Highly Sensitive Twin Resonance Coupling Refractive Index Sensor Based on Gold- and MgF2-Coated Nano Metal Films
Abstract
:1. Introduction
2. Structural Design and Methodology
3. Result Analysis and Discussion
3.1. Birefringence
3.2. Coupling Length
3.3. Output Power Spectrum
3.4. Transmission Spectrum
3.5. Loss Spectrum
4. Fabrication Possibility and Application Area
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, C.; Wang, N.; Li, K.; Jia, H. Dual-cladding high birefringence photonic crystal fiber with elliptical-core. Appl. Phys. B 2019, 125, 158. [Google Scholar] [CrossRef]
- Khamis, M.; Sevilla, R.; Ennser, K. Large mode area pr 3+-doped chalcogenide pcf design for high efficiency mid-ir laser. IEEE Photonics Technol. Lett. 2018, 30, 825–828. [Google Scholar] [CrossRef]
- Paul, B.K.; Ahmed, F.; Moctader, M.G.; Ahmed, K.; Vigneswaran, D. Silicon nano crystal filled photonic crystal fiber for high nonlinearity. Opt. Mater. 2018, 84, 545–549. [Google Scholar] [CrossRef]
- Kumar, P.; Tripathy, A.; Roy, J.S. Design and analysis of single mode photonic crystal fibers with zero dispersion and ultra low loss. Int. J. Electron. Telecommun. 2018, 64, 541–546. [Google Scholar]
- Hossain, M.M.; Hossain, M.B.; Amin, M.Z. Small coupling length with a low confinement loss dual-core liquid infiltrated photonic crystal fiber coupler. OSA Contin. 2018, 1, 953–962. [Google Scholar] [CrossRef]
- Min, R.; Korganbayev, S.; Molardi, C.; Broadway, C.; Hu, X.; Caucheteur, C.; Bang, O.; Antunes, P.; Tosi, D.; Marques, C.; et al. Largely tunable dispersion chirped polymer fbg. Opt. Lett. 2018, 43, 5106–5109. [Google Scholar] [CrossRef]
- Monfared, Y.E.; Ponomarenko, S.A. Extremely nonlinear carbondisulfide-filled photonic crystal fiber with controllable dispersion. Opt. Mater. 2019, 88, 406–411. [Google Scholar] [CrossRef]
- Al Mahfuz, M.; Hasan, M.R.; Momota, M.R.; Masud, A.; Akter, S. Asymmetrical photonic crystal fiber based plasmonic sensor using the lower birefringence peak method. OSA Contin. 2019, 2, 1713–1725. [Google Scholar] [CrossRef]
- Klantsataya, E.; François, A.; Ebendorff-Heidepriem, H.; Hoffmann, P.; Monro, T.M. Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing. Sensors 2015, 15, 25090–25102. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Singh, H.; Singh, A.; Singh, R.K.; Tiwari, A. D-Shaped photonic crystal fiber–based surface plasmon resonance biosensors with spatially distributed bimetallic layers. Plasmonics 2020, 15, 1323–1330. [Google Scholar] [CrossRef]
- Gomez-Cardona, N.; Reyes-Vera, E.; Torres, P. High sensitivity refractive index sensor based on the excitation of long-range surface plasmon polaritons in H-shaped optical fiber. Sensors 2020, 20, 2111. [Google Scholar] [CrossRef] [Green Version]
- Rifat, A.A.; Mahdiraji, G.A.; Shee, Y.; Shawon, M.J.; Adikan, F.M. A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Eng. 2016, 140, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cardona, N.D.; Reyes-Vera, E.; Torres, P. Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique. IEEE Sens. J. 2018, 18, 7492–7498. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Wang, M.; Yao, J. An exposed-core grapefruit fibers based surface plasmon resonance sensor. Sensors 2015, 15, 17106–17114. [Google Scholar] [CrossRef] [Green Version]
- Luan, N.; Wang, R.; Lv, W.; Yao, J. Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express 2015, 23, 8576–8582. [Google Scholar] [CrossRef]
- Cennamo, N.; Zuppella, P.; Bacco, D.; Corso, A.J.; Pelizzo, M.G.; Zeni, L. Spr sensor platform based on a novel metal bilayer applied on d–shaped plastic optical fibers for refractive index measurements in the range 1.38–1.42. IEEE Sens. J. 2016, 16, 4822–4827. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhu, J.; Wu, L.; You, Q.; Ruan, B.; Dai, X. Highly sensitive terahertz gas sensor based on surface plasmon resonance with grapheme. IEEE Photonics J. 2017, 10, 1–7. [Google Scholar]
