Synthesis of Small Ce3+-Er3+-Yb3+ Tri-Doped BaLuF5 Active-Core-Active-Shell-Active-Shell Nanoparticles with Strong Down Conversion Luminescence at 1.5 μm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of BaLuF5:Yb3+,Er3+ NPs and BaLuF5:Yb3+,Er3+ Core-Shell NPs
2.2. Characterization
3. Results and Discussion
3.1. Crystal Structure and Morphology
3.2. Optical Properties
3.2.1. Effect of Ce3+ Concentration on the Luminescence Properties of BaLuF5:Yb3+,Er3+ NPs
3.2.2. Effect of Yb3+ Concentration of the Shell on the DC Luminescence Properties of BaLuF5:Yb3+,Er3+,Ce3+@BaLuF5:Yb3+ Core-Shell NPs
3.2.3. Synthesis of BaLuF5:Yb3+,Er3+,Ce3+@BaLuF5:Yb3+@BaLuF5:Yb3+ Core-Shell-Shell NPs with Strong Down-Conversion Luminescence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Shan, G.B.; Demopoulos, G.P. Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. J. Adv. Mater. 2010, 22, 4373–4377. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yang, P.; Sun, M.; Bi, H.; Liu, B.; Yang, D.; Gai, S.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. J. ACS Nano 2017, 11, 4133–4144. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, C.; Xu, L.; Sun, C.; Yang, D.; Xu, J.; He, F.; Gai, S.; Yang, P. A novel core-shell structured upconversion nanorod as a multimodal bioimaging and photothermal ablation agent for cancer theranostics. J. Mater. Chem. B 2018, 6, 2597–2607. [Google Scholar] [CrossRef]
- Shen, J.W.; Yang, C.X.; Dong, L.X.; Sun, H.R.; Gao, K.; Yan, X.P. Incorporation of computed tomography and magnetic resonance imaging function into NaYF4:Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging. J. Anal. Chem. 2013, 85, 12166–12172. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Sun, Y.; Zhao, L.; Wu, Y.; Feng, W.; Gao, Y.; Li, F. Polyphosphoric acid capping radioactive/upconverting NaLuF4:Yb,Tm,153Sm nanoparticles for blood pool imaging in vivo. J. Biomater. 2013, 34, 9535–9544. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Zhang, D.; Zhao, D.; Wang, L.; Zheng, K. Near-infrared photocatalysis based on YF3:Yb3+,Tm3+/TiO2 core/shell nanoparticles. J. Chem. Commun. 2010, 46, 2304–2306. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. J. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- De Wild, J.; Rath, J.K.; Meijerink, A.; van Sark, W.G.J.H.M.; Schropp, R.E.I. Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%),Er3+ (2%) upconversion phosphors. J. Sol. Energy Mater. Sol. Cells 2010, 94, 2395–2398. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. J. Biomater. 2011, 32, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.; Arandiyan, H.; Boyer, C.; Lim, M. Lanthanide-doped upconversion nanoparticles: emerging intelligent light-activated drug delivery systems. J. Adv. Sci. 2016, 3, 1500437. [Google Scholar] [CrossRef] [PubMed]
- Adusumalli, V.N.K.B.; Sarkar, S.; Mahalingam, V. Strong single-band blue emission from colloidal Ce3+/Tm3+-doped NaYF4 nanocrystals for light-emitting applications. J. ChemPhysChem 2015, 16, 2312–2316. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.M.; Cen, Y.; Huang, L.J.; Yu, R.Q.; Chu, X. Upconversion fluorescence resonance energy transfer biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum. J. Chem. Commun. 2014, 50, 4759–4762. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, W.; Fei, W.; Zhao, D.; Qu, C.; Wang, X.; Yi, Y.; Cassan, E.; Zhang, D. High-gain polymer optical waveguide amplifiers based on core-shell NaYF4/NaLuF4:Yb3+,Er3+ NPs-PMMA covalent-linking nanocomposites. Sci. Rep. 2016, 6, 36729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Chen, C.; Chen, C.; Ma, C.; Zhang, D. Optical gain at 1535 nm in LaF3:Er,Yb nanoparticle-doped organic-inorganic hybrid material waveguide. J. Appl. Phys. Lett. 2007, 91, 161109. [Google Scholar] [CrossRef]
