An Overview of Artificial Olfaction Systems with a Focus on Surface Plasmon Resonance for the Analysis of Volatile Organic Compounds
Abstract
:1. Introduction
2. Gas Sensors and Electronic Noses Based on Various Sensing Systems
2.1. Chemiresistive Sensors
2.1.1. MOS Sensors
2.1.2. Conducting Organic Polymers Sensors
2.2. Electrochemical Sensors
2.3. Field Effect Transistor (FET)
2.4. Gravimetric or Piezoelectric Sensors
2.5. Optical Sensors
3. Propagating SPR-Based Gas Sensors and Electronic Noses
3.1. The Theory of Propagating SPR
3.2. Prism Coupler-Based Sensors
3.2.1. Detection of VOCs in Liquid Phase
3.2.2. Detection of VOCs in Gas Phase
3.3. Wave Guide Coupler-Based Sensors
3.4. Grating Coupler-Based SPR Sensors
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATR | attenuated total reflection |
BAW | bulk acoustic wave |
BTEX | benzene, toluene, ethylbenzene and m-xylene |
CCP | composite conducting polymer |
CNT | reduced graphene oxide-carbon nanotube |
CP | conducting polymer |
CVD | chemical vapor deposition |
DL | detection limit |
DMMP | dimethylmethylphosphonate |
EIS | electrochemical impedance spectroscopy |
eN | electronic nose |
FBG | fiber Bragg grating |
FET | field effect transistor |
FO-SPR | fiber optic-SPR |
FOS | fiber optic sensor |
GC-MS | gas chromatography-mass spectrometry |
GCNT | reduced graphene oxide-carbon nanotubes |
GLAD | glancing-angle deposition |
GO | graphene oxide |
GPCR | G protein coupled receptors |
GTP | guanosine-5′-triphosphate |
ICP | intrinsic conducting polymer |
IDT | inter-digitated transducer |
LPFG | long period fiber grating |
LSPR | localized SPR |
MIP | molecularly imprinted polymer |
MO-SPR | magneto-optical SPR |
MOF | metal organic framework |
MOS | metal oxide semiconductor |
NP | nanoparticles |
NPOT | NP/oligothiophene |
OBP | odorant binding protein |
OR | olfactory receptor |
PCF | photonic crystal fiber |
PMMA | poly(methylmethacrylate) |
POF | plastic optical fiber |
ppb | parts per billion |
ppm | parts per million |
PT | polythiophene |
QCM | quartz crystal microbalance |
rGO | reduced GO |
SAW | surface acoustic wave |
SiNW | FET silicon nanowire FET |
SMF | single mode fiber |
SP | surface plasmon |
SPP | surface plasmon polariton |
SPR | surface plasmon resonance |
SPW | surface plasma wave |
TBD | toluene binding domain |
TECS | technology enhanced clad silica |
TIR | total internal reflection |
TM | transverse-magnetic |
TNT | 2,3,6-trinitrotoluene |
VOC | volatile organic compound |
ZIF | zeolitic imidazolate framework |
References
- Genva, M.; Kenne Kemene, T.; Deleu, M.; Lins, L.; Fauconnier, M.-L. Is It Possible to Predict the Odor of a Molecule on the Basis of Its Structure? Int. J. Mol. Sci. 2019, 20, 3018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.; Liu, L.; Korposh, S.; Correia, R.; Morgan, S.P. Volatile Organic Compound Vapour Measurements Using a Localised Surface Plasmon Resonance Optical Fibre Sensor Decorated with a Metal-Organic Framework. Sensors 2021, 21, 1420. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.P.F.; Magan, N. Electronic Noses and Disease Diagnostics. Nat. Rev. Microbiol. 2004, 2, 161–166. [Google Scholar] [CrossRef]
- Shan, B.; Broza, Y.Y.; Li, W.; Wang, Y.; Wu, S.; Liu, Z.; Wang, J.; Gui, S.; Wang, L.; Zhang, Z.; et al. Multiplexed Nanomaterial-Based Sensor Array for Detection of COVID-19 in Exhaled Breath. ACS Nano 2020, 14, 12125–12132. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.; Jjunju, F.P.M.; Griffith, E.J.; Wuerger, S.M.; Marshall, A. Artificial Odour-Vision Syneasthesia via Olfactory Sensory Argumentation. IEEE Sens. J. 2021, 21, 6784–6792. [Google Scholar] [CrossRef]
- Cornu, J.-N.; Cancel-Tassin, G.; Ondet, V.; Girardet, C.; Cussenot, O. Olfactory Detection of Prostate Cancer by Dogs Sniffing Urine: A Step Forward in Early Diagnosis. Eur. Urol. 2011, 59, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Thuleau, A.; Gilbert, C.; Bauër, P.; Alran, S.; Fourchotte, V.; Guillot, E.; Vincent-Salomon, A.; Kerihuel, J.-C.; Dugay, J.; Semetey, V.; et al. A New Transcutaneous Method for Breast Cancer Detection with Dogs. Oncology 2019, 96, 110–113. [Google Scholar] [CrossRef]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A Review of Gas Sensors Employed in Electronic Nose Applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Gardner, J.W.; Bartlett, P.N. A Brief History of Electronic Noses. Sens. Actuators B Chem. 1994, 18, 210–211. [Google Scholar] [CrossRef]
- Buck, L.; Axel, R. A Novel Multigene Family May Encode Odorant Receptors: A Molecular Basis for Odor Recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, Y.; Kim, T.; Eom, T.H.; Kim, S.Y.; Jang, H.W. Chemoresistive Materials for Electronic Nose: Progress, Perspectives, and Challenges. InfoMat 2019, 1, 289–316. [Google Scholar] [CrossRef] [Green Version]
- Zwaardemaker, H.; Hogewind, F. On Spray-Electricity and Waterfall-Electricity. KNAW Proc. 1920, 22, 429–437. [Google Scholar]
- Tanyolac, N.N.; Eaton, J.R. Study of Odors. J. Am. Pharm. Assoc. Sci. Ed. 1950, 39, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Hartman, J. A Possible Objective Method for the Rapid Estimation of Flavors in Vegetables; American Society for Horticultural Science: Alexandria, VA, USA, 1954; Volume 64, pp. 335–342. [Google Scholar]
- Moncrieff, R.W. An Instrument for Measuring and Classifying Odors. J. Appl. Physiol. 1961, 16, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Buck, T.M.; Allen, F.G.; Dalton, J.V. Detection of Chemical Species by Surface Effects on Metals and Semiconductors; Bell Telephone Laboratories: Murray Hill, NJ, USA, 1965. [Google Scholar]
- Dravnieks, A.; Trotter, P.J. Polar Vapour Detector Based on Thermal Modulation of Contact Potential. J. Sci. Instrum. 1965, 42, 624–627. [Google Scholar] [CrossRef]
- Shaver, P.J. Activated tungsten oxide gas detectors. Appl. Phys. Lett. 1967, 11, 255–257. [Google Scholar] [CrossRef]
- Taguchi, N. Gas Detecting Devices. U.S. Patent 3,631,436, 28 December 1971. [Google Scholar]
- Henry, W.; Raymond, D. Surface Acoustic Wave Probe for Chemical Analysis. I. Introduction and Instrument Description. Anal. Chem. 1979, 51, 1458–1464. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of Discrimination Mechanisms in the Mammalian Olfactory System Using a Model Nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, A.; Kaneyasu, M. Olfactory Detection Using Integrated Sensors. In Proceedings of the 3rd International Conference on Solid-State Sensors and Actuators (Transducers’ 85), Philadelphia, PA, USA, 11–14 June 1985; pp. 136–139. [Google Scholar]