- Lertvachirapaiboon, C.; Baba, A.; Ekgasit, S.; Shinbo, K.; Kato, K.; Kaneko, F. Transmission surface plasmon resonance techniques and their potential biosensor applications. Biosens. Bioelectron. 2018, 99, 399–415. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.-L.; Zhang, Y.-N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber spr sensor. Measurement 2019, 148, 106792. [Google Scholar] [CrossRef]
- Wu, Q.-L.; Zhao, Y.; Zhang, Y.-N.; Yang, Y. High sensitive applied load measurement using optical fiber tapered-loop probe with spr effect. Opt. Laser Technol. 2019, 114, 95–102. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Xu, D.; Yi, Z.; Chen, X.; Chen, J.; Tang, Y.; Wu, P.; Li, G.; Yi, Y. Triple-band perfect metamaterial absorber with good operating angle polarization tolerance based on split ring arrays. Results Phys. 2020, 16, 102951. [Google Scholar] [CrossRef]
- Qin, F.; Chen, Z.; Chen, X.; Yi, Z.; Yao, W.; Duan, T.; Wu, P.; Yang, H.; Li, G.; Yi, Y. A tunable triple-band near-infrared metamaterial absorber based on au nano-cuboids array. Nanomaterials 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Cen, C.; Zhang, Y.; Chen, X.; Yang, H.; Yi, Z.; Yao, W.; Tang, Y.; Yi, Y.; Wang, J.A.; Wu, P. A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency. Phys. E Low Dimens. Syst. Nanostruct. 2020, 117, 113840. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 2011, 5, 591. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Yang, H.; Yi, Z.; Chen, X.; Yao, W.; Duan, T.; Wu, P.; Li, G.; Yi, Y. Tunable broadband solar energy absorber based on monolayer transition metal dichalcogenides materials using au nanocubes. Nanomaterials 2020, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, X.; Yi, Z.; Yang, H.; Tang, Y.; Yi, Y.; Yao, W.; Wang, J.; Yi, Y. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays. Mater. Today Energy 2020, 16, 100390. [Google Scholar] [CrossRef]
- Rifat, A.A.; Hasan, M.R.; Ahmed, R.; Butt, H. Photonic crystal fiberbased plasmonic biosensor with external sensing approach. J. Nanophotonics 2017, 12, 012503. [Google Scholar]
- Dash, J.N.; Das, R.; Jha, R. Azo coated microchannel incorporated pcf-based spr sensor: A numerical analysis. IEEE Photonics Technol. Lett. 2018, 30, 1032–1035. [Google Scholar] [CrossRef]
- Gangwar, R.K.; Singh, V.K. Highly sensitive surface plasmon resonance based d-shaped photonic crystal fiber refractive index sensor. Plasmonics 2017, 12, 1367–1372. [Google Scholar] [CrossRef]
- An, G.; Hao, X.; Li, S.; Yan, X.; Zhang, X. D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl. Opt. 2017, 56, 6988–6992. [Google Scholar] [CrossRef]
- Rifat, A.A.; Haider, F.; Ahmed, R.; Mahdiraji, G.A.; Adikan, F.M.; Miroshnichenko, A.E. Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett. 2018, 43, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Chang, M.; Lu, X.; Zhou, J.; Zhang, X. Numerical Analysis of Midinfrared D-Shaped Photonic-Crystal-Fiber Sensor Based on Surface-Plasmon-Resonance Effect for Environmental Monitoring. Appl. Sci. 2020, 10, 3897. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, M.; Shum, P.; Chu, L. An ultrahighly sensitive photonic crystal fiber based surface plasmon resonance sensor. Optik 2020, 212, 164649. [Google Scholar] [CrossRef]
- Meng, X.; Li, J.; Guo, Y.; Li, S.; Wang, Y.; Bi, W.; Huibin, L. An optical-fiber sensor with double loss peaks based on surface plasmon resonance. Optik 2020, 216, 164938. [Google Scholar] [CrossRef]
- Mitu, S.A.; Ahmed, K.; Al Zahrani, F.A.; Grover, A.; Rajan, M.S.M.; Moni, M.A. Development and analysis of surface plasmon resonance based refractive index sensor for pregnancy testing. Opt. Lasers Eng. 2021, 140, 106551. [Google Scholar] [CrossRef]
- Jabin, M.A.; Ahmed, K.; Rana, M.J.; Paul, B.K.; Dhasarathan, V.; Uddin, M.S. Multicore bi-layer gold-coated SPR-based sensor for simultaneous measurements of CFC and HCFC. Int. J. Mod. Phys. B 2019, 33, 1950316. [Google Scholar]
