Evolution Mechanism of Photonically Sintered Nano-Silver Conductive Patterns
Abstract
:1. Introduction
2. Materials and Methods
3. Modelling the Sintering of Nano-Silver Particles
3.1. Fluid Dynamics Finite Element Model of Flash-Sintered Nanoparticles
3.1.1. Parameter Calculation
3.1.2. Sintering Process
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Neil, C. Printed circuit board fabrication. In Inkjet Technology for Digital Fabrication, 1st ed.; Hutchings, I.M., Martin, G.D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kamyshny, A.; Steinke, J.; Magdassi, S. Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 2011, 4, 19–36. [Google Scholar] [CrossRef]
- Niittynen, J.; Abbel, R.; Mäntysalo, M.; Perelaer, J.; Schubert, U.S.; Lupo, D. Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Film 2014, 556, 452–459. [Google Scholar] [CrossRef]
- Greer, J.R.; Street, R.A. Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater. 2007, 55, 6345–6349. [Google Scholar] [CrossRef]
- Perelaer, J.; de Gans, B.-J.; Schubert, U.S. Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 2006, 18, 2101–2104. [Google Scholar] [CrossRef]
- Perelaer, J.; Klokkenburg, M.; Hendriks, C.E.; Schubert, U.S. Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv. Mater. 2009, 21, 4830–4834. [Google Scholar] [CrossRef] [PubMed]
- Chiolerio, A.; Maccioni, G.; Martino, P.; Cotto, M.; Pandolfi, P.; Rivolo, P.; Ferrero, S.; Scaltrito, L. Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microelectron. Eng. 2011, 88, 2481–2483. [Google Scholar] [CrossRef]
- Hong, S.; Yeo, J.; Kim, G.; Kim, D. Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink. Acs Nano 2007, 7, 5024–5031. [Google Scholar] [CrossRef]
- Agarwala, S.; Goh, G.L.; Dinh Le, T.-S.; An, J.; Peh, Z.K.; Yeong, W.Y.; Kim, Y.-J. Wearable Bandage based Strain Sensor for Home Healthcare: Combining 3D Aerosol Jet Printing and Laser Sintering. Acs Sens. 2018, 4, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Pan, H. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 2007, 18, 345202. [Google Scholar] [CrossRef] [Green Version]
- Magdassi, S.; Grouchko, M.; Berezin, O.; Kamyshny, A. Triggering the Sintering of Silver Nanoparticles at Room Temperature. Acs Nano 2010, 4, 1943–1948. [Google Scholar] [CrossRef]
- Grouchk, M.; Kamyshny, A. Conductive Inks with a “Built-In” Mechanism That Enables Sintering at Room Temperature. Acs Nano 2011, 5, 3354–3359. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Kim, H.-S. Flash light sintering of nickel nanoparticles for printed electronics. Thin Solid Film 2014, 550, 575–581. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Gupta, H.; Gupta, D. Flash light sintering of silver nanoink for inkjet-printed thin-film transistor on flexible substrate. IEEE Trans. Nanotechnol. 2017, 16, 375–382. [Google Scholar] [CrossRef]
- Joo, S.-J.; Hwang, H.-J.; Kim, H.-S. Highly conductive copper nano/microparticles ink via flash light sintering forprinted electronics. Nanotechnology 2014, 25, 265601. [Google Scholar] [CrossRef] [PubMed]
- Perelaer, J.; Abbel, R.; Wünscher, S.; Jani, R.; van Lammeren, T.U.S. Schubert, Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: From non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 2012, 24, 2620–2625. [Google Scholar] [CrossRef]
- Kang, J.S.; Ryu, J.; Kim, H.S.; Hahn, H.T. Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. J. Electron. Mater. 2011, 40, 2268. [Google Scholar] [CrossRef]
- Yu, M.-H.; Joo, S.-J.; Kim, H.-S. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes. Nanotechnology 2017, 28, 205205. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, V.; Schroder, K.; Farnsworth, S. Photonic Curing Enabling High-Speed Sintering of Metal Inkjet Inks on Temperature-Sensitive Substrates. Handb. Ind. Inkjet Print. Full Syst. Approach 2017, 8, 557–566. [Google Scholar]
- Albrecht, A. Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns. J. Mater. Chem. C 2016, 4, 3546–3554. [Google Scholar] [CrossRef]
- Yang, L.; Gan, Y.; Zhang, Y.; Chen, J.K. Molecular dynamics simulation of neck growth in laser sintering of different-sized gold nanoparticles under different heating rates. Appl. Phys. A 2012, 106, 725–735. [Google Scholar] [CrossRef]
- Song, P.; Wen, D. Molecular dynamics simulation of the sintering of metallic nanoparticles. J. Nanopart. Res. 2010, 12, 823–829. [Google Scholar] [CrossRef]
- Rahmani, F.; Jeon, J.; Jiang, S.; Nouranian, S. Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation. J. Nanopart. Res. 2018, 20, 133. [Google Scholar] [CrossRef]
- Dexter, M.; Bhandari, R.; Chang, C.-H. Controlling processing temperatures and self-limiting behaviour in intense pulsed sintering by tailoring nanomaterial shape distribution. Rsc Adv. 2017, 7, 56395–56405. [Google Scholar] [CrossRef] [Green Version]
- Bansal, S.; Malhotra, R. Nanoscale-shape-mediated coupling between temperature and densification in intense pulsed light sintering. Nanotechnology 2016, 27, 495602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacNeill, W.; Choi, C.H.; Chang, C.H.; Malhotra, R. On the self-damping nature of densification in photonic sintering of nanoparticles. Sci. Rep. 2015, 5, 14845. [Google Scholar] [CrossRef] [Green Version]
- Kun, H. Solid State Physics; People’s Education Press: Beijing, China, 1966. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Huang, J. Evolution Mechanism of Photonically Sintered Nano-Silver Conductive Patterns. Nanomaterials 2019, 9, 258. https://doi.org/10.3390/nano9020258
Meng F, Huang J. Evolution Mechanism of Photonically Sintered Nano-Silver Conductive Patterns. Nanomaterials. 2019; 9(2):258. https://doi.org/10.3390/nano9020258
Chicago/Turabian StyleMeng, Fanbo, and Jin Huang. 2019. "Evolution Mechanism of Photonically Sintered Nano-Silver Conductive Patterns" Nanomaterials 9, no. 2: 258. https://doi.org/10.3390/nano9020258
APA StyleMeng, F., & Huang, J. (2019). Evolution Mechanism of Photonically Sintered Nano-Silver Conductive Patterns. Nanomaterials, 9(2), 258. https://doi.org/10.3390/nano9020258