- Wilson, A.D.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.J.M.; Oliveira, A.R.; Roque, A.C.A. Protein- and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol. 2018, 36, 1244–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El kazzy, M.; Hurot, C.; Weerakkody, J.S.; Buhot, A.; Hou, Y. Biomimetic Olfactory Biosensors and Bioelectronic Noses. In Advances in Biosensors: Reviews; Yurish, S.Y., Ed.; IFSA Publishing: Barcelona, Spain, 2020; Volume 3, pp. 15–54. [Google Scholar]
- Wasilewski, T.; Gębicki, J.; Kamysz, W. Advances in Olfaction-Inspired Biomaterials Applied to Bioelectronic Noses. Sens. Actuators B Chem. 2018, 257, 511–537. [Google Scholar] [CrossRef]
- Sankaran, S.; Khot, L.R.; Panigrahi, S. Biology and Applications of Olfactory Sensing System: A Review. Sens. Actuators B Chem. 2012, 171–172, 1–17. [Google Scholar] [CrossRef]
- Hurot, C.; Scaramozzino, N.; Buhot, A.; Hou, Y. Bio-Inspired Strategies for Improving the Selectivity and Sensitivity of Artificial Noses: A Review. Sensors 2020, 20, 1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaggiotti, S.; Della Pelle, F.; Mascini, M.; Cichelli, A.; Compagnone, D. Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis. Sensors 2020, 20, 4433. [Google Scholar] [CrossRef]
- Schaller, E.; Bosset, J.O.; Escher, F. ‘Electronic Noses’ and Their Application to Food. LWT Food Sci. Technol. 1998, 31, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Ampuero, S.; Bosset, J.O. The Electronic Nose Applied to Dairy Products: A Review. Sens. Actuators B Chem. 2003, 94, 1–12. [Google Scholar] [CrossRef]
- Mielle, P. ‘Electronic Noses’: Towards the Objective Instrumental Characterization of Food Aroma. Trends Food Sci. Technol. 1996, 7, 432–438. [Google Scholar] [CrossRef]
- Albert, K.J.; Lewis, N.S.; Schauer, C.L.; Sotzing, G.A.; Stitzel, S.E.; Vaid, T.P.; Walt, D.R. Cross-Reactive Chemical Sensor Arrays. Chem. Rev. 2000, 100, 2595–2626. [Google Scholar] [CrossRef] [PubMed]
- James, D.; Scott, S.M.; Ali, Z.; O’Hare, W.T. Chemical Sensors for Electronic Nose Systems. Microchim. Acta 2005, 149, 1–17. [Google Scholar] [CrossRef]
- Strike, D.J.; Meijerink, M.G.H.; Koudelka-Hep, M. Electronic Noses—A Mini-Review. Fresenius’ J. Anal. Chem. 1999, 364, 499–505. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef] [Green Version]
- Wong, Y.C.; Ang, B.C.; Haseeb, A.S.M.A.; Baharuddin, A.A.; Wong, Y.H. Review—Conducting Polymers as Chemiresistive Gas Sensing Materials: A Review. J. Electrochem. Soc. 2020, 167, 037503. [Google Scholar] [CrossRef]
- Berna, A. Metal Oxide Sensors for Electronic Noses and Their Application to Food Analysis. Sensors 2010, 10, 3882–3910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neri, G. First Fifty Years of Chemoresistive Gas Sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef] [Green Version]
- Fanget, S.; Hentz, S.; Puget, P.; Arcamone, J.; Matheron, M.; Colinet, E.; Andreucci, P.; Duraffourg, L.; Myers, E.d.; Roukes, M.L. Gas Sensors Based on Gravimetric Detection—A Review. Sens. Actuators B Chem. 2011, 160, 804–821. [Google Scholar] [CrossRef]
- McGinn, C.K.; Lamport, Z.A.; Kymissis, I. Review of Gravimetric Sensing of Volatile Organic Compounds. ACS Sens. 2020, 5, 1514–1534. [Google Scholar] [CrossRef]
- Stetter, J.R.; Li, J. Amperometric Gas SensorsA Review. Chem. Rev. 2008, 108, 352–366. [Google Scholar] [CrossRef]
- Elosua, C.; Matias, I.; Bariain, C.; Arregui, F. Volatile Organic Compound Optical Fiber Sensors: A Review. Sensors 2006, 6, 1440–1465. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef] [PubMed]
- John, A.T.; Murugappan, K.; Nisbet, D.R.; Tricoli, A. An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring. Sensors 2021, 21, 2271. [Google Scholar] [CrossRef] [PubMed]
- Barsan, N.; Koziej, D.; Weimar, U. Metal Oxide-Based Gas Sensor Research: How To? Sens. Actuators B Chem. 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Llobet, E. Gas Sensors Using Carbon Nanomaterials: A Review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Kim, M.I.; Lee, Y.-S. A Comprehensive Review of Gas Sensors Using Carbon Materials. J. Nanosci. Nanotechnol. 2016, 16, 4310–4319. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Zeng, W.; Li, Y. Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.; Mishra, V.N.; Dwivedi, R.; Srivastava, S.K. Response of Oxygen Plasma-Treated Thick Film Tin Oxide Sensor Array for LPG, CCl4, CO and C3H7OH. Microelectron. J. 1999, 30, 259–264. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor Metal Oxide Gas Sensors: A Review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced Micro- and Nano-Gas Sensor Technology: A Review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, S.-W.; Tang, K.-T. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review. Sensors 2013, 13, 14214–14247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Zeng, W. Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N.; Lin, L. A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Microchim. Acta 2018, 185, 213. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Lee, J.-H. Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Nylander, C.; Armgarth, M.; Lundström, I. An Ammonia Detector Based on a Conducting Polymer. Anal. Chem. Symp. Ser. 1983, 17, 203–207. [Google Scholar]
- Blackwood, D.; Josowicz, M. Work Function and Spectroscopic Studies of Interactions between Conducting Polymers and Organic Vapors. J. Phys. Chem. 1991, 95, 493–502. [Google Scholar] [CrossRef]
- Park, S.; Park, C.; Yoon, H. Chemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids. Polymers 2017, 9, 155. [Google Scholar] [CrossRef]
- Yu, J.-B.; Byun, H.-G.; So, M.-S.; Huh, J.-S. Analysis of Diabetic Patient’s Breath with Conducting Polymer Sensor Array. Sens. Actuators B Chem. 2005, 108, 305–308. [Google Scholar] [CrossRef]
- Li, W.; Hoa, N.D.; Cho, Y.; Kim, D.; Kim, J.-S. Nanofibers of Conducting Polyaniline for Aromatic Organic Compound Sensor. Sens. Actuators B Chem. 2009, 143, 132–138. [Google Scholar] [CrossRef]
- Xie, G.; Sun, P.; Yan, X.; Du, X.; Jiang, Y. Fabrication of Methane Gas Sensor by Layer-by-Layer Self-Assembly of Polyaniline/PdO Ultra Thin Films on Quartz Crystal Microbalance. Sens. Actuators B Chem. 2010, 145, 373–377. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, S.H.; Kwon, O.S.; Song, H.S.; Oh, E.H.; Park, T.H.; Jang, J. Polypyrrole Nanotubes Conjugated with Human Olfactory Receptors: High-Performance Transducers for FET-Type Bioelectronic Noses. Angew. Chem. 2009, 121, 2793–2796. [Google Scholar] [CrossRef]
- Cao, Z.; Buttner, W.J.; Stetter, J.R. The Properties and Applications of Amperometric Gas Sensors. Electroanalysis 1992, 4, 253–266. [Google Scholar] [CrossRef]
