Voltammetric Electrochemical Sensor for Phylogenetic Study in Acer Linn.
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pax, F. Monographie Der Gattung Acer. Bot. Jahrbücher Für Syst. 1885, 7, 14–22. [Google Scholar]
- Suh, Y.; Heo, K.; Park, C.-W. Phylogenetic relationships of maples (Acer L.; Aceraceae) implied by nuclear ribosomal ITS sequences. J. Plant Res. 2000, 113, 193–202. [Google Scholar] [CrossRef]
- Rehder, A. The Maples of Eastern Continental Asia. In Sargent CS: Trees Shrubs; Houghton Mifflin: Boston, MA, USA, 1905; Volume 3, pp. 131–181. [Google Scholar]
- Koidzumi, G. Contributiones Ad Cognitionem Florae Asiae Orientalis (Continued from Vol. XL p. 348.). Shokubutsugaku Zasshi 1929, 43, 382–407. [Google Scholar] [CrossRef][Green Version]
- Ackerly, D.; Donoghue, M. Leaf Size, Sapling Allometry, and Corner’s Rules: Phylogeny and Correlated Evolution in Maples (Acer). Am. Nat. 1998, 152, 767–791. [Google Scholar] [CrossRef] [PubMed]
- Nakadai, R.; Kawakita, A. Phylogenetic Test of Speciation by Host Shift in Leaf Cone Moths (Caloptilia) Feeding on Maples (Acer). Ecol. Evol. 2016, 6, 4958–4970. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Stukel, M.; Bussies, P.; Skinner, K.; Lemmon, A.R.; Lemmon, E.M.; Brown, K.; Bekmetjev, A.; Swenson, N.G. Maple Phylogeny and Biogeography Inferred from Phylogenomic Data. J. Syst. Evol. 2019, 57, 594–606. [Google Scholar] [CrossRef]
- Yu, T.; Gao, J.; Huang, B.-H.; Dayananda, B.; Ma, W.-B.; Zhang, Y.-Y.; Liao, P.-C.; Li, J.-Q. Comparative Plastome Analyses and Phylogenetic Applications of the Acer Section Platanoidea. Forests 2020, 11, 462. [Google Scholar] [CrossRef]
- Luo, H.; Xia, X.; Kim, G.D.; Liu, Y.; Xue, Z.; Zhang, L.; Shu, Y.; Yang, T.; Chen, Y.; Zhang, S. Characterizing Dedifferentiation of Thyroid Cancer by Integrated Analysis. Sci. Adv. 2021, 7, eabf3657. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Z.; Su, Z.; Liu, Y.; Yang, T.; Cao, M.; Jiang, Y.; Tang, Y.; Chen, H.; Zhang, W. Novel Recurrent Altered Genes in Chinese Patients with Anaplastic Thyroid Cancer. J. Clin. Endocrinol. Metab. 2021, 106, 988–998. [Google Scholar] [CrossRef]
- Santos, C.S.; Bannitz-Fernandes, R.; Lima, A.S.; Tairum, C.A.; Malavazi, I.; Netto, L.E.S.; Bertotti, M. Monitoring H2O2 inside Aspergillus Fumigatus with an Integrated Microelectrode: The Role of Peroxiredoxin Protein Prx1. Anal. Chem. 2018, 90, 2587–2593. [Google Scholar] [CrossRef]
- Lima, A.S.; Prieto, K.R.; Santos, C.S.; Paula Valerio, H.; Garcia-Ochoa, E.Y.; Huerta-Robles, A.; Beltran-Garcia, M.J.; Di Mascio, P.; Bertotti, M. In-Vivo Electrochemical Monitoring of H2O2 Production Induced by Root-Inoculated Endophytic Bacteria in Agave Tequilana Leaves. Biosens. Bioelectron. 2018, 99, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Doménech-Carbó, A.; Dias, D.; Donnici, M. In Vivo Electrochemical Monitoring of Signaling Transduction of Plant Defense Against Stress in Leaves of Aloe vera L. Electroanalysis 2021, 33, 1024–1032. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Ibars, A.M.; Prieto-Mossi, J.; Estrelles, E.; Doménech-Carbó, M.T.; Ortiz-Miranda, A.S.; Martini, M.; Lee, Y. Access to Phylogeny from Voltammetric Fingerprints of Seeds: The Asparagus Case. Electroanalysis 2017, 29, 643–650. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K. A Critical Review on the Use of Potentiometric Based Biosensors for Biomarkers Detection. Biosens. Bioelectron. 2021, 184, 113252. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Alizadeh, M.; Orooji, Y.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. Guanine-Based DNA Biosensor Amplified with Pt/SWCNTs Nanocomposite as Analytical Tool for Nanomolar Determination of Daunorubicin as an Anticancer Drug: A Docking/Experimental Investigation. Ind. Eng. Chem. Res. 2021, 60, 816–823. [Google Scholar] [CrossRef]