- Brückner, V. To the use of Sellmeier formula. Sr. Experten Serv. Bonn HfT Leipz. Ger. 2011, 42, 242–250. [Google Scholar]
- Abdullah, H.; Islam, M.R.; Ahmed, K.; Malka, D.; Nguyen, T.K.; Hossain, M.N.; Paul, B.K.; Dhasarathan, V. Theoretical analysis of highly temperature-sensitive fem based optical sensor in the infrared range. Optik 2020, 205, 164060. [Google Scholar] [CrossRef]
- Sun, B.; Chen, M.-Y.; Zhang, Y.-K.; Yang, J.-C. Design of refractive index sensors based on the wavelength-selective resonant coupling phenomenon in dual-core photonic crystal fibers. J. Biomed. Opt. 2012, 17, 037002. [Google Scholar] [CrossRef]
- Ayyanar, N.; Raja, G.T.; Sharma, M.; Kumar, D.S. Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens. J. 2018, 18, 7093–7099. [Google Scholar] [CrossRef]
- Chakma, S.; Khalek, M.A.; Paul, B.K.; Ahmed, K.; Hasan, M.R.; Bahar, A.N. Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis. Sens. Bio-Sens. Res. 2018, 18, 7–12. [Google Scholar] [CrossRef]
- Ahmed, K.; Jabin, M.A.; Paul, B.K. Surface plasmon resonance-based gold–coated biosensor for the detection of fuel adulteration. J. Comput. Electron. 2020, 19, 321–332. [Google Scholar] [CrossRef]
- Paul, A.K.; Sarkar, A.K.; Rahman, A.B.S.; Khaleque, A. Twin core photonic crystal fiber plasmonic refractive index sensor. IEEE Sens. J. 2018, 18, 5761–5769. [Google Scholar] [CrossRef]
- Hu, H.; Song, X.; Han, Q.; Chang, P.; Zhang, J.; Liu, K.; Du, Y.; Wang, H.; Liu, T. High sensitivity fiber optic spr refractive index sensor based on multimode-no-core-multimode structure. IEEE Sens. J. 2019, 20, 2967–2975. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Cox, F.M.; Kuhlmey, B.T.; Large, M.C.J. Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt. Express 2007, 15, 16270–16278. [Google Scholar] [CrossRef]
- Romanova, V.A.; Matyushkin, L.B. Sol-gel fabrication of one-dimensional photonic crystals. In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, 1–3 February 2017; pp. 1423–1427. [Google Scholar]
- Haque, E.; Hossain, M.A.; Namihira, Y.; Ahmed, F. Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl. Opt. 2019, 58, 1547–1554. [Google Scholar] [CrossRef]
- Hasan, M.R.; Akter, S.; Rifat, A.A.; Rana, S.; Ahmed, K.; Ahmed, R.; Subbaraman, H.; Abbott, D. Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor. IEEE Sens. J. 2018, 18, 133–140. [Google Scholar] [CrossRef]
- Fan, Z. A tunable high-sensitivity refractive index of analyte biosensor based on metal-nanoscale covered photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Islam, M.S.; Cordeiro, C.M.; Sultana, J.; Aoni, R.A.; Feng, S.; Ahmed, R.; Dorraki, M.; Dinovitser, A.; Ng, B.W.H.; Abbott, D. A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 2019, 7, 79085–79094. [Google Scholar] [CrossRef]
- Sardar, M.; Faisal, M.; Ahmed, K. Simple hollow Core photonic crystal Fiber for monitoring carbon dioxide gas with very high accuracy. Sens. Bio-Sens. Res. 2021, 31, 100401. [Google Scholar]
- Rana, S.; Rakin, A.S.; Hasan, M.R.; Reza, M.S.; Leonhardt, R.; Abbott, D.; Subbaraman, H. Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime. Opt. Commun. 2018, 410, 452–456. [Google Scholar] [CrossRef]
- Abdullah, H.; Ahmed, K.; Mitu, S.A. Ultrahigh sensitivity refractive index biosensor based on gold coated nano–film photonic crystal fiber. Results Phys. 2020, 17, 103151. [Google Scholar] [CrossRef]
- Cognolato, L. Chemical Vapour Deposition for Optical Fibre Technology. J. Phys. IV Proc. EDP Sci. 1995, 5, C5-975–C5-987. [Google Scholar] [CrossRef] [Green Version]
- Bartkowiak, D. MgF2-Coated Gold Nanostructures as a Plasmonic Substrate for Analytical Applications. Ph.D. Thesis, Humboldt University of Berlin, Berlin, Germany, 16 July 2018. [Google Scholar]
