Fluoride-Ion Batteries: On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 against Metal Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanochemical Synthesis
2.2. X-Ray Powder Diffraction
2.3. Broadband Impedance Spectroscopy
2.4. Cyclic Voltammetry
2.5. Scanning Electron Microscopy
3. Results and Discussion
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FIB | Fluorine Ion Battery |
CV | Cyclic Voltammetry |
EIS | Electrochemical Impedance Spectroscopy |
SEM | Scanning Electron Microscopy |
CE | Counter Electrode |
WE | Working Electrode |
EDX | Energy-Dispersive X-ray Spectroscopy |
SE | Secondary Electrons |
BSE | Backscattered Electrons |
Appendix A
References
- Turcheniuk, K.; Bondarev, D.; Singhal, V.; Yushin, G. Ten Years Left to Redesign Lithium-Ion Batteries. Nature 2018, 559, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A Cost and Resource Analysis of Sodium-Ion Batteries. Nat. Rev. Chem. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Faraday, M. Experimental Researches in Electricity, Art. 1339; Taylor and Francis: London, UK, 1893. [Google Scholar]
- O’Keeffe, M. Phase Transitions and Translational Freedom in Solid Electrolytes. In Superionic Conductors; Springer: Boston, MA, USA, 1976; pp. 101–114. [Google Scholar]
- Funke, K. Solid State Ionics: From Michael Faraday to green energy—The European dimension. Sci. Technol. Adv. Mater. 2013, 14, 043502. [Google Scholar] [CrossRef]
- Takahashi, T. High Conductivity Solid Ionic Conductors: The Past and the Present. In High Conductivity Solid Ionic Conductors; World Scientific: Singapore, 1989; pp. 1–16. [Google Scholar]
- Tubandt, C. Über Elektrizitätsleitung in festen kristallisierten Verbindungen. Zweite Mitteilung. Überführung und Wanderung der Ionen in einheitlichen festen Elektrolyten. Z. Anorg. Allg. Chem. 1921, 115, 105–126. [Google Scholar] [CrossRef]
- Baukal, W. Ger. Offen. Galvanische Zelle mit dotiertem Calciumfluorid als Festelektrolyt. Germany Patent GWXXBX DE 2017128, 7 April 1977. [Google Scholar]
- Kennedy, J.H.; Hunter, J.C. Thin-Film Galvanic Cell Pb/PbF2/PbF2,CuF2/Cu. J. Electrochem. Soc. 1976, 123, 10–14. [Google Scholar] [CrossRef]
- Schoonman, J. A Solid-State Galvanic Cell with Fluoride-Conducting Electrolytes. J. Electrochem. Soc. 1976, 123, 1772–1775. [Google Scholar] [CrossRef]
- Schoonman, J.; Wapenaar, K.; Overluizen, G.; Dirksen, G. Fluoride-Conducting Solid Electrolytes in Galvanic Cells. J. Electrochem. Soc. 1979, 126, 709–713. [Google Scholar] [CrossRef]
- Schoonman, J.; Wolfert, A. Solid-State Galvanic Cells with Fast Fluoride Conducting Electrolytes. Solid State Ion. 1981, 3–4, 373–379. [Google Scholar] [CrossRef]
- Anji Reddy, M.; Fichtner, M. Batteries based on Fluoride Shuttle. J. Mater. Chem. 2011, 21, 17059–17062. [Google Scholar] [CrossRef]
- Reddy, M.A.; Fichtner, M. Fluoride Cathodes for Secondary Batteries. In Advanced Fluoride-Based Materials for Energy Conversion; Nakajima, T., Groult, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 51–76. [Google Scholar]
- Thieu, D.T.; Fawey, M.H.; Bhatia, H.; Diemant, T.; Chakravadhanula, V.S.K.; Behm, R.J.; Kübel, C.; Fichtner, M. CuF2 as Reversible Cathode for Fluoride Ion Batteries. Adv. Fuct. Mater. 2017, 27, 1701051. [Google Scholar] [CrossRef]
- Bhatia, H.; Thieu, D.T.; Pohl, A.H.; Chakravadhanula, V.S.K.; Fawey, M.H.; Kübel, C.; Fichtner, M. Conductivity Optimization of Tysonite-type La1-xBaxF3-x Solid Electrolytes for Advanced Fluoride Ion Battery. ACS Appl. Mater. Interfaces 2017, 9, 23707–23715. [Google Scholar] [CrossRef] [PubMed]
- Wapenaar, K.; Koesveld, J.V.; Schoonman, J. Conductivity Enhancement in Fluorite-Structured Ba1-xLaxF2+x Solid Solutions. Solid State Ion. 1981, 2, 145–154. [Google Scholar] [CrossRef]
- Gschwind, F.; Zao-Karger, Z.; Fichtner, M. A Fluoride-Doped PEG Matrix as an Electrolyte for Anion Transportation in a Room-Temperature Fluoride Ion Battery. J. Mater. Chem. A 2014, 2, 1214–1218. [Google Scholar] [CrossRef]
- Davis, V.K.; Bates, C.M.; Omichi, K.; Savoie, B.M.; Momčilović, N.; Xu, Q.; Wolf, W.J.; Webb, M.A.; Billings, K.J.; Chou, N.H.; et al. Room-Temperature Cycling of Metal Fluoride Electrodes: Liquid Electrolytes for High-Energy Fluoride Ion Cells. Science 2018, 362, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Rongeat, C.; Anji Reddy, M.; Diemant, T.; Behm, R.J.; Fichtner, M. Development of New Anode Composite Materials for Fluoride Ion Batteries. J. Mater. Chem. A 2014, 2, 20861–20872. [Google Scholar] [CrossRef]