- Buttner, W.J.; Findlay, M.; Vickers, W.; Davis, W.M.; Cespedes, E.R.; Cooper, S.; Adams, J.W. In Situ Detection of Trinitrotoluene and Other Nitrated Explosives in Soils. Anal. Chim. Acta 1997, 341, 63–71. [Google Scholar] [CrossRef]
- Barou, E.; Sigoillot, M.; Bouvet, M.; Briand, L.; Meunier-Prest, R. Electrochemical Detection of the 2-Isobutyl-3-Methoxypyrazine Model Odorant Based on Odorant-Binding Proteins: The Proof of Concept. Bioelectrochemistry 2015, 101, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, H.; Li, H.; Zhang, J.; Zhuang, S.; Zhang, F.; Jimmy Hsia, K.; Wang, P. Impedance Sensing and Molecular Modeling of an Olfactory Biosensor Based on Chemosensory Proteins of Honeybee. Biosens. Bioelectron. 2013, 40, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Jaffrezic-Renault, N.; Martelet, C.; Tlili, C.; Zhang, A.; Pernollet, J.-C.; Briand, L.; Gomila, G.; Errachid, A.; Samitier, J.; et al. Study of Langmuir and Langmuir−Blodgett Films of Odorant-Binding Protein/Amphiphile for Odorant Biosensors. Langmuir 2005, 21, 4058–4065. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Jaffrezic-Renault, N.; Martelet, C.; Zhang, A.; Minic-Vidic, J.; Gorojankina, T.; Persuy, M.-A.; Pajot-Augy, E.; Salesse, R.; Akimov, V.; et al. A Novel Detection Strategy for Odorant Molecules Based on Controlled Bioengineering of Rat Olfactory Receptor I7. Biosens. Bioelectron. 2007, 22, 1550–1555. [Google Scholar] [CrossRef]
- Akimov, V.; Alfinito, E.; Bausells, J.; Benilova, I.; Paramo, I.C.; Errachid, A.; Ferrari, G.; Fumagalli, L.; Gomila, G.; Grosclaude, J.; et al. Nanobiosensors Based on Individual Olfactory Receptors. Analog. Integr. Circ. Signal Process. 2008, 57, 197–203. [Google Scholar] [CrossRef]
- Hong, S.; Wu, M.; Hong, Y.; Jeong, Y.; Jung, G.; Shin, W.; Park, J.; Kim, D.; Jang, D.; Lee, J.-H. FET-Type Gas Sensors: A Review. Sens. Actuators B Chem. 2021, 330, 129240. [Google Scholar] [CrossRef]
- Shehada, N.; Brönstrup, G.; Funka, K.; Christiansen, S.; Leja, M.; Haick, H. Ultrasensitive Silicon Nanowire for Real-World Gas Sensing: Noninvasive Diagnosis of Cancer from Breath Volatolome. Nano Lett. 2015, 15, 1288–1295. [Google Scholar] [CrossRef]
- Shehada, N.; Cancilla, J.C.; Torrecilla, J.S.; Pariente, E.S.; Brönstrup, G.; Christiansen, S.; Johnson, D.W.; Leja, M.; Davies, M.P.A.; Liran, O.; et al. Silicon Nanowire Sensors Enable Diagnosis of Patients via Exhaled Breath. ACS Nano 2016, 10, 7047–7057. [Google Scholar] [CrossRef] [Green Version]
- Ermanok, R.; Assad, O.; Zigelboim, K.; Wang, B.; Haick, H. Discriminative Power of Chemically Sensitive Silicon Nanowire Field Effect Transistors to Volatile Organic Compounds. ACS Appl. Mater. Interfaces 2013, 5, 11172–11183. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Lee, S.H.; Lee, J.; Song, H.S.; Oh, E.H.; Park, T.H.; Hong, S. Single-Carbon-Atomic-Resolution Detection of Odorant Molecules Using a Human Olfactory Receptor-Based Bioelectronic Nose. Adv. Mater. 2009, 21, 91–94. [Google Scholar] [CrossRef]
- Khamis, S.M.; Jones, R.A.; Johnson, A.T.C.; Preti, G.; Kwak, J.; Gelperin, A. DNA-Decorated Carbon Nanotube-Based FETs as Ultrasensitive Chemical Sensors: Discrimination of Homologues, Structural Isomers, and Optical Isomers. AIP Adv. 2012, 2, 022110. [Google Scholar] [CrossRef]
- Kybert, N.J.; Lerner, M.B.; Yodh, J.S.; Preti, G.; Johnson, A.T.C. Differentiation of Complex Vapor Mixtures Using Versatile DNA–Carbon Nanotube Chemical Sensor Arrays. ACS Nano 2013, 7, 2800–2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staii, C.; Johnson, A.T.C.; Chen, M.; Gelperin, A. DNA-Decorated Carbon Nanotubes for Chemical Sensing. Nano Lett. 2005, 5, 1774–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kybert, N.J.; Han, G.H.; Lerner, M.B.; Dattoli, E.N.; Esfandiar, A.; Johnson, A.T.C. Scalable Arrays of Chemical Vapor Sensors Based on DNA-Decorated Graphene. Nano Res. 2014, 7, 95–103. [Google Scholar] [CrossRef]
- Kotlowski, C.; Larisika, M.; Guerin, P.M.; Kleber, C.; Kröber, T.; Mastrogiacomo, R.; Nowak, C.; Pelosi, P.; Schütz, S.; Schwaighofer, A.; et al. Fine Discrimination of Volatile Compounds by Graphene-Immobilized Odorant-Binding Proteins. Sens. Actuators B Chem. 2018, 256, 564–572. [Google Scholar] [CrossRef]
- Liao, F.; Chen, C.; Subramanian, V. Organic TFTs as Gas Sensors for Electronic Nose Applications. Sens. Actuators B Chem. 2005, 107, 849–855. [Google Scholar] [CrossRef]
- Chevallier, E.; Scorsone, E.; Bergonzo, P. New Sensitive Coating Based on Modified Diamond Nanoparticles for Chemical SAW Sensors. Sens. Actuators B Chem. 2011, 154, 238–244. [Google Scholar] [CrossRef]
- Rapp, M.; Reibel, J.; Voigt, A.; Balzer, M.; Bülow, O. New Miniaturized SAW-Sensor Array for Organic Gas Detection Driven by Multiplexed Oscillators. Sens. Actuators B Chem. 2000, 65, 169–172. [Google Scholar] [CrossRef]
- Matatagui, D.; Bahos, F.A.; Gràcia, I.; Horrillo, M.d.C. Portable Low-Cost Electronic Nose Based on Surface Acoustic Wave Sensors for the Detection of BTX Vapors in Air. Sensors 2019, 19, 5406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panigrahi, S.; Sankaran, S.; Mallik, S.; Gaddam, B.; Hanson, A.A. Olfactory Receptor-Based Polypeptide Sensor for Acetic Acid VOC Detection. Mater. Sci. Eng. C 2012, 32, 1307–1313. [Google Scholar] [CrossRef]
- Compagnone, D.; Fusella, G.C.; Del Carlo, M.; Pittia, P.; Martinelli, E.; Tortora, L.; Paolesse, R.; Di Natale, C. Gold Nanoparticles-Peptide Based Gas Sensor Arrays for the Detection of Foodaromas. Biosens. Bioelectron. 2013, 42, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Compagnone, D.; Faieta, M.; Pizzoni, D.; Di Natale, C.; Paolesse, R.; Van Caelenberg, T.; Beheydt, B.; Pittia, P. Quartz Crystal Microbalance Gas Sensor Arrays for the Quality Control of Chocolate. Sens. Actuators B Chem. 2015, 207, 1114–1120. [Google Scholar] [CrossRef]
- Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; D’Arcangelo, G.; Roscioni, C.; Finazzi-Agrò, A.; D’Amico, A. Lung Cancer Identification by the Analysis of Breath by Means of an Array of Non-Selective Gas Sensors. Biosens. Bioelectron. 2003, 18, 1209–1218. [Google Scholar] [CrossRef]
- Sung, J.H.; Ko, H.J.; Park, T.H. Piezoelectric Biosensor Using Olfactory Receptor Protein Expressed in Escherichia Coli. Biosens. Bioelectron. 2006, 21, 1981–1986. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Wu, C.; Peng, H.; Zou, L.; Zhao, L.; Huang, L.; Wang, P. Piezoelectric Olfactory Receptor Biosensor Prepared by Aptamer-Assisted Immobilization. Sens. Actuators B Chem. 2013, 187, 481–487. [Google Scholar] [CrossRef]