- Mateo, E.M.; Gómez, J.V.; Montoya, N.; Mateo-Castro, R.; Gimeno-Adelantado, J.V.; Jiménez, M.; Doménech-Carbó, A. Electrochemical Identification of Toxigenic Fungal Species Using Solid-State Voltammetry Strategies. Food Chem. 2018, 267, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Doménech-Carbó, A.; Ibars, A.M.; Prieto-Mossi, J.; Estrelles, E.; Scholz, F.; Cebrián-Torrejón, G.; Martini, M. Electrochemistry-Based Chemotaxonomy in Plants Using the Voltammetry of Microparticles Methodology. New J. Chem. 2015, 39, 7421–7428. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Cervelló-Bulls, P.; González, J.M.; Soriano, P.; Estrelles, E.; Montoya, N. Electrochemical Monitoring of ROS Influence on Seedlings and Germination Response to Salinity Stress of Three Species of the Tribe Inuleae. RSC Adv. 2019, 9, 17856–17867. [Google Scholar] [CrossRef]
- Ren, Q.-Q.; Huang, X.-R.; Liu, G.-C.; Ou-Yang, J.; Li, M.-T.; Chen, H.; Zhao, Y.-D.; Chen, W. A Field-Compatible Technique Using an Electrochemical Sensing Microbundle for Real-Time and Simultaneous in Vivo Measurement of Hydrogen Peroxide, Nitric Oxide, and PH under Drought Stress. Sens. Actuators B Chem. 2015, 220, 743–748. [Google Scholar] [CrossRef]
- Liu, J.; Yang, T.; Xu, J.; Sun, Y. A New Electrochemical Detection Technique for Organic Matter Content in Ecological Soils. Front. Chem. 2021, 9, 488. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, M.; Zhang, Z.; Zeng, H.; Shi, R.; Ma, X.; Wang, L.; Liao, B. Graphene-Assisted Electrochemical Sensor for Detection of Pancreatic Cancer Markers. Front. Chem. 2021, 9, 683. [Google Scholar] [CrossRef]
- Yue, Y.; Su, L.; Hao, M.; Li, W.; Zeng, L.; Yan, S. Evaluation of Peroxidase in Herbal Medicines Based on an Electrochemical Sensor. Front. Chem. 2021, 9, 479. [Google Scholar] [CrossRef]
- Zhang, M.; Pan, B.; Wang, Y.; Du, X.; Fu, L.; Zheng, Y.; Chen, F.; Wu, W.; Zhou, Q.; Ding, S. Recording the Electrochemical Profile of Pueraria Leaves for Polyphyly Analysis. ChemistrySelect 2020, 5, 5035–5040. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, J.; Fu, L.; Liu, Q. Phylogenetic Investigation of Yellow Camellias Based on Electrochemical Voltammetric Fingerprints. Int. J. Electrochem. Sci 2020, 15, 9622–9630. [Google Scholar] [CrossRef]
- Fu, L.; Wu, M.; Zheng, Y.; Zhang, P.; Ye, C.; Zhang, H.; Wang, K.; Su, W.; Chen, F.; Yu, J.; et al. Lycoris Species Identification and Infrageneric Relationship Investigation via Graphene Enhanced Electrochemical Fingerprinting of Pollen. Sens. Actuators B Chem. 2019, 298, 126836. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zhang, P.; Wang, Y.; Zheng, Y.; Fu, L.; Zhang, H.; Lin, C.-T.; Yu, A. Infrageneric Phylogenetics Investigation of Chimonanthus Based on Electroactive Compound Profiles. Bioelectrochemistry 2020, 133, 107455. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Zhuang, W.; Zhang, H.; Wang, A.; Su, W.; Yu, J.; Lin, C.-T. Enhanced Electrochemical Voltammetric Fingerprints for Plant Taxonomic Sensing. Biosens. Bioelectron. 2018, 120, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Zheng, Y.; Zhang, P.; Zhu, J.; Zhang, H.; Zhang, L.; Su, W. Embedding Leaf Tissue in Graphene Ink to Improve Signals in Electrochemistry-Based Chemotaxonomy. Electrochem. Commun. 2018, 92, 39–42. [Google Scholar] [CrossRef]
- Fu, L.; Wang, Q.; Zhang, M.; Zheng, Y.; Wu, M.; Lan, Z.; Pu, J.; Zhang, H.; Chen, F.; Su, W. Electrochemical Sex Determination of Dioecious Plants Using Polydopamine-Functionalized Graphene Sheets. Front. Chem. 2020, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Wang, Q.; Wu, W.; Zhou, Q.; Li, D.; Xu, Z.; Fu, L.; Zhu, J.; Karimi-Maleh, H.; Lin, C.-T. Electrochemical Fingerprint Biosensor for Natural Indigo Dye Yielding Plants Analysis. Biosensors 2021, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, R.; Li, Z.; Zhang, M.; Wang, Q.; Xu, Y.; Fu, L.; Du, J.; Zheng, Y.; Zhu, J. Electroanalytical Study of Infrageneric Relationship of Lagerstroemia Using Glassy Carbon Electrode Recorded Voltammograms. Rev. Mex. De Ing. Química 2020, 19, 281–291. [Google Scholar] [CrossRef]
