Next Article in Journal
The Self-Assembly of Lignin and Its Application in Nanoparticle Synthesis: A Short Review
Previous Article in Journal
Preparation and Characterization of Biomimetic Hydroxyapatite Nanocrystals by Using Partially Hydrolyzed Keratin as Template Agent
Previous Article in Special Issue
Voltammetric Detection of Caffeine in Beverages at Nafion/Graphite Nanoplatelets Layer-by-Layer Films
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Nanomaterials 2019, 9(2), 242; https://doi.org/10.3390/nano9020242

Micro-Structured Polydopamine Films via Pulsed Electrochemical Deposition

Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
*
Author to whom correspondence should be addressed.
Received: 11 January 2019 / Revised: 4 February 2019 / Accepted: 9 February 2019 / Published: 11 February 2019
(This article belongs to the Special Issue Nanomaterials for Electrocatalytic Applications in Energy and Sensing)
Full-Text   |   PDF [3506 KB, uploaded 23 February 2019]   |  

Abstract

Polydopamine (PDA) films are interesting as smart functional materials, and their controlled structured formation plays a significant role in a wide range of applications ranging from cell adhesion to sensing and catalysis. A pulsed deposition technique is reported for micro-structuring polydopamine films using scanning electrochemical microscopy (SECM) in direct mode. Thereby, precise and reproducible film thicknesses of the deposited spots could be achieved ranging from 5.9 +/− 0.48 nm (1 pulse cycle) to 75.4 nm +/− 2.5 nm for 90 pulse cycles. The obtained morphology is different in comparison to films deposited via cyclic voltammetry or films formed by autooxidation showing a cracked blister-like structure for high pulse cycle numbers. The obtained polydopamine spots were investigated in respect to their electrochemical properties using SECM approach curves. Quantitative kinetic data in dependence of the film thickness, the substrate potential, and the used redox species were obtained. View Full-Text
Keywords: polydopamine; pulsed deposition; scanning electrochemical microscopy; functional groups; electron transfer polydopamine; pulsed deposition; scanning electrochemical microscopy; functional groups; electron transfer
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Lin, J.; Daboss, S.; Blaimer, D.; Kranz, C. Micro-Structured Polydopamine Films via Pulsed Electrochemical Deposition. Nanomaterials 2019, 9, 242.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top