- Wu, C.; Du, L.; Wang, D.; Wang, L.; Zhao, L.; Wang, P. A Novel Surface Acoustic Wave-Based Biosensor for Highly Sensitive Functional Assays of Olfactory Receptors. Biochem. Biophys. Res. Commun. 2011, 407, 18–22. [Google Scholar] [CrossRef]
- Benetti, M.; Cannatà, D.; Di Pietrantonio, F.; Foglietti, V.; Verona, E. Microbalance Chemical Sensor Based on Thin-Film Bulk Acoustic Wave Resonators. Appl. Phys. Lett. 2005, 87, 173504. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Y.; Wang, J.; Zhang, L. Nerve Gas Sensor Using Film Bulk Acoustic Resonator Modified with a Self-Assembled Cu2+/11-Mercaptoundecanoic Acid Bilayer. Sens. Actuators B Chem. 2010, 150, 483–486. [Google Scholar] [CrossRef]
- Chang, Y.; Tang, N.; Qu, H.; Liu, J.; Zhang, D.; Zhang, H.; Pang, W.; Duan, X. Detection of Volatile Organic Compounds by Self-Assembled Monolayer Coated Sensor Array with Concentration-Independent Fingerprints. Sci. Rep. 2016, 6, 23970. [Google Scholar] [CrossRef]
- Korsa, M.T.; Maria Carmona Domingo, J.; Nsubuga, L.; Hvam, J.; Niekiel, F.; Lofink, F.; Rubahn, H.-G.; Adam, J.; Hansen, R.d.O. Optimizing Piezoelectric Cantilever Design for Electronic Nose Applications. Chemosensors 2020, 8, 114. [Google Scholar] [CrossRef]
- Manai, R.; Scorsone, E.; Rousseau, L.; Ghassemi, F.; Possas Abreu, M.; Lissorgues, G.; Tremillon, N.; Ginisty, H.; Arnault, J.-C.; Tuccori, E.; et al. Grafting Odorant Binding Proteins on Diamond Bio-MEMS. Biosens. Bioelectron. 2014, 60, 311–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, Y.K.; Chae, M.-S.; Kang, J.Y.; Kim, T.S.; Hwang, K.S.; Lee, J.H. Multifunctionalized Cantilever Systems for Electronic Nose Applications. Anal. Chem. 2012, 84, 8240–8245. [Google Scholar] [CrossRef]
- Hwang, K.S.; Lee, M.H.; Lee, J.; Yeo, W.-S.; Lee, J.H.; Kim, K.-M.; Kang, J.Y.; Kim, T.S. Peptide Receptor-Based Selective Dinitrotoluene Detection Using a Microcantilever Sensor. Biosens. Bioelectron. 2011, 30, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.; Lee, K.-Y.; Min, S.-J.; Yoo, Y.K.; Hwang, K.S.; Kim, S.K.; Yi, H. Single-Carbon Discrimination by Selected Peptides for Individual Detection of Volatile Organic Compounds. Sci. Rep. 2015, 5, 9196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Park, K.K.; Kupnik, M.; Oralkan, Ö.; Khuri-Yakub, B.T. Chemical Vapor Detection Using a Capacitive Micromachined Ultrasonic Transducer. Anal. Chem. 2011, 83, 9314–9320. [Google Scholar] [CrossRef] [PubMed]
- Seok, C.; Mahmud, M.M.; Kumar, M.; Adelegan, O.J.; Yamaner, F.Y.; Oralkan, O. A Low-Power Wireless Multichannel Gas Sensing System Based on a Capacitive Micromachined Ultrasonic Transducer (CMUT) Array. IEEE Internet Things J. 2019, 6, 831–843. [Google Scholar] [CrossRef]
- Grate, J.W. Acoustic Wave Microsensor Arrays for Vapor Sensing. Chem. Rev. 2000, 100, 2627–2648. [Google Scholar] [CrossRef]
- Bogomolov, A. Developing Multisensory Approach to the Optical Spectral Analysis. Sensors 2021, 21, 3541. [Google Scholar] [CrossRef]
- Rakow, N.A.; Suslick, K.S. A Colorimetric Sensor Array for Odour Visualization. Nature 2000, 406, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Kang, S.-W. A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection. Sensors 2014, 14, 23321–23336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Hou, C.-J.; Huo, D.; Yang, M.; Fa, H.; Yang, P. Development of a Colorimetric Sensor Array for the Discrimination of Aldehydes. Sens. Actuators B Chem. 2014, 196, 10–17. [Google Scholar] [CrossRef]
- Li, J.-J.; Song, C.-X.; Hou, C.-J.; Huo, D.-Q.; Shen, C.-H.; Luo, X.-G.; Yang, M.; Fa, H.-B. Development of a Colorimetric Sensor Array for the Discrimination of Chinese Liquors Based on Selected Volatile Markers Determined by GC-MS. J. Agric. Food Chem. 2014, 62, 10422–10430. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.-H.; Teresa Gutierrez-Wing, M.; Choi, J.-W. Review—Recent Progress in Portable Fluorescence Sensors. J. Electrochem. Soc. 2021, 168, 017502. [Google Scholar] [CrossRef]
- Dickinson, T.A.; White, J.; Kauer, J.S.; Walt, D.R. A Chemical-Detecting System Based on a Cross-Reactive Optical Sensor Array. Nature 1996, 382, 697–700. [Google Scholar] [CrossRef]
- Pawar, D.; Kale, S.N. A Review on Nanomaterial-Modified Optical Fiber Sensors for Gases, Vapors and Ions. Microchim. Acta 2019, 186, 253. [Google Scholar] [CrossRef]
- Johnson, S.R.; Sutter, J.M.; Engelhardt, H.L.; Jurs, P.C.; White, J.; Kauer, J.S.; Dickinson, T.A.; Walt, D.R. Identification of Multiple Analytes Using an Optical Sensor Array and Pattern Recognition Neural Networks. Anal. Chem. 1997, 69, 4641–4648. [Google Scholar] [CrossRef]
- Walt, D.R. Bead-Based Optical Fiber Arrays for Artificial Olfaction. Curr. Opin. Chem. Biol. 2010, 14, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, T.A.; Michael, K.L.; Kauer, J.S.; Walt, D.R. Convergent, Self-Encoded Bead Sensor Arrays in the Design of an Artificial Nose. Anal. Chem. 1999, 71, 2192–2198. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.R.; Kang, B.-H.; Lee, S.-W.; Kim, S.-H.; Yeom, S.-H.; Lee, S.-H.; Kang, S.-W. Fiber-Optic Multi-Sensor Array for Detection of Low Concentration Volatile Organic Compounds. Opt. Express 2013, 21, 20119–20130. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.R.; Kang, B.-H.; Yeom, S.-H.; Kwon, D.-H.; Kang, S.-W. Fiber-Optic Pulse Width Modulation Sensor for Low Concentration VOC Gas. Sens. Actuators B Chem. 2013, 188, 689–696. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Ma, K.; Wang, Z. Optical Colorimetric Sensor Arrays for Chemical and Biological Analysis. Sci. China Chem. 2018, 61, 643–655. [Google Scholar] [CrossRef]
- Nylander, C.; Liedberg, B.; Lind, T. Gas Detection by Means of Surface Plasmon Resonance. Sens. Actuators 1982, 3, 79–88. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Wood, R.W. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1902, 4, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Fano, U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). J. Opt. Soc. Am. 1941, 31, 213–222. [Google Scholar] [CrossRef]
- Pines, D.; Bohm, D. A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions. Phys. Rev. 1952, 85, 338–353. [Google Scholar] [CrossRef]
- Ferrell, R.A. Angular Dependence of the Characteristic Energy Loss of Electrons Passing Through Metal Foils. Phys. Rev. 1956, 101, 554–563. [Google Scholar] [CrossRef]
- Stern, E.A.; Ferrell, R.A. Surface Plasma Oscillations of a Degenerate Electron Gas. Phys. Rev. 1960, 120, 130–136. [Google Scholar] [CrossRef]
- Ritchie, R.H. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106, 874–881. [Google Scholar] [CrossRef]