- Lei, K.-L.; Chow, C.-F.; Tsang, K.-C.; Lei, E.N.Y.; Roy, V.A.L.; Lam, M.H.W.; Lee, C.S.; Pun, E.Y.B.; Li, J. Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers. J. Mater. Chem. 2010, 20, 7526–7529. [Google Scholar] [CrossRef]
- Bo, S.; Wang, J.; Zhao, H.; Ren, H.; Wang, Q.; Xu, G.; Zhang, X.; Liu, X.; Zhen, Z. LaF3:Er,Yb doped sol-gel polymeric optical waveguide amplifiers. J. Appl. Phys. B 2008, 91, 79–83. [Google Scholar] [CrossRef]
- Liu, X.; Qiu, J.; Xu, X.; Zhou, D. Effect of Ce3+ concentration on the luminescence properties of Ce3+/Er3+/Yb3+ tri-doped NaYF4 nanocrystals. J. Nanosci. Nanotechnol. 2016, 16, 3749–3753. [Google Scholar] [CrossRef] [PubMed]
- Khaydukov, K.V.; Rocheva, V.V.; Savelyev, A.G.; Sarycheva, M.E.; Asharchuk, I.M. Synthesis of NaLuF4: Er3+, Yb3+, Ce3+ nanoparticles and study of photoluminescent properties in C-band. EPJ Web Conf. 2017, 132, 03049. [Google Scholar] [CrossRef]
- Huang, B.; Zhou, Y.; Yang, F.; Wu, L.; Qi, Y.; Li, J. The 1.53 μm spectroscopic properties of Er3+/Ce3+/Yb3+ tri-doped tellurite glasses containing silver nanoparticles. J. Opt. Mater. 2016, 51, 9–17. [Google Scholar] [CrossRef]
- Zhai, X.; Li, J.; Liu, S.; Liu, X.; Zhao, D.; Wang, F.; Zhang, D.; Qin, G.; Qin, W. Enhancement of 1.53 μm emission band in NaYF4:Er3+,Yb3+,Ce3+ nanocrystals for polymer-based optical waveguide amplifiers. J. Opt. Mater. Express 2013, 3, 270–277. [Google Scholar] [CrossRef]
- Chen, G.; Ohulchanskyy, T.Y.; Liu, S.; Law, W.C.; Wu, F.; Swihart, M.T.; Agren, H.; Prasad, P.N. Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. J. ACS Nano 2012, 6, 2969–2977. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Gan, T.; Shan, J.; Gu, Z.; Zhou, L.; Yan, L.; Jin, S.; Yin, W.; Zhao, Y. TWEEN coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. J. RSC Adv. 2012, 2, 7037–7041. [Google Scholar] [CrossRef]
- Boyer, J.-C.; Gagnon, J.; Cuccia, L.A.; Capobianco, J.A. Synthesis, characterization, and spectroscopy of NaGdF4: Ce3+,Tb3+/NaYF4 Core/Shell nanoparticles. J. Chem. Mater. 2007, 19, 3358–3360. [Google Scholar] [CrossRef]
- Jin, S.; Zhou, L.; Gu, Z.; Tian, G.; Yan, L.; Ren, W.; Yin, W.; Liu, X.; Zhang, X.; Hu, Z.; et al. A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. J. Nanoscale 2013, 5, 11910–11918. [Google Scholar] [CrossRef] [PubMed]
- Lezhnina, M.; Jüstel, T.; Kätker, H.; Wiechert, D.U.; Kynast, U.H. Efficient luminescence from rare-earth fluoride nanoparticles with optically functional Shells. J. Adv. Funct. Mater. 2010, 16, 935–942. [Google Scholar] [CrossRef]
- Bo, S.H.; Hu, J.; Chen, Z.; Wang, Q.; Xu, G.M.; Liu, X.H.; Zhen, Z. Core-shell LaF3: Er,Yb nanocrystal doped sol-gel materials as waveguide amplifiers. J. Appl. Phys. B 2009, 97, 665. [Google Scholar] [CrossRef]
- Zhou, B.; Tao, L.; Tsang, Y.; Jin, W. Core-shell nanoarchitecture: A strategy to significantly enhance white-light upconversion of lanthanide-doped nanoparticles. J. Mater. Chem. C 2013, 1, 4313–4318. [Google Scholar] [CrossRef]
- Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C.G.; Capobianco, J.A. Upconverting nanoparticles: The active-core/active-shell approach: A strategy to enhance the up conversion luminescence in lanthanide-doped nanoparticles. J. Adv. Funct. Mater. 2010, 19, 2924–2929. [Google Scholar] [CrossRef]
- Chen, D.; Yu, Y.; Huang, F.; Lin, H.; Huang, P.; Yang, A.; Wang, Z.; Wang, Y. Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence. J. Mater. Chem. 2012, 22, 2632–2640. [Google Scholar] [CrossRef]
- Yang, D.; Li, C.; Li, G.; Shang, M.; Kang, X.; Lin, J. Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification. J. Mater. Chem. 2011, 21, 5923–5927. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Lang, Y.; Yuan, Z.; Zhao, D.; Qin, G.; Qin, W. Synthesis of ultra-small BaLuF5:Yb3+,Er3+@BaLuF5:Yb3+ active-core-active-shell nanoparticles with enhanced up-conversion and down-conversion luminescence by a layer-by-layer strategy. J. Mater. Chem. C 2014, 3, 2045–2053. [Google Scholar] [CrossRef]
- Zhai, X.; Liu, S.; Liu, X.; Wang, F.; Zhang, D.; Qin, G.; Qin, W. Sub-10 nm BaYF5:Yb3+,Er3+ core-shell nanoparticles with intense 1.53 mm fluorescence for polymer-based waveguide amplifiers. J. Mater. Chem. C 2013, 1, 1525–1530. [Google Scholar] [CrossRef]
- Lei, L.; Chen, D.; Huang, F.; Yu, Y.; Wang, Y. Syntheses and optical properties of monodisperse BaLnF5(Ln = La–Lu, Y) nanocrystals. J. Alloy. Compd. 2012, 540, 27–31. [Google Scholar] [CrossRef]
- Wang, M.; Liu, J.L.; Zhang, Y.X.; Hou, W.; Wu, X.L.; Xu, S.K. Two-phase solvothermal synthesis of rare-earth doped NaYF4, upconversion fluorescent nanocrystals. J. Mater. Lett. 2009, 63, 325–327. [Google Scholar] [CrossRef]
- Sani, E.; Toncelli, A.; Tonelli, M. Effect of Cerium codoping on Er:BaY2F8 crystals. J. Opt. Express 2005, 13, 8980–8992. [Google Scholar] [CrossRef]
- Shen, S.; Richards, B.; Jha, A. Enhancement in pump inversion efficiency at 980 nm in Er3+, Er3+/Eu3+and Er3+/Ce3+ doped tellurite glass fibers. J. Opt. Express 2006, 14, 5050–5054. [Google Scholar] [CrossRef]
- Meng, Z.; Yoshimura, T.; Fukue, K.; Higashihat, M.; Nakat, Y.; Okada, T. Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ codoping. J. Appl. Phys. 2000, 88, 2187–2190. [Google Scholar] [CrossRef]
- Johnson, N.J.J.; Sha, H.; Diao, S.; Chan, E.M.; Dai, H.; Almutairi, A. Direct Evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shi, Y.; Qin, Z.; Song, M.; Qin, W. Synthesis of Small Ce3+-Er3+-Yb3+ Tri-Doped BaLuF5 Active-Core-Active-Shell-Active-Shell Nanoparticles with Strong Down Conversion Luminescence at 1.5 μm. Nanomaterials 2018, 8, 615. https://doi.org/10.3390/nano8080615
Zhang Y, Shi Y, Qin Z, Song M, Qin W. Synthesis of Small Ce3+-Er3+-Yb3+ Tri-Doped BaLuF5 Active-Core-Active-Shell-Active-Shell Nanoparticles with Strong Down Conversion Luminescence at 1.5 μm. Nanomaterials. 2018; 8(8):615. https://doi.org/10.3390/nano8080615
Chicago/Turabian StyleZhang, Yongling, Yudi Shi, Zhengkun Qin, Mingxing Song, and Weiping Qin. 2018. "Synthesis of Small Ce3+-Er3+-Yb3+ Tri-Doped BaLuF5 Active-Core-Active-Shell-Active-Shell Nanoparticles with Strong Down Conversion Luminescence at 1.5 μm" Nanomaterials 8, no. 8: 615. https://doi.org/10.3390/nano8080615
APA StyleZhang, Y., Shi, Y., Qin, Z., Song, M., & Qin, W. (2018). Synthesis of Small Ce3+-Er3+-Yb3+ Tri-Doped BaLuF5 Active-Core-Active-Shell-Active-Shell Nanoparticles with Strong Down Conversion Luminescence at 1.5 μm. Nanomaterials, 8(8), 615. https://doi.org/10.3390/nano8080615