- Fu, L.; Su, W.; Chen, F.; Zhao, S.; Zhang, H.; Karimi-Maleh, H.; Yu, A.; Yu, J.; Lin, C.-T. Early Sex Determination of Ginkgo Biloba Based on the Differences in the Electrocatalytic Performance of Extracted Peroxidase. Bioelectrochemistry 2021, 140, 107829. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Xu, Y.; Zhou, J.; Zhang, H.; Karimi-Maleh, H.; Lai, G.; Zhao, S.; et al. Development of an Electrochemical Biosensor for Phylogenetic Analysis of Amaryllidaceae Based on the Enhanced Electrochemical Fingerprint Recorded from Plant Tissue. Biosens. Bioelectron. 2020, 159, 112212. [Google Scholar] [CrossRef]
- Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Wu, M.; Zhang, H.; Wang, A.; Su, W.; Chen, F.; Yu, J.; et al. An Electrochemical Method for Plant Species Determination and Classification Based on Fingerprinting Petal Tissue. Bioelectrochemistry 2019, 129, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, F.; Contreras, P. Algorithms for Hierarchical Clustering: An Overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 86–97. [Google Scholar] [CrossRef]
- Mitra, S.; Purkait, T.; Pramanik, K.; Maiti, T.K.; Dey, R.S. Three-Dimensional Graphene for Electrochemical Detection of Cadmium in Klebsiella Michiganensis to Study the Influence of Cadmium Uptake in Rice Plant. Mater. Sci. Eng. C 2019, 103, 109802. [Google Scholar] [CrossRef]
- Garcia, L.F.; Benjamin, S.R.; Antunes, R.S.; Lopes, F.M.; Somerset, V.S.; Gil, E.d.S. Solanum Melongena Polyphenol Oxidase Biosensor for the Electrochemical Analysis of Paracetamol. Prep. Biochem. Biotechnol. 2016, 46, 850–855. [Google Scholar] [CrossRef]
- Suhaimi, S.; Shahimin, M.M.; Alahmed, Z.; Chyský, J.; Reshak, A. Materials for Enhanced Dye-Sensitized Solar Cell Performance: Electrochemical Application. Int. J. Electrochem. Sci. 2015, 10, 2859–2871. [Google Scholar]
- Kim, J.; Jeerapan, I.; Ciui, B.; Hartel, M.C.; Martin, A.; Wang, J. Edible Electrochemistry: Food Materials Based Electrochemical Sensors. Adv. Healthc. Mater. 2017, 6, 1700770. [Google Scholar] [CrossRef]
- Fu, L.; Wang, A.; Lai, G.; Su, W.; Malherbe, F.; Yu, J.; Lin, C.-T.; Yu, A. Defects Regulating of Graphene Ink for Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid. Talanta 2018, 180, 248–253. [Google Scholar] [CrossRef]
- Feng, Y.; Comes, H.P.; Zhou, X.-P.; Qiu, Y.-X. Phylogenomics Recovers Monophyly and Early Tertiary Diversification of Dipteronia (Sapindaceae). Mol. Phylogenet. Evol. 2019, 130, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Grimm, G.; Denk, T.; Hemleben, V. Evolutionary History and Systematics of Acer Section Acer—A Case Study of Low-Level Phylogenetics. Plant Syst. Evol. 2007, 267, 215–253. [Google Scholar] [CrossRef]
- Li, L.; Lejing, L.; Zhiyong, Z.; Yulong, D.; Benke, K. Studies on the Taxonomy and Molecular Phylogeny of Acer in China. Acta Hortic. Sin. 2017, 44, 1535. [Google Scholar]
- Luo, X.-Y.; Yu, Y.-B.; Peng, H.-Y.; Tang, G. The Complete Chloroplast Genome Sequence of the Drought-Tolerant Maple Acer coriaceifolium H. Lév. (Aceraceae). Mitochondrial DNA Part B 2019, 4, 1131–1132. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Liu, K.; Li, X.; Gu, Y.; Zheng, Y.; Fan, B.; Wu, W. Voltammetric Electrochemical Sensor for Phylogenetic Study in Acer Linn. Biosensors 2021, 11, 323. https://doi.org/10.3390/bios11090323
Zhou Q, Liu K, Li X, Gu Y, Zheng Y, Fan B, Wu W. Voltammetric Electrochemical Sensor for Phylogenetic Study in Acer Linn. Biosensors. 2021; 11(9):323. https://doi.org/10.3390/bios11090323
Chicago/Turabian StyleZhou, Qingwei, Kewei Liu, Xiaolong Li, Yonghua Gu, Yuhong Zheng, Boyuan Fan, and Weihong Wu. 2021. "Voltammetric Electrochemical Sensor for Phylogenetic Study in Acer Linn." Biosensors 11, no. 9: 323. https://doi.org/10.3390/bios11090323
APA StyleZhou, Q., Liu, K., Li, X., Gu, Y., Zheng, Y., Fan, B., & Wu, W. (2021). Voltammetric Electrochemical Sensor for Phylogenetic Study in Acer Linn. Biosensors, 11(9), 323. https://doi.org/10.3390/bios11090323