- Powell, C.J. The Origin of the Characteristic Electron Energy Losses in Ten Elements. Proc. Phys. Soc. 1960, 76, 593–610. [Google Scholar] [CrossRef]
- Otto, A. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Z. Phys. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Kretschmann, E.; Raether, H. Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Nat. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Roh, S.; Chung, T.; Lee, B. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors. Sensors 2011, 11, 1565–1588. [Google Scholar] [CrossRef] [Green Version]
- Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petryayeva, E.; Krull, U.J. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing—A Review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Hutter, E.; Fendler, J.H. Exploitation of Localized Surface Plasmon Resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Chung, T.; Lee, S.-Y.; Song, E.Y.; Chun, H.; Lee, B. Plasmonic Nanostructures for Nano-Scale Bio-Sensing. Sensors 2011, 11, 10907–10929. [Google Scholar] [CrossRef] [PubMed]
- Rojalin, T.; Phong, B.; Koster, H.J.; Carney, R.P. Nanoplasmonic Approaches for Sensitive Detection and Molecular Characterization of Extracellular Vesicles. Front. Chem. 2019, 7, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepúlveda, B.; Angelomé, P.C.; Lechuga, L.M.; Liz-Marzán, L.M. LSPR-Based Nanobiosensors. Nano Today 2009, 4, 244–251. [Google Scholar] [CrossRef]
- Haes, A.J.; Chang, L.; Klein, W.L.; Van Duyne, R.P. Detection of a Biomarker for Alzheimer’s Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor. J. Am. Chem. Soc. 2005, 127, 2264–2271. [Google Scholar] [CrossRef]
- Lopez, G.A.; Estevez, M.-C.; Soler, M.; Lechuga, L.M. Recent Advances in Nanoplasmonic Biosensors: Applications and Lab-on-a-Chip Integration. Nanophotonics 2017, 6, 123–136. [Google Scholar] [CrossRef]
- Bingham, J.M.; Anker, J.N.; Kreno, L.E.; Van Duyne, R.P. Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy. J. Am. Chem. Soc. 2010, 132, 17358–17359. [Google Scholar] [CrossRef] [Green Version]
- Kreno, L.E.; Hupp, J.T.; Van Duyne, R.P. Metal−Organic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing. Anal. Chem. 2010, 82, 8042–8046. [Google Scholar] [CrossRef]
- Shang, L.; Liu, C.; Watanabe, M.; Chen, B.; Hayashi, K. LSPR Sensor Array Based on Molecularly Imprinted Sol-Gels for Pattern Recognition of Volatile Organic Acids. Sens. Actuators B Chem. 2017, 249, 14–21. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, Y.; Zhang, Q.; Yao, Y.; Li, S.; Li, H.; Zhuang, S.; Jiang, J.; Liu, G.L.; Liu, Q. Nanoplasmonic Monitoring of Odorants Binding to Olfactory Proteins from Honeybee as Biosensor for Chemical Detection. Sens. Actuators B Chem. 2015, 221, 341–349. [Google Scholar] [CrossRef]
- Cheng, C.-S.; Chen, Y.-Q.; Lu, C.-J. Organic Vapour Sensing Using Localized Surface Plasmon Resonance Spectrum of Metallic Nanoparticles Self Assemble Monolayer. Talanta 2007, 73, 358–365. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface Plasmon Resonance Sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Homola, J. Present and Future of Surface Plasmon Resonance Biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I. Near-Field Photonics: Surface Plasmon Polaritons and Localized Surface Plasmons. J. Opt. A Pure Appl. Opt. 2003, 5, S16–S50. [Google Scholar] [CrossRef]
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-Optics of Surface Plasmon Polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Prabowo, B.; Purwidyantri, A.; Liu, K.-C. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors 2018, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambles, J.R.; Bradbery, G.W.; Yang, F. Optical Excitation of Surface Plasmons: An Introduction. Contemp. Phys. 1991, 32, 173–183. [Google Scholar] [CrossRef]
- Pitarke, J.M.; Silkin, V.M.; Chulkov, E.V.; Echenique, P.M. Theory of Surface Plasmons and Surface-Plasmon Polaritons. Rep. Prog. Phys. 2007, 70, 1–87. [Google Scholar] [CrossRef]
- Raether, H. Surface Plasmons on Smooth Surfaces. In Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin/Heidelberg, Germany, 1988; pp. 4–39. [Google Scholar]
- Gupta, B.D.; Verma, R.K. Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications. J. Sens. 2009, 2009, 979761. [Google Scholar] [CrossRef]
- Gupta, B.; Shrivastav, A.; Usha, S. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting. Sensors 2016, 16, 1381. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Wang, X.; Zhou, J.; Miyan, R.; Qu, J.; Ho, H.-P.; Zhou, K.; Gao, B.Z.; Shao, Y. Phase Interrogation SPR Sensing Based on White Light Polarized Interference for Wide Dynamic Detection Range. Opt. Express 2020, 28, 3442–3450. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.L.; Olivo, M. Surface Plasmon Resonance Imaging Sensors: A Review. Plasmonics 2014, 9, 809–824. [Google Scholar] [CrossRef]
- Glatz, R.; Bailey-Hill, K. Mimicking Nature’s Noses: From Receptor Deorphaning to Olfactory Biosensing. Prog. Neurobiol. 2011, 93, 270–296. [Google Scholar] [CrossRef] [PubMed]
- Firestein, S. How the Olfactory System Makes Sense of Scents. Nature 2001, 413, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.L.; Steuerwald, D.; Kaiser, L.; Graveland-Bikker, J.; Vanberghem, M.; Berke, A.P.; Herlihy, K.; Pick, H.; Vogel, H.; Zhang, S. Large-Scale Production and Study of a Synthetic G Protein-Coupled Receptor: Human Olfactory Receptor 17-4. Proc. Natl. Acad. Sci. USA 2009, 106, 11925–11930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, H.J.; Lee, S.H.; Kim, T.H.; Park, J.; Song, H.S.; Park, T.H.; Hong, S. Nanovesicle-Based Bioelectronic Nose Platform Mimicking Human Olfactory Signal Transduction. Biosens. Bioelectron. 2012, 35, 335–341. [Google Scholar] [CrossRef]
- Vidic, J.M.; Grosclaude, J.; Persuy, M.-A.; Aioun, J.; Salesse, R.; Pajot-Augy, E. Quantitative Assessment of Olfactory Receptors Activity in Immobilized Nanosomes: A Novel Concept for Bioelectronic Nose. Lab Chip 2006, 6, 1026–1032. [Google Scholar] [CrossRef]
- Vidic, J.; Grosclaude, J.; Monnerie, R.; Persuy, M.-A.; Badonnel, K.; Baly, C.; Caillol, M.; Briand, L.; Salesse, R.; Pajot-Augy, E. On a Chip Demonstration of a Functional Role for Odorant Binding Protein in the Preservation of Olfactory Receptor Activity at High Odorant Concentration. Lab Chip 2008, 8, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Benilova, I.; Chegel, V.I.; Ushenin, Y.V.; Vidic, J.; Soldatkin, A.P.; Martelet, C.; Pajot, E.; Jaffrezic-Renault, N. Stimulation of Human Olfactory Receptor 17–40 with Odorants Probed by Surface Plasmon Resonance. Eur. Biophys. J. 2008, 37, 807–814. [Google Scholar] [CrossRef]