- Noman, A.A.; Haque, E.; Hossain, M.; Hai, N.H.; Namihira, Y.; Ahmed, F. Sensitivity Enhancement of Modified D-Shaped Microchannel PCF-Based Surface Plasmon Resonance Sensor. Sensors 2020, 20, 6049. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Q.; Li, X.; Zhou, H.; Hong, X.; Geng, Y. Experimental realization of D-shaped photonic crystal fiber SPR sensor. J. Phys. D Appl. Phys. 2016, 50, 025101. [Google Scholar] [CrossRef]
- Wu, T.; Shao, Y.; Wang, Y.; Cao, S.; Cao, W.; Zhang, F.; Liao, C.; He, J.; Huang, Y.; Hou, M.; et al. Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 2017, 25, 20313–20322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Shao, Y.; Wang, Y.; Wu, T.; Zhang, L.; Huang, Y.; Zhang, F.; Liao, C.; He, J.; Wang, Y. Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber. Opt. Express 2018, 26, 3988–3994. [Google Scholar] [CrossRef]
- Silva, M.F.; Pimenta, S.; Rodrigues, J.A.; Freitas, J.R.; Ghaderi, M.; Goncalves, L.M.; de Graaf, G.; Wolffenbuttel, R.F.; Correia, J.H. Magnesium fluoride as low-refractive index material for near-ultraviolet filters applied to optical sensors. Vacuum 2020, 181, 109673. [Google Scholar] [CrossRef]
- Shu, X.; Zhu, X.; Wang, Q.; Jiang, S.; Shi, W.; Huang, Z.; Huang, D. Dual resonant peaks of LP015 cladding mode in long-period gratings. Electron. Lett. 1999, 35, 649–651. [Google Scholar] [CrossRef]
- Han, Y.G.; Lee, B.H.; Han, W.T.; Paek, U.C.; Chung, Y. Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications. IEEE Photonics Technol. Lett. 2001, 13, 699–701. [Google Scholar]
- Rifat, A.A.; Ahmed, R.; Yetisen, A.K.; Butt, H.; Sabouri, A.; Mahdiraji, G.A.; Yun, S.H.; Adikan, F.M. Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 2017, 243, 311–325. [Google Scholar] [CrossRef]
- Ramanujam, N.R.; Patel, S.K.; Reddy, N.M.; Taya, S.A.; Vigneswaran, D.; Rajan, M.M. One-dimensional ring mirror-defect photonic crystal for detection of mycobacterium tuberculosis bacteria. Optik 2020, 219, 165097. [Google Scholar] [CrossRef]
- Jabin, M.A.; Ahmed, K.; Rana, M.J.; Paul, B.K.; Islam, M.; Vigneswaran, D.; Uddin, M.S. Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Ahmed, K.; Ahmed, F.; Roy, S.; Paul, B.K.; Aktar, M.N.; Vigneswaran, D.; Islam, M.S. Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens. J. 2019, 19, 3368–3375. [Google Scholar] [CrossRef]
Structures | (nm/RIU) | R (RIU) | Publication Year | Reference |
---|---|---|---|---|
SPR based D-shaped sensor | 7700 | 1.30 × | 2017 | [29] |
Dual-core PCF based RI sensor | 9000 | 1.10 × | 2018 | [43] |
PCF based D-shaped RI sensor | 10,493 | 9.53 × | 2017 | [30] |
No-core multimode SPR sensor | 11,792 | 2.04 × | 2019 | [44] |
Selectively coated PCF sensor | 11,000 | 9.10 × | 2018 | [31] |
D-shaped SPR based PCF sensor | 11,500 | 8.70 × | 2020 | [32] |
Gold-and MgF2-Coated RI sensor | 27,959 | 3.70 × | - | Proposed Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, K.; AlZain, M.A.; Abdullah, H.; Luo, Y.; Vigneswaran, D.; Faragallah, O.S.; Eid, M.M.A.; Rashed, A.N.Z. Highly Sensitive Twin Resonance Coupling Refractive Index Sensor Based on Gold- and MgF2-Coated Nano Metal Films. Biosensors 2021, 11, 104. https://doi.org/10.3390/bios11040104
Ahmed K, AlZain MA, Abdullah H, Luo Y, Vigneswaran D, Faragallah OS, Eid MMA, Rashed ANZ. Highly Sensitive Twin Resonance Coupling Refractive Index Sensor Based on Gold- and MgF2-Coated Nano Metal Films. Biosensors. 2021; 11(4):104. https://doi.org/10.3390/bios11040104
Chicago/Turabian StyleAhmed, Kawsar, Mohammed A. AlZain, Hasan Abdullah, Yanhua Luo, Dhasarathan Vigneswaran, Osama S. Faragallah, Mahmoud M. A. Eid, and Ahmed Nabih Zaki Rashed. 2021. "Highly Sensitive Twin Resonance Coupling Refractive Index Sensor Based on Gold- and MgF2-Coated Nano Metal Films" Biosensors 11, no. 4: 104. https://doi.org/10.3390/bios11040104
APA StyleAhmed, K., AlZain, M. A., Abdullah, H., Luo, Y., Vigneswaran, D., Faragallah, O. S., Eid, M. M. A., & Rashed, A. N. Z. (2021). Highly Sensitive Twin Resonance Coupling Refractive Index Sensor Based on Gold- and MgF2-Coated Nano Metal Films. Biosensors, 11(4), 104. https://doi.org/10.3390/bios11040104