- Zhang, L.; Reddy, M.A.; Fichtner, M. Electrochemical Performance of All-Solid-State Fluoride-Ion Batteries based on Thin-Film Electrolyte using Alternative Conductive Additives and Anodes. J. Solid State Electrochem. 2018, 22, 997–1006. [Google Scholar] [CrossRef]
- Nowroozi, M.A.; Ivlev, S.; Rohrer, J.; Clemens, O. La2CoO4: A New Intercalation based Cathode Material for Fluoride Ion Batteries with Improved Cycling Stability. J. Mater. Chem. A 2018, 6, 4658–4669. [Google Scholar] [CrossRef]
- Mohammad, I.; Chable, J.; Witter, R.; Fichtner, M.; Reddy, M.A. Synthesis of Fast Fluoride-Ion-Conductive Fluorite-Type Ba1-xSbxF2+x (0.1 <x< 0.4): A Potential Solid Electrolyte for Fluoride-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 17249–17256. [Google Scholar]
- Dieudonne, B.; Chable, J.; Body, M.; Legein, C.; Durand, E.; Mauvy, F.; Fourcade, S.; Leblanc, M.; Maisonneuve, V.; Demourgues, A. The Key Role of the Composition and Structural Features in Fluoride Ion Conductivity in Tysonite Ce1-xSrxF3-x Solid Solutions. Dalton Trans. 2017, 46, 3761–3769. [Google Scholar] [CrossRef]
- Dieudonne, B.; Chable, J.; Mauvy, F.; Fourcade, S.; Durand, E.; Lebraud, E.; Leblanc, M.; Legein, C.; Body, M.; Maisonneuve, V.; et al. Exploring the Sm1-xCaxF3-x Tysonite Solid Solution as a Solid-State Electrolyte: Relationships between Structural Features and Fast Ionic Conductivity. J. Phys. Chem. C 2015, 119, 25170–25179. [Google Scholar] [CrossRef]
- Raccichini, R.; Amores, M.; Hinds, G. Critical Review of the Use of Reference Electrodes in Li-Ion Batteries: A Diagnostic Perspective. Batteries 2019, 5, 12. [Google Scholar] [CrossRef]
- Breuer, S.; Gombotz, M.; Pregartner, V.; Hanzu, I.; Wilkening, M. Heterogeneous F Anion Transport, Local Dynamics and Electrochemical Stability of Nanocrystalline La1-xBaxF3-x. Energy Storage Mater. 2019, 16, 481–490. [Google Scholar] [CrossRef]
- Setup of The Impedance Measuring Cell (Novocontrol). Available online: https://www.novocontrol.de/brochures/BDS1200.pdf (accessed on 21 October 2019).
- Irvine, J.T.S.; Sinclair, D.C.; West, A.R. Electroceramics: Characterization by Impedance Spectroscopy. Adv. Mater. 1990, 2, 132–138. [Google Scholar] [CrossRef]
- Gombotz, M.; Lunghammer, S.; Breuer, S.; Hanzu, I.; Preishuber-Pflügl, F.; Wilkening, H.M.R. Spatial Confinement—Rapid 2D F- Diffusion in Micro- and Nanocrystalline RbSn2F5. Phys. Chem. Chem. Phys. 2019, 21, 1872–1883. [Google Scholar] [CrossRef]
- Preishuber-Pflügl, F.; Bottke, P.; Pregartner, V.; Bitschnau, B.; Wilkening, M. Correlated Fluorine Diffusion and Ionic conduction in the Nanocrystalline F- Solid Electrolyte Ba0.6La0.4F2.4 – 19F T1(ρ) NMR Relaxation vs. Conductivity Measurements. Phys. Chem. Chem. Phys. 2014, 16, 9580–9590. [Google Scholar] [CrossRef]
- Narayanan, S.; Epp, V.; Wilkening, M.; Thangadurai, V. Macroscopic and Microscopic Li+ Transport Parameters in Cubic Garnet-Type “Li6.5La2.5Ba0.5ZrTaO12” as Probed by Impedance Spectroscopy and NMR. RSC Adv. 2012, 2, 2553–2561. [Google Scholar] [CrossRef]
- Lunghammer, S.; Ma, Q.; Rettenwander, D.; Hanzu, I.; Tietz, F.; Wilkening, H. Bulk and Grain-Boundary Ionic Conductivity in Sodium Zirconophosphosilicate Na3Zr2(SiO4)2PO4 (NASICON). Chem. Phys. Lett. 2018, 701, 147–150. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gombotz, M.; Pregartner, V.; Hanzu, I.; Wilkening, H.M.R. Fluoride-Ion Batteries: On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 against Metal Electrodes. Nanomaterials 2019, 9, 1517. https://doi.org/10.3390/nano9111517
Gombotz M, Pregartner V, Hanzu I, Wilkening HMR. Fluoride-Ion Batteries: On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 against Metal Electrodes. Nanomaterials. 2019; 9(11):1517. https://doi.org/10.3390/nano9111517
Chicago/Turabian StyleGombotz, Maria, Veronika Pregartner, Ilie Hanzu, and H. Martin R. Wilkening. 2019. "Fluoride-Ion Batteries: On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 against Metal Electrodes" Nanomaterials 9, no. 11: 1517. https://doi.org/10.3390/nano9111517
APA StyleGombotz, M., Pregartner, V., Hanzu, I., & Wilkening, H. M. R. (2019). Fluoride-Ion Batteries: On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 against Metal Electrodes. Nanomaterials, 9(11), 1517. https://doi.org/10.3390/nano9111517