- Lee, S.H.; Ko, H.J.; Park, T.H. Real-Time Monitoring of Odorant-Induced Cellular Reactions Using Surface Plasmon Resonance. Biosens. Bioelectron. 2009, 25, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Ko, H.J.; Lee, S.H.; Park, T.H. Cell-Based Measurement of Odorant Molecules Using Surface Plasmon Resonance. Enzym. Microb. Technol. 2006, 39, 375–380. [Google Scholar] [CrossRef]
- Oh, E.H.; Lee, S.H.; Ko, H.J.; Park, T.H. Odorant Detection Using Liposome Containing Olfactory Receptor in the SPR System. Sens. Actuators B Chem. 2014, 198, 188–193. [Google Scholar] [CrossRef]
- Sanmartí-Espinal, M.; Iavicoli, P.; Calò, A.; Taulés, M.; Galve, R.; Marco, M.P.; Samitier, J. Quantification of Interacting Cognate Odorants with Olfactory Receptors in Nanovesicles. Sci. Rep. 2017, 7, 17483. [Google Scholar] [CrossRef] [Green Version]
- Briand, L.; Eloit, C.; Nespoulous, C.; Bézirard, V.; Huet, J.-C.; Henry, C.; Blon, F.; Trotier, D.; Pernollet, J.-C. Evidence of an Odorant-Binding Protein in the Human Olfactory Mucus: Location, Structural Characterization, and Odorant-Binding Properties. Biochemistry 2002, 41, 7241–7252. [Google Scholar] [CrossRef] [PubMed]
- Briand, L.; Nespoulous, C.; Huet, J.-C.; Takahashi, M.; Pernollet, J.-C. Ligand Binding and Physico-Chemical Properties of ASP2, a Recombinant Odorant-Binding Protein from Honeybee (Apis Mellifera L.): Odorant Binding by a Honeybee OBP. Eur. J. Biochem. 2001, 268, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Mastrogiacomo, R.; Iovinella, I.; Tuccori, E.; Persaud, K.C. Structure and Biotechnological Applications of Odorant-Binding Proteins. Appl. Microbiol. Biotechnol. 2014, 98, 61–70. [Google Scholar] [CrossRef]
- Briand, L.; Nespoulous, C.; Perez, V.; Rémy, J.-J.; Huet, J.-C.; Pernollet, J.-C. Ligand-Binding Properties and Structural Characterization of a Novel Rat Odorant-Binding Protein Variant: Ligand Binding and Characterization of Rat OBP-1F. Eur. J. Biochem. 2000, 267, 3079–3089. [Google Scholar] [CrossRef]
- Di Pietrantonio, F.; Benetti, M.; Cannatà, D.; Verona, E.; Palla-Papavlu, A.; Fernández-Pradas, J.M.; Serra, P.; Staiano, M.; Varriale, A.; D’Auria, S. A Surface Acoustic Wave Bio-Electronic Nose for Detection of Volatile Odorant Molecules. Biosens. Bioelectron. 2015, 67, 516–523. [Google Scholar] [CrossRef]
- Larisika, M.; Kotlowski, C.; Steininger, C.; Mastrogiacomo, R.; Pelosi, P.; Schütz, S.; Peteu, S.F.; Kleber, C.; Reiner-Rozman, C.; Nowak, C.; et al. Electronic Olfactory Sensor Based on A. Mellifera Odorant-Binding Protein 14 on a Reduced Graphene Oxide Field-Effect Transistor. Angew. Chem. 2015, 127, 13245–13248. [Google Scholar] [CrossRef]
- Hurot, C.; Brenet, S.; Buhot, A.; Barou, E.; Belloir, C.; Briand, L.; Hou, Y. Highly Sensitive Olfactory Biosensors for the Detection of Volatile Organic Compounds by Surface Plasmon Resonance Imaging. Biosens. Bioelectron. 2019, 123, 230–236. [Google Scholar] [CrossRef]
- Dung, T.T.; Kim, M. A Surface Plasmon Resonance Sensor for Detection of Toluene (C6H5CH3). Appl. Sci. Converg. Technol. 2018, 27, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Liedberg, B.; Nylander, C.; Lunström, I. Surface Plasmon Resonance for Gas Detection and Biosensing. Sens. Actuators 1983, 4, 299–304. [Google Scholar] [CrossRef]
- Miwa, S.; Arakawa, T. Selective Gas Detection by Means of Surface Plasmon Resonance Sensors. Thin Solid Films 1996, 281, 466–468. [Google Scholar] [CrossRef]
- Granito, C.; Wilde, J.N.; Petty, M.C.; Houghton, S.; Iredale, P.J. Toluene Vapour Sensing Using Copper and Nickel Phthalocyanine Langmuir-Blodgett Films. Thin Solid Films 1996, 284, 98–101. [Google Scholar] [CrossRef]
- Wilde, J.N.; Petty, M.C.; Saffell, J.; Tempore, A.; Valli, L. Surface Plasmon Resonance Imaging for Gas Sensing. Meas. Control. 1997, 30, 269–272. [Google Scholar] [CrossRef]
- Podgorsek, R.P.; Sterkenburgh, T.; Wolters, J.; Ehrenreich, T.; Nischwitz, S.; Franke, H. Optical Gas Sensing by Evaluating ATR Leaky Mode Spectra. Sens. Actuators B Chem. 1997, 39, 349–352. [Google Scholar] [CrossRef]
- Wilde, J.N.; Nagel, J.; Petty, M.C. Optical Sensing of Aromatic Hydrocarbons Using Langmuir–Blodgett Films of a Schiff Base Co-Ordination Polymer. Thin Solid Films 1998, 327, 726–729. [Google Scholar] [CrossRef]
- Brenet, S.; John-Herpin, A.; Gallat, F.-X.; Musnier, B.; Buhot, A.; Herrier, C.; Rousselle, T.; Livache, T.; Hou, Y. Highly-Selective Optoelectronic Nose Based on Surface Plasmon Resonance Imaging for Sensing Volatile Organic Compounds. Anal. Chem. 2018, 90, 9879–9887. [Google Scholar] [CrossRef]
- Brenet, S.; Weerakkody, J.S.; Buhot, A.; Gallat, F.-X.; Mathey, R.; Leroy, L.; Livache, T.; Herrier, C.; Hou, Y. Improvement of Sensitivity of Surface Plasmon Resonance Imaging for the Gas-Phase Detection of Volatile Organic Compounds. Talanta 2020, 212, 120777. [Google Scholar] [CrossRef]
- Weerakkody, J.S.; Brenet, S.; Livache, T.; Herrier, C.; Hou, Y.; Buhot, A. Optical Index Prism Sensitivity of Surface Plasmon Resonance Imaging in Gas Phase: Experiment versus Theory. J. Phys. Chem. C 2020, 124, 3756–3767. [Google Scholar] [CrossRef]
- Maho, P.; Herrier, C.; Livache, T.; Rolland, G.; Comon, P.; Barthelmé, S. Reliable Chiral Recognition with an Optoelectronic Nose. Biosens. Bioelectron. 2020, 159, 112183. [Google Scholar] [CrossRef] [Green Version]
- Slimani, S.; Bultel, E.; Cubizolle, T.; Herrier, C.; Rousselle, T.; Livache, T. Opto-Electronic Nose Coupled to a Silicon Micro Pre-Concentrator Device for Selective Sensing of Flavored Waters. Chemosensors 2020, 8, 60. [Google Scholar] [CrossRef]
- Fournel, A.; Mantel, M.; Pinger, M.; Manesse, C.; Dubreuil, R.; Herrier, C.; Rousselle, T.; Livache, T.; Bensafi, M. An Experimental Investigation Comparing a Surface Plasmon Resonance Imaging-Based Artificial Nose with Natural Olfaction. Sens. Actuators B Chem. 2020, 320, 128342. [Google Scholar] [CrossRef]
- Gaggiotti, S.; Hurot, C.; Weerakkody, J.S.; Mathey, R.; Buhot, A.; Mascini, M.; Hou, Y.; Compagnone, D. Development of an Optoelectronic Nose Based on Surface Plasmon Resonance Imaging with Peptide and Hairpin DNA for Sensing Volatile Organic Compounds. Sens. Actuators B Chem. 2020, 303, 127188. [Google Scholar] [CrossRef]
- Daly, S.M.; Grassi, M.; Shenoy, D.K.; Ugozzoli, F.; Dalcanale, E. Supramolecular Surface Plasmon Resonance (SPR) Sensors for Organophosphorus Vapor Detection. J. Mater. Chem. 2007, 17, 1809–1818. [Google Scholar] [CrossRef]
- Feresenbet, E.B.; Dalcanale, E.; Dulcey, C.; Shenoy, D.K. Optical Sensing of the Selective Interaction of Aromatic Vapors with Cavitands. Sens. Actuators B Chem. 2004, 97, 211–220. [Google Scholar] [CrossRef]
