRef]
- Tembe, S.; Inamdar, S.; Haram, S. Electrochemical biosensor for catechol using agarose—Guar gum entrapped tyrosinase. J. Biotechnol. 2007, 128, 80–85. [Google Scholar] [CrossRef]
- Zou, Y.; Lou, D.; Dou, K.; He, L. Amperometric tyrosinase biosensor based on boron-doped nanocrystalline diamond film electrode for the detection of phenolic compounds. J. Solid State Electrochem. 2016, 20, 47–54. [Google Scholar] [CrossRef]
- Cerrato-alvarez, M.; Bernalte, E.; Bernalte-garcía, J.; Pinilla-gil, E. Fast and direct amperometric analysis of polyphenols in beers using tyrosinase-modified screen-printed gold nanoparticles biosensors. Talanta 2018, 193, 93–99. [Google Scholar] [CrossRef]
- De Matos, F.; Deon, M.; Nicolodi, S.; Weber, E.; Menezes, D.; Maria, T.; Costa, H.; Luís, S.; Dias, P.; Valmir, E.; et al. Magnetic silica/titania xerogel applied as electrochemical biosensor for catechol and catecholamines. Electrochim. Acta 2018, 264, 319–328. [Google Scholar] [CrossRef]
- Arana-peña, S.; Rios, N.S.; Carballares, D.; Mendez-sanchez, C.; Fernandez-lafuente, R. Effects of Enzyme Loading and Immobilization Conditions on the Catalytic Features of Lipase from Pseudomonas fluorescens Immobilized on Octyl-Agarose Beads. Front. Chem. 2020, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masum, M.N.; Yamauchi, K.; Mitsunaga, T. Tyrosinase inhibitors from natural and synthetic sources as skin-lightening agents. Rev. Agric. Sci. 2019, 7, 41–58. [Google Scholar] [CrossRef] [Green Version]
Biosensor | Linear Range (µM) | LOD (µM) | Sensitivity (mA mol−1·L cm−2) | Reference |
---|---|---|---|---|
Tyr–IL–MWCNT–DHP/GCE | 4.9–1100 | 0.58 | 167.34 | [34] |
Nafion–Tyr–ZnO/GCE | 10–1000 | 4 | 30.57 | [35] |
Tyr-ND-PS/GCE | 5–740 | 0.39 | Nd | [36] |
Tyr-PAPCP/ITO | 1.6–140 | 1.2 | 49.42 | [37] |
Tyr-MWCNT-MNP/SPE | 10–80 | 7.6 | 4.05 | [38] |
Tyr-PO4–PPy/Pt | 10–120 | 0.84 | 23.5 | [39] |
Tyr-Agarose-guar gum/GCE | 60–800 | 6 | Nd | [40] |
Tyr/BBND | 5–120 | 3.28 | 95.6 | [41] |
Tyr-AuNPS/SPCE | 2.5–20 | 1.2 | Nd | [42] |
Tyr-SiTiMPs | 40–530 | 0.23 | 103.12 | [43] |
Tyr-CBPE | 0.5–38 | 0.35 | 66.55 | This work |
IC50 (µM) | |||
---|---|---|---|
Catechol (µM) | Benzoic Acid | Sodium Azide | Kojic Acid |
20 | 119 | 1480 | 30 |
200 | 500 | 2000 | 58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attaallah, R.; Amine, A. The Kinetic and Analytical Aspects of Enzyme Competitive Inhibition: Sensing of Tyrosinase Inhibitors. Biosensors 2021, 11, 322. https://doi.org/10.3390/bios11090322
Attaallah R, Amine A. The Kinetic and Analytical Aspects of Enzyme Competitive Inhibition: Sensing of Tyrosinase Inhibitors. Biosensors. 2021; 11(9):322. https://doi.org/10.3390/bios11090322
Chicago/Turabian StyleAttaallah, Raouia, and Aziz Amine. 2021. "The Kinetic and Analytical Aspects of Enzyme Competitive Inhibition: Sensing of Tyrosinase Inhibitors" Biosensors 11, no. 9: 322. https://doi.org/10.3390/bios11090322
APA StyleAttaallah, R., & Amine, A. (2021). The Kinetic and Analytical Aspects of Enzyme Competitive Inhibition: Sensing of Tyrosinase Inhibitors. Biosensors, 11(9), 322. https://doi.org/10.3390/bios11090322