- Şen, S.; Cömert, Ö.F.; Çapan, R.; Ay, M. A Room Temperature Acetone Sensor Based on Synthesized Tetranitro-Oxacalix[4]Arenes: Thin Film Fabrication and Sensing Properties. Sens. Actuators A Phys. 2020, 315, 112308. [Google Scholar] [CrossRef]
- Capan, R.; Ray, A.K.; Hassan, A.K.; Tanrisever, T. Poly (Methyl Methacrylate) Films for Organic Vapour Sensing. J. Phys. D Appl. Phys. 2003, 36, 1115. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.K.; Ray, A.K.; Nabok, A.V.; Wilkop, T. Kinetic Studies of BTEX Vapour Adsorption onto Surfaces of Calix-4-Resorcinarene Films. Appl. Surf. Sci. 2001, 182, 49–54. [Google Scholar] [CrossRef]
- Chaure, S.; Yang, B.; Hassan, A.K.; Ray, A.K.; Bolognesi, A. Interaction Behaviour of Spun Films of Poly[3-(6-Methoxyhexyl)Thiophene] Derivatives with Ambient Gases. J. Phys. D Appl. Phys. 2004, 37, 1558–1562. [Google Scholar] [CrossRef]
- Nanto, H.; Kitade, Y.; Takei, Y.; Kubota, N. Odor Sensor Utilizing Surface Plasmon Resonance. Sens. Mater. 2005, 17, 405–412. [Google Scholar]
- Nanto, H.; Yagi, F.; Hasunuma, H.; Takei, Y.; Koyama, S.; Oyabu, T.; Mihara, T. Multichannel Odor Sensor Utilizing Surface Plasmon Resonance. Sens. Mater. 2009, 21, 201–208. [Google Scholar]
- Sih, B.C.; Wolf, M.O.; Jarvis, D.; Young, J.F. Surface-Plasmon Resonance Sensing of Alcohol with Electrodeposited Polythiophene and Gold Nanoparticle-Oligothiophene Films. J. Appl. Phys. 2005, 98, 114314. [Google Scholar] [CrossRef]
- Alwahib, A.A.; Sadrolhosseini, A.R.; An’amt, M.N.; Lim, H.N.; Yaacob, M.H.; Abu Bakar, M.H.; Ming, H.N.; Mahdi, M.A. Reduced Graphene Oxide/Maghemite Nanocomposite for Detection of Hydrocarbon Vapor Using Surface Plasmon Resonance. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Manera, M.G.; Montagna, G.; Ferreiro-Vila, E.; González-García, L.; Sánchez-Valencia, J.R.; González-Elipe, A.R.; Cebollada, A.; Garcia-Martin, J.M.; Garcia-Martin, A.; Armelles, G.; et al. Enhanced Gas Sensing Performance of TiO2 Functionalized Magneto-Optical SPR Sensors. J. Mater. Chem. 2011, 21, 16049–16056. [Google Scholar] [CrossRef] [Green Version]
- Manera, M.G.; Leo, G.; Curri, M.L.; Cozzoli, P.D.; Rella, R.; Siciliano, P.; Agostiano, A.; Vasanelli, L. Investigation on Alcohol Vapours/TiO2 Nanocrystal Thin Films Interaction by SPR Technique for Sensing Application. Sens. Actuators B Chem. 2004, 100, 75–80. [Google Scholar] [CrossRef]
- Manera, M.G.; de Julián Fernández, C.; Maggioni, G.; Mattei, G.; Carturan, S.; Quaranta, A.; Della Mea, G.; Rella, R.; Vasanelli, L.; Mazzoldi, P. Surface Plasmon Resonance Study on the Optical Sensing Properties of Nanometric Polyimide Films to Volatile Organic Vapours. Sens. Actuators B Chem. 2007, 120, 712–718. [Google Scholar] [CrossRef]
- Livache, T.; Gallat, F.-X.; Hou-Broutin, Y.; Herrier, C.; Rousselle, T. Method for Calibrating an Electronic Nose. International Patent Application No. PCT/EP2018/055233, 7 September 2018. [Google Scholar]
- Weerakkody, J.S.; Hurot, C.; Brenet, S.; Mathey, R.; Raillon, C.; Livache, T.; Buhot, A.; Hou, Y. Opto-Electronic Nose—Temperature and VOC Concentration Effects on the Equilibrium Response. In Proceedings of the 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan, 26–29 May 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Hutter, E.; Cha, S.; Liu, J.-F.; Park, J.; Yi, J.; Fendler, J.H.; Roy, D. Role of Substrate Metal in Gold Nanoparticle Enhanced Surface Plasmon Resonance Imaging. J. Phys. Chem. B 2001, 105, 8–12. [Google Scholar] [CrossRef]
- Klantsataya, E.; Jia, P.; Ebendorff-Heidepriem, H.; Monro, T.; François, A. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends. Sensors 2016, 17, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgenson, R.C.; Yee, S.S. A Fiber-Optic Chemical Sensor Based on Surface Plasmon Resonance. Sens. Actuators B Chem. 1993, 12, 213–220. [Google Scholar] [CrossRef]
- Caucheteur, C.; Guo, T.; Albert, J. Review of Plasmonic Fiber Optic Biochemical Sensors: Improving the Limit of Detection. Anal. Bioanal. Chem. 2015, 407, 3883–3897. [Google Scholar] [CrossRef]
- Vindas, K.; Leroy, L.; Garrigue, P.; Voci, S.; Livache, T.; Arbault, S.; Sojic, N.; Buhot, A.; Engel, E. Highly Parallel Remote SPR Detection of DNA Hybridization by Micropillar Optical Arrays. Anal. Bioanal. Chem. 2019, 411, 2249–2259. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.K.; Kaur, B. A Review of Advancements (2007–2017) in Plasmonics-Based Optical Fiber Sensors. Opt. Fiber Technol. 2018, 43, 20–34. [Google Scholar] [CrossRef]
- Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review. IEEE Sens. J. 2007, 7, 1118–1129. [Google Scholar] [CrossRef]
- Desmet, C.; Vindas, K.; Alvarado Meza, R.; Garrigue, P.; Voci, S.; Sojic, N.; Maziz, A.; Courson, R.; Malaquin, L.; Leichle, T.; et al. Multiplexed Remote SPR Detection of Biological Interactions through Optical Fiber Bundles. Sensors 2020, 20, 511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cennamo, N.; Di Giovanni, S.; Varriale, A.; Staiano, M.; Di Pietrantonio, F.; Notargiacomo, A.; Zeni, L.; D’Auria, S. Easy to Use Plastic Optical Fiber-Based Biosensor for Detection of Butanal. PLoS ONE 2015, 10, e0116770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cennamo, N.; D’Agostino, G.; Galatus, R.; Bibbò, L.; Pesavento, M.; Zeni, L. Sensors Based on Surface Plasmon Resonance in a Plastic Optical Fiber for the Detection of Trinitrotoluene. Sens. Actuators B Chem. 2013, 188, 221–226. [Google Scholar] [CrossRef]
- Vandezande, W.; Janssen, K.P.F.; Delport, F.; Ameloot, R.; De Vos, D.E.; Lammertyn, J.; Roeffaers, M.B.J. Parts per Million Detection of Alcohol Vapors via Metal Organic Framework Functionalized Surface Plasmon Resonance Sensors. Anal. Chem. 2017, 89, 4480–4487. [Google Scholar] [CrossRef]
- Semwal, V.; Shrivastav, A.M.; Verma, R.; Gupta, B.D. Surface Plasmon Resonance Based Fiber Optic Ethanol Sensor Using Layers of Silver/Silicon/Hydrogel Entrapped with ADH/NAD. Sens. Actuators B Chem. 2016, 230, 485–492. [Google Scholar] [CrossRef]
- Mishra, S.K.; Rani, S.; Gupta, B.D. Surface Plasmon Resonance Based Fiber Optic Hydrogen Sulphide Gas Sensor Utilizing Nickel Oxide Doped ITO Thin Film. Sens. Actuators B Chem. 2014, 195, 215–222. [Google Scholar] [CrossRef]
- Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. Surface Plasmon Resonance-Based Fiber Optic Methane Gas Sensor Utilizing Graphene-Carbon Nanotubes-Poly(Methyl Methacrylate) Hybrid Nanocomposite. Plasmonics 2015, 10, 1147–1157. [Google Scholar] [CrossRef]
- Liu, H.; Wang, M.; Wang, Q.; Li, H.; Ding, Y.; Zhu, C. Simultaneous Measurement of Hydrogen and Methane Based on PCF-SPR Structure with Compound Film-Coated Side-Holes. Opt. Fiber Technol. 2018, 45, 1–7. [Google Scholar] [CrossRef]
- Arasu, P.T.; Noor, A.S.M.; Shabaneh, A.A.; Yaacob, M.H.; Lim, H.N.; Mahdi, M.A. Fiber Bragg Grating Assisted Surface Plasmon Resonance Sensor with Graphene Oxide Sensing Layer. Opt. Commun. 2016, 380, 260–266. [Google Scholar] [CrossRef]
- Wei, W.; Nong, J.; Zhang, G.; Tang, L.; Jiang, X.; Chen, N.; Luo, S.; Lan, G.; Zhu, Y. Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing. Sensors 2017, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, R.; Mukherji, S. Gold Nanoparticle Coated U-Bend Fibre Optic Probe for Localized Surface Plasmon Resonance Based Detection of Explosive Vapours. Sens. Actuators B Chem. 2014, 192, 804–811. [Google Scholar] [CrossRef]
- Paul, D.; Dutta, S.; Saha, D.; Biswas, R. LSPR Based Ultra-Sensitive Low Cost U-Bent Optical Fiber for Volatile Liquid Sensing. Sens. Actuators B Chem. 2017, 250, 198–207. [Google Scholar] [CrossRef]
- Niggemann, M.; Katerkamp, A.; Pellmann, M.; Bolsmann, P.; Reinbold, J.; Cammann, K. Remote Sensing of Tetrachloroethene with a Micro-Fibre Optical Gas Sensor Based on Surface Plasmon Resonance Spectroscopy. Sens. Actuators B Chem. 1996, 34, 328–333. [Google Scholar] [CrossRef]
- Abdelghani, A.; Chovelon, J.M.; Jaffrezic-Renault, N.; Veilla, C.; Gagnaire, H. Chemical Vapour Sensing by Surface Plasmon Resonance Optical Fibre Sensor Coated with Fluoropolymer. Anal. Chim. Acta 1997, 337, 225–232. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, A.-S.; Zou, B.; Zhang, H.-X.; Yan, K.-L.; Lin, Y. Advances of Metal–Organic Frameworks for Gas Sensing. Polyhedron 2018, 154, 83–97. [Google Scholar] [CrossRef]
- Nazem, S.; Malekmohammad, M.; Soltanolkotabi, M. Theoretical and Experimental Study of a Surface Plasmon Sensor Based on Ag-MgF2 Grating Coupler. Appl. Phys. B 2020, 126, 96. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, H.; Wang, H.; Lu, Y.; Wang, P. Experimental Demonstration of High Sensitivity for Silver Rectangular Grating-Coupled Surface Plasmon Resonance (SPR) Sensing. Opt. Commun. 2018, 416, 66–70. [Google Scholar] [CrossRef]
- Borile, G.; Rossi, S.; Filippi, A.; Gazzola, E.; Capaldo, P.; Tregnago, C.; Pigazzi, M.; Romanato, F. Label-Free, Real-Time on-Chip Sensing of Living Cells via Grating-Coupled Surface Plasmon Resonance. Biophys. Chem. 2019, 254, 106262. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Lu, Y.; Lin, K.; Wang, P.; Ming, H. Improving the Sensitivity of SPR Sensors Based on Gratings by Double-Dips Method (DDM). Opt. Express 2008, 16, 14597. [Google Scholar] [CrossRef] [PubMed]
- Vukusic, P.S.; Bryan-Brown, G.P.; Sambles, J.R. Surface Plasmon Resonance on Gratings as a Novel Means for Gas Sensing. Sens. Actuators B Chem. 1992, 8, 155–160. [Google Scholar] [CrossRef]
- Jory, M.J.; Vukusic, P.S.; Sambles, J.R. Development of a Prototype Gas Sensor Using Surface Plasmon Resonance on Gratings. Sens. Actuators B Chem. 1994, 17, 203–209. [Google Scholar] [CrossRef]
Interrogation | Amplification Strategy | Sensing Material | Performance | Refs. |
---|---|---|---|---|
Resonance angle | Desorption of the Gαolf subunit and possible conformation change | Rat ORI7 Human OR17-40 (Carried by nanosomes) |
| [164] |
Resonance angle | Desorption of the Gαolf subunit and conformational change | Human OR17-40 (Carried by nanosomes) |
| [166] |
Reflected light intensity | G-protein transduction cascade | Rat ORI7 (Carried by artificial olfactory cell) |
| [167] |
Reflected light intensity | Possible conformational change | Three rat OBP-3 mutants |
| [177] |
Reflected light intensity | Possible conformational change | Toluene binding domain (TBD) |
| [178] |
Artificial Olfaction System | Interrogation | Sensing Material | Performance | Refs. |
---|---|---|---|---|
Electronic nose | Reflected light intensity (Imaging) | Small peptides |
| [185] |
Electronic nose | Reflected light intensity (Imaging) | Penta-peptides and hairpin DNA |
| [191] |
Gas sensor | Resonance wavelength | Cavitands |
| [192] |
Gas sensor | Reflected light intensity | Three nitro-substituted heterocalix[4]arenes thin films |
| [194] |
Gas sensor | Reflected light intensity and resonance angle | Poly(methylmethacrylate) film |
| [195] |
Gas sensor | Resonance angle | Acrylic acid and styrene thin film |
| [198] |
Gas sensor | Resonance angle | Films of polythiophene (PT) or gold nanoparticles capped with conjugated oligothiophenes (NPOT) |
| [200] |
Gas sensor | Resonance angle | Reduced graphene oxide/maghemite nanocomposite film |
| [201] |
Artificial Olfaction System | Fiber Type | Sensing Material | Performance | Sensing Medium | Refs. |
---|---|---|---|---|---|
Olfactory biosensor | Plastic fiber | Pig odorant binding protein |
| Liquid | [215] |
Gas sensor | Glass fiber | Zeolitic imidazolate framework (ZIF-8 and ZIF-93) |
| Gas | [217] |
Gas sensor | Plastic clad silica fiber | Graphene-carbon nanotubes/poly(methyl methacrylate) (GCNT/PMMA) hybrid composites, reduced graphene oxide, carbon nanotubes, reduced graphene oxide-carbon nanotubes |
| Gas | [220] |
Gas sensor | Photonic crystal fiber | Pd-WO3 film and a kind of ultraviolet curable fluoro-siloxane nanofilm with the inclusion of cryptophane A |
| Gas | [221] |
Gas sensor | Fiber Bragg grating | Graphene oxide (GO) |
| Liquid | [222] |
Gas sensor | Long Period Fiber Grating (LPFG) | Graphene |
| Gas | [223] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Kazzy, M.; Weerakkody, J.S.; Hurot, C.; Mathey, R.; Buhot, A.; Scaramozzino, N.; Hou, Y. An Overview of Artificial Olfaction Systems with a Focus on Surface Plasmon Resonance for the Analysis of Volatile Organic Compounds. Biosensors 2021, 11, 244. https://doi.org/10.3390/bios11080244
El Kazzy M, Weerakkody JS, Hurot C, Mathey R, Buhot A, Scaramozzino N, Hou Y. An Overview of Artificial Olfaction Systems with a Focus on Surface Plasmon Resonance for the Analysis of Volatile Organic Compounds. Biosensors. 2021; 11(8):244. https://doi.org/10.3390/bios11080244
Chicago/Turabian StyleEl Kazzy, Marielle, Jonathan S. Weerakkody, Charlotte Hurot, Raphaël Mathey, Arnaud Buhot, Natale Scaramozzino, and Yanxia Hou. 2021. "An Overview of Artificial Olfaction Systems with a Focus on Surface Plasmon Resonance for the Analysis of Volatile Organic Compounds" Biosensors 11, no. 8: 244. https://doi.org/10.3390/bios11080244
APA StyleEl Kazzy, M., Weerakkody, J. S., Hurot, C., Mathey, R., Buhot, A., Scaramozzino, N., & Hou, Y. (2021). An Overview of Artificial Olfaction Systems with a Focus on Surface Plasmon Resonance for the Analysis of Volatile Organic Compounds. Biosensors, 11(8), 244. https://doi.org/10.3